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Abstract— This paper addresses on the asymptotic stability of 

a class of discrete-time switched time-delay systems. Those 

systems to be studying are described by delay difference 

equations which are represented in the state from. Then, another 

transformation is made towards an arrow form. Therefore, by 

applying the Kotelyanski lemma and the M-matrix properties, 

new sufficient stability conditions are established under arbitrary 

switching. These obtained stability conditions correspond to a 

vector Lyapunov function. Finally, a numerical example is 

presented permitting to understand the application of the 

proposed approach.  

 
Index Terms— Discrete-time switched time-delay systems, 

Global asymptotic stability, M-matrix, Kotelyanski lemma, 

Arrow matrix, Arbitrary switching. 

 

I. INTRODUCTION 

Time delay is frequently viewed as a source of instability 

and encountered in various engineering systems such as 
aircraft stabilization, chemical engineering systems, inferred 
grinding model, manual control, neural network, nuclear 
reactor, population dynamic model, rolling mill, ship 
stabilization, and systems with lossless transmission lines [1–
3]. Frequently, time delay is caused by finite speed in energy 
propagation and may destroy the stability or the performance 
of systems.   

In recent years, switched systems have received growing 
attention. Switched systems are an important class of hybrid 
dynamical, which consist of a finite number of subsystems 
described by differential or difference equations and a 
switching signal that orchestrates switching between these 
sub-systems. The motivation for studying switched systems 
comes partly from the fact that switched systems have 
numerous applications in control of mechanical systems, 
process control, automotive industry, power systems, aircraft 
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and traffic control, and many other fields, many important and 

interesting results have been proposed in terms of all kinds of  
 

 
techniques [4-9]. Since time delay frequently appears in the 
real systems and is a source of the poor performance and even 
instability. Hence, it is for great importance to investigate 
switched time-delay systems.     

The stability analysis switched linear time-delay systems 
nowadays present a theoretical challenge, which has attracted 
growing attention in the literature. For this, many methods 
have been employed and many interest results have been 
obtained [10-17].  

Generally, stability under arbitrary switching remains a 
fundamental issue in practical switched systems. In this 
context, it is well known that, the existence of a common 
Lyapunov function for all the subsystems, is a sufficient 
condition to guarantee the stability of the switched system 
under arbitrary switching law. Despite that it has some 
attempts for construction to a common Lyapunov function [18, 
19], by intruding in order the Lyapunov Krasovskii functionals 
and the linear matrix inequity (LMI) approach. Although, this 
method is usually very difficult to apply, even impossible in 
many instance.   
    Motivated by these gaps, as well in the sense of various 
methods and for getting a larger stability domain. This paper, 
tented to established new stability conditions for a class of 
discrete-time switched time-delay, by transforming the 
representation of the system to be studying into another 
specific form, and by using an appropriate Lyapunov function 
associated with the Kotelyanski conditions [20-27] and the 

matrixM − proprieties [28-30]. Therefore, the obtained 
stability conditions are simple to employ, explicit and allow us 
to avoid the search for a common Lyapunov function.   

Within the frame of studying the stability analysis, the 
appropriate Lyapunov function combined with an 

matrixM − proprieties has already been introduced in [21, 22] 
in reference to the continuous-time time delay systems in a 
field related to the study of convergence.   

In this work, the same approach will used for a class of 
discrete-time switched time-delay systems given by a set of 
subsystems, each one is modelled by the following delay 
difference equation: 
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when 1,...,i N=  represented the subsystems.  

The remainder of this paper is organized as follows: in the 
next section, we present the description and the problem 
formulation of the studied switched systems. In section III, 
sufficient stability conditions of these discrete-time switched 
time-delay systems based on an appropriate Lyapunov 
function associate with an matrixM − properties are 
presented. In section IV, we show the efficiency of the 
obtained results, by applying them to systems modeled in (1). 
In section V, a validation on numerical example is drawn, and 
finally, some concluding remarks are summarized in section 
VI. 

