
International Journal of Control, Energy and Electrical Engineering (CEEE) 

Vol. 4, Issue 1 

Copyright IPCO-2017 

 
ISSN : 2356-5608 

Mixed H-infinity/D-stability control for linear 

repetitive processes with external disturbances 
Nizar TOUJENI, Chaouki MNASRI, Moncef GASMI 

Computer Laboratory for Industrial Systems (LISI), National Institute of Applied Sciences and Technology (INSAT) 

Carthage University, Tunisia 

1nizar.toujeni@isetn.rnu.tn 

 

 
Abstract— This paper has as objective to study the problem 

of H-infinity control with D-stability constraint for uncertain 

continuous-time repetitive systems with external disturbances 

and design a control law, such that the closed-loop poles are 

placed within a particular region of the complex plane for all 

admissible uncertainties. Firstly, an equivalence between a two-

dimensional control system and a repetitive control scheme such 

that study of convergence and stability properties have been 

proved. By analyzing these properties, all of the obtained 

conditions are formulated in the form of linear matrix 

inequalities and solutions gives the agreed controller gains. 

Finally, the performances of the proposed control laws were 

tested and simulated on an example and results are competitive 

in term of robustness and convergence. 

 

Keywords— Repetitive control, uncertain linear systems, robust 

control, H-infinity and D-stability. 

I. INTRODUCTION 

In engineering practice, repetitive processes are very 

common and are usually encountered in many industrial 

applications such as power supply systems [1-2], robotic 

manipulators [3], CD tracking [4], computer disk drives [5-6], 

etc. In those applications, the control systems are usually 

desired tracking or rejecting periodic exogenous signals with 

high control precision.  

The repetitive control was first presented by Inoue et al. 

and applied to the control of a contouring servo system and a 

power supply for a proton synchrotron [7-8]. After that, it has 

been applied to many problems. The repetitive control affords 

a successfully practicable solution and that is a control 

scheme applied to systems that must cancel error, track 

periodic reference signals or reject periodic disturbances. 

Referring to offered Wu et al. [9-13], some design methods of 

repetitive control system for a class of linear system based on 

two-dimensional continuous/discrete hybrid model are 

presented. The problem for the design repetitive controller is 

converted in a problem for a continuous-discrete two-

dimensional system. After that, this problem is solved by 

combing two-dimensional Lyapunov theory with linear 

matrix inequalities approach. 

In practice, the influence of external disturbances and 

uncertainties in the plant must be strictly considered when the 

repetitive controller is applied to real systems. In many cases, 

those parameters cause instability in the control system. The 

stability problem with the uncertainties is named robust 

stability problem. Yamada and al. [14-18] were proposed 

some design methods for repetitive control systems with 

considering disturbances and uncertainties.  

In robust control system, stability of the closed-loop system 

makes the minimum specification. Sometimes, owing to bad 

transient responses in many applications or real physical 

systems, the system dynamic features do not make the desired 

goals such as transient oscillations, the rise time, the settling 

time, etc. 

A satisfying performances can be achieved by placing the 

closed-loop pole to in an appropriate region of