II. PROBLEM FORMULATION  

              AND PRELIMINAIES 

A. Preliminaries  

 

The following notations will be used throughout. I  is an 

identity matrix with appropriate dimension. Let n
ℜ  denoted 

an n - dimensional linear vector space over the reals with the 

norm . . For any ( )1i i n
u u

≤ ≤
= , ( )1

n
i i n

v v
≤ ≤

= ∈ ℜ ,  we define 

the scalar product of the vector u  and v  as:
1

,
n

i i

i

u v u v

=

=∑ . 

In the next, we introduce several useful tools, including 
Kotelyanski lemma and definition of an M -matrix. 
Kotelyanski lemma. [20] The real parts of the eigenvalues of 
matrix A , with non-negative off-diagonal elements, are less 
than a real number µ  if and only if all those of matrix M , 

nM I Aµ= −  are positive, with I  the n  identity matrix. 

When successive principal minors of matrix ( )A−  are 

positive, Kotelyanski lemma permits to conclude on stability 
property of the system characterized by A .  

Theorem 1. [22]The matrix n n
A

×
∈ℜ  is called a matrixM −  

if following properties are verified: 
• All the eigenvalues of A  have a positive real part  
• The real eigenvalues are positives  
• Successive the principal minors of A  are positive :  

 

( )
1 2 ... 

0
1 2 ... 

i
A

i

  >   
 1,...,i n∀ ∈                   (2) 

 

• For any positive vector ( )1,...,
T

n
x x x=  the algebraic 

equations Ax  have a positive solution ( )1,...,
T

n
w w w=  

Remark 1. A discrete-time system characterized by a matrix 

A  is stable if the matrix ( )I A−  verified the Kotelyanski 

conditions, in this case ( )I A−  is an matrixM − .  

 
 
 

B. Problem formulation  

 
Consider the following discrete-time switched systems 

time-delay formed by N  subsystems represented in the state 
form: 

 

( ) ( ) ( ) ( )( )

( ) ( )
1

   s= , 1,...,0

1
N

i i

i

ik k D x k

x s s

x k A x
=

 ζ + −τ
 =φ −τ −τ+

+ =∑
             (3) 

 

where ( ) nx k ∈ℜ
 
is the state vector of the system at time k ,  

τ  is the time delay of state, ( )x s  denote the initial states 

vector,
 ( )1,...,iA i N=

 
and ( )1...iD i N=  are matrices of 

appropriate dimensions denoting the subsystems, and 1N ≥  
denotes the number of subsystems.  
The switching sequence is defined through a switching vector: 

( ) ( ) ( )1 ,..., 
T

Nk k k ζ = ζ ζ   , whose components ( )i kζ  are 

exogenous functions that depend only on the time and not on 

the state, they are defined through: 
 

( )
1 if  and D  are active

0 otherwise
i i

i

   A
k

   

ζ = 


and ( )
N

i=1

1i kζ =∑
     

(4) 

III. MAIN RESULTS  

 
The following theorem gives stability conditions for the 

discrete-time switched time-delay system (3).  
Theorem 2. The system (3) is asymptotically stable under 

arbitrary switching rule (4) if the matrix ( )cI T−  is an 

matrixM − . 
where:   
 

( )
1
supc i i

i N

T A D
≤ ≤

= +                              (5) 

 
 The matrices iA , 1,...,i N= and iD , 1,...,i N=  are given as 

following:  
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... ...

... ...
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A

a a

 
 
 
 
 

=  
 
 
 
 
 

� � � �

� � � �

                            (6) 

 

( ) ( )

( ) ( )

11 1

             

1

... ...

... ...

n
i i

i

n nn
i i

d d

D

d d

 
 
 
 
 

=  
 
 
 
 
 

� � � �

� � � �

                           (7) 

�  

Proof: For any switched signal (4). Let ( )0, 1,...,lw l n> ∀ = , 

we consider the Lyapunov function defined such as: 
 

( ) ( ) ( )0
1

r

j

j

v k v k v k

=

= +∑                            (8) 

where:  
 

( ) ( )

( ) ( )

0 ,

, ,  1,...,j i

v k x k w

v k D x k j w j r

 =


= − =

                    (9) 

 

To prove the stability of  system (3) in the sense of Lyapunov, 

it suffices to show that:   

 

( ) ( ) ( ) ( ) ( )1 , , 0cv k v k v k T x k w r∆ = + − < >          (10) 

 
where: 
 

( ) ( ) ( )0

1

r

j

j

v k v k v k

=

∆ =∆ + ∆∑
                  

 (11) 

 
For any 0r > , we get from (9) that: 
 

( ) ( )0 1 , ,v x k w x k w∆ = + −                  (12) 

  
and: 
 

   ( )1 ,j iv D x k j w∆ = − +  

( ) , ,  1,...,iD x k j w j r− − =                       (13) 

 
Knowing that:   

 

( ) ( ) ( )1 , = ,i ix k w A x k D x k r w+ + −  

                ( ) ( ) ,i iA x k D x k r w< + −  

( ) ( ), ,i iA x k w D x k r w= + −                    (14) 

 
So, we have: 
 

( ) ( )1
1

r

j

j

v k v k

=

∆ =∆∑  

( ) ( ) ( )2 1.... r rv k v k v k−+∆ + +∆ +∆              (15) 

 
Equation (14) yields:  
 

( ) ( ) ( )
1

, ,
r

j i i

j

v k D x k w D x k r w

=

∆ = − −∑       (16) 

 
Combining (11), (12) and (16), it follows that: 
 

( ) ( ) ( )0 , ,i iv k v D x k w D x k r w∆ =∆ + − −    (17) 

 
For 1,...,i N= , by (14) and (17), we have that:  
 

( ) ( ) ( ), ,i iv k A x k w D x k r w∆ < + −  

( ) ( ) ( ), , ,i ix k w D x k w D x k r w− + − −         (18) 

 
That is:  
 

   ( ) ( ) ( ) ( ), , ,i iv k A x k w x k w D x k w∆ < − +
 

( ) ( ) ,i iA D I x k w= + − , 1,...,i N=                (19) 

 
and finally we obtain:  
 

( ) ( ) ( ) ,cv k T I x k w∆ = −                            (20) 

 
where the matrix cT is defined in (5).   

Suppose now that ( )cI T−  is an matrixM − , according to the 

proprieties of the matrixM − given in Theorem 1, we can find 

a vector ( )* *   1,...,n
l l n+ +ρ ∈ℜ ρ ∈ℜ =  satisfying the relation: 

 

 ( ) *,
T n

cI T w w +− = ρ ∀ ∈ℜ                           (21) 

 
On the other hand, we can write:  
 

( ) ( ) ( ) ( ) ( ), , ,
T

c cI T x k w I T w x k x k− = − = ρ     (22) 



International Journal of Control, Energy and Electrical Engineering (CEEE)  

Copyright – IPCO-2014 

Vol.1, pp. 23-30 
 

26 
 

 
Combining (20), (21) and (22), it follows that: 
 

( ) ( ) ( ) ( )
1

, 0
n

c l l

l

v k T I x k w x k

=

∆ ≤ − ≤− ρ <∑      (23) 

 
System (3) is asymptotically stable. The proof is completed. 

�  

IV. APPLICATION TO DISCETE-TIME SWITCHED 

TIME-DELAY SYSTEMS DEFINED BY DIFFERANCE 

EQUATIONS 

In this part, an application of the obtained results is given 
for discrete-time switched time delay systems governed by the 
following switched linear difference equation: 

 

 ( ) ( ) ( )
1

1 0

N n
n p

i i

i p

y k n k a y k p

−
−

= =


+ + ζ +

∑ ∑  

   ( )
1

0

0 
n

n p
i

p

d y k p

−
−

=

+ + −τ =
∑                (24) 

 

where ( )i kζ  are the components of the switching function 

( )kζ , 1,...,i N= , given in (4). 

Therefore, the presence of delay-time terms makes the 
stability analysis of problem (24) difficult. Among solution, 
we will adopt the following change of variable: 

  

( ) ( )1   0,..., 1
j

x k y k j j n+ = + = −                 (25) 

 
By (25), equation (24) becomes:  
 

( ) ( )11   1,..., 1j jx k x k j n++ = = −              (26) 

 

( ) ( ) ( )
1

1
1 0

1
N n

n j
n i i j

i j

x k k a x k

−
−

+

= =


+ = ζ −

∑ ∑  

( )
1

1
0

n
n j
i j

j

d x k

−
−

+

=

− −τ 
∑                   (27) 

 
or under a matrix representation: 
 

( ) ( ) ( ) ( )( )

( ) ( )
1

1

   ,..., 1,0

N

i i i

i

x k k A x k D x k

x s s s

=

 + = ζ + −τ
 = φ =−τ −

∑
            (28) 

 

where ( )x k  is the state vector. 

The matrices 
i

A  and 
i

D , 1,...,i N=  are defined as following: 

 
 

1 1

0 1 0

0 0

1i

n n

i i i

A

a a a

�

� �

� � �

�
−

 
 
 
 =  
 
 − − −  

                          (29) 

 

1 1

0 0 0

0 0

0i

n n

i i i

D

d d d
−

 
 
 
 =  
 
 − − −  

�

� �

� � �

�

                        (30) 

So, we define two associated polynomials for the 

subsystem( )i , 1,...,i N=  defined by:   

 

( )
1

0
i

n
n n q q

A i

q

p a

−
−

=

λ = λ + λ∑                        (31)  

( )
1

0
i

n
n q q

D i

q

p d
−

−

=

λ = λ∑                           (32) 

 
In [22], a change of base for the system (28) under the arrow 
form gives: 
 

( ) ( ) ( ) ( )( )
1

1
N

i i i

i

z k k A z k D z k
=

+ = ζ + −τ∑ � �               (33) 

 

where z Px= , 
iA� , ( )1,...,i N=  and 

i
D�  ( )1,...,i N= are 

matrices in the arrow form represented as following :  

 

1 1

1

1 1

1 1

0 0

0

0

0 0
i i

n n

n n
i i i

A P A P
−

− −

−

 α β
 
 
 
 = =  
 α β 
 
 γ γ γ 

�

� � � �

� � � � �

�

� �

             (34) 

 
 

1, 1 1,11

1 1

0 0n n n

i i n n

i i i

D P D P
− − −−

−

 
 = =  δ δ δ  

�

�
             (35) 

 
and P  is the corresponding passage matrix defined by: 
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( ) ( ) ( )

( ) ( ) ( )

1 2 1

2 2 2
1 2 1

1 1 1
1 2 1

1 1 1 0

0

=

0

1

n

n

n n n

n

P

−

−

− − −
−

 
 
 α α α 
 

α α α 
 
 
 
 
α α α  

…

…

… �

� � … �

…

        (36) 

 
 

The elements of the matrix iA�  are defined by: 

 

 ( )
1

1

1

  = 1,..., 1
n

j j q

q
q j

 j n

−
−

=
≠

β = α −α ∀ −∏                (37) 

          

    

( )
1

1

1

  1,..., 1
i

j
i A j

n
n
i i j

j

P  j n

a

−

=

γ =− α ∀ = −
γ =− − α

∑
                  (38) 

 
and the elements of the matrix 

i
D�  are: 

 

( )
1

  1,..., 1
i

j

i jD

n

i i

p j n

d

δ =− α = −
δ =−

�

                     (39) 

 

where ( )1,... 1j j nα = −  are free real parameters, distinct in 

pairs, that can be chosen arbitrary. 
After this formulation, we can deduce the following 

theorem for the stability of system (28).  
Theorem 3. The discrete-time switched time-delay system 
(28) is globally asymptotically stable if there exist 

 jα ( )1, 2,..., 1j n= − ,     j q j qα ≠α ∀ ≠ , such as: 

 

i) 1 0j− >α  1, 2,... 1j n∀ = −                                             (40) 

ii) ( )
1

1 sup n n

i i
i N≤ ≤

 − γ + δ   
 

( ) ( )
1 1

11

sup 1 0
n

j j

i i j j
i Nj

− −

≤ ≤=

 − γ + δ β − α >  ∑                            (41) 

�  

Proof: It suffices to verify that the matrix ( )cI T−  is an 

matrixM − . 
where: 
 

( )
1
supc i i

i N

T A D
≤ ≤

= +� �                               (42) 

 
Taking into account the previous matrix value; we obtain the 
matrix 

c
T  as follows: 

 
 

1 1

2 2

1

                                                      

                                              

                                                 

                                  
c

n

T

−

α β

α β

=

α

� �

( ) ( )

1

11 2

1

      

         sup

n

n n n

c c c i i
i N

t t t

−

−

≤ ≤

                β        γ + δ      
 �

   (43) 

 
where: 
 

( )
1
sup  1,..., 1j j j

c i i
i N

t j n
≤ ≤

= γ + δ ∀ = −                   (44) 

 
Since the elements 

j
α 1,..., 1j n= −  can be arbitrarily 

selected, the choice ] [0,1
j

α ∈ with 
j q

α ≠α 1,..., 1j n∀ = − ,  

The matrix cT  has all positive elements. Thus, the conditions 

of Theorem 2 can be deduced from the Kotelyanski conditions 

in the discrete-time case applied to the matrix ( )cI T− .  

The 1n−  first conditions are checked because 

] [0,1   1,..., 1
j

j nα ∈ = − , however the last condition however 

the last condition yields to:  
 

( ) det
c

I T− =  

1 1

2 2

1                                                          

          1                                         

                                                             

                

− α − β

− α − β

� �

( ) ( )

1 1

11 2

1

0

          1                    

      1 sup

n n

n n n

c c c i i
i N

t t t

− −

−

≤ ≤

>

− α − β

 − − − γ + δ   
 -�

 (45) 

 

( )
1

1 sup n n

i i
i N≤ ≤

 = − γ + δ   
 

( ) ( )
1 1

11

sup 1 0
n

j j

i i j j
i Nj

− −

≤ ≤=

 − γ + δ β − α >  ∑  

 
To simplify the application of the obtained stability 
conditions, Theorem 2 can be simplified in the following 
corollary. 
Corollary 1. The discrete-time switched time-delay system 
(28) globally asymptotically stable if there exist 

] [ 0 1jα ∈ ( )1,...,  1j n= − ,  j qα ≠α  j q∀ ≠  such as in:  

 

i) ( ) ( )( ) 0
i ij A j D j

P Pβ α + α < ,  1,...,i N∀ =                        (46) 



International Journal of Control, Energy and Electrical Engineering (CEEE)  

Copyright – IPCO-2014 

Vol.1, pp. 23-30 
 

28 
 

ii) ( ) ( )( )( )1 1 0
i iA D

P Pλ = + λ = > ,  1,...,i N∀ =                  (47) 

iii) 0n n

i i
γ +δ > ,  1,...,i N∀ =                                            (48) 

�  

V. A NUMERICAL EXAMPLE  

 
In this section, a numerical example is studied to show the 

effectiveness of the proposed method. 

Example. Consider a discrete-time switched time-delay 
system described by the recurrence equation given by: 

( ) ( ) ( )
2 1 1

2 2

1 0 0

2 1 0j j

i i i

i j j

y k a y k j d y k j
− −

= = =

  + + ζ + + + − =   
∑ ∑ ∑  

 
The time-delay is fixed to τ=1 . 
 
 
 
Now, by (25), (26), (27) and (28); this system will be give 
under the following matrix representation: 
 

( ) ( ) ( )
2

2 1 2 1
1

0 1 0 0
1 1

i

i i i i i

x k x k x k
a a d d=

          + = ζ + −         − − − −    
∑  

 
where 1,2i = , and the matrices are listed below: 
 

1

0 1

0.01 0.02
A

 
 =
 −  ,       

1

0 0

0.01 0.08
D

 
 =
 −   

and:  

2

0 1

0.07 0.02
A

 
 =
 −  ,       

2

0 0

0.05 0.04
D

 
 =
 −       

                                                                                                                                                                                                                                                                                                            
Therefore, according to (33), (34), (35), (36), (37), (38) and 
(39) a change of base for the discrete-time switched time- 
delay system under the arrow form gives the following 
parameters and matrices:  
 

1 1 2
1 1

1
A

 α
 =  γ γ  

�  , 2 1 2
2 2

1
A

 α
 =  γ γ  

�   

and:  

1 1 2
1 1

0 0
D

 
 =
 δ δ 

� , 2 1 2
2 2

0 0
D

 
 =
 δ δ 

� .  

 
Then, the stability conditions deduced from theorem 3 are: 
i) 1α <  

ii) ( )2 2 2 2
1 1 2 21 sup ,− γ + δ γ + δ  

( )( ) ( )
11 1 1 1

1 1 2 2sup , 1 0
−

− γ + δ γ + δ β − α >  

 

For a particular choice, 0.05α = , 1β = .  
In this case, condition (ii) is verified such as: 

( )1 sup 0.03 0.04 , 0.03 0.08− − + − +  

( )( )sup 0.0065 0.006 , 0.0665 0.048 1.052− + +  

( ) ( )( )1 0.03 0.08 0.0665 0.048 1.052 0.769546 0= − − − + = >  

 
The stability conditions for the example given by corollary 1 
are the following: 
i) 1α <  

ii) ( ) ( )( )
1 1

0
A D

P Pβ α + α <  

iii)  ( ) ( )( )
2 2

0
A D

P Pβ α + α <  

iv)  ( ) ( )
1 1

1 1 0
A D

P P+ >  

v)      ( ) ( )
2 2

1 1 0
A D

P P+ >  

vi) 2 2
1 1 0γ +δ >  

vii) 2 2
2 2 0γ +δ >  

 
For the same values of 0.05α =  , then condition (ii), (iii), 
(iv), (v), (vi), (vii) are verified such as:  
i) 0.0125 0− < , ii) 0.1145 0− < , iii) 0.36 0> , iv) 1.04 0> , 
 v) 0.94 0> , vi) 0.05 0> and vii) 0.01 0>  
 
With fixed the sampling time 0.2

e
T s= , 10f et kT s= =  the 

switched time 1 1 5et k T s= =
 

and the original state vector 

( ) ]1  1
T

l φ = − .  

Then, the evolution of the states and the state space are given 
in figure 1 and figure 2, respectively. 
 
 

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
 Time evolution of the state vectors

x
1
, 

x
2
 

t(s)

 

 

x1

x2

 

Fig. 1. Time evolution of the state vector for the example  
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-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Space state 

x1 

x
2

 

Fig. 2. Space state for the example  

VI. CONCULSION 

This paper has investigated new delay-independent explicit 
stability conditions for discrete-time switched time-delay 
systems under arbitrary switching.  

 

These conditions were deduced from an appropriate 
Lyapunov function associated with the Kotelyanski conditions 
and the matrixM − proprieties. The main benefit of this 
technique that it avoids the problem of existence of Lyapunov 
functions. Finally, the effectiveness of the proposed method is 
illustrated by a numerical example. 
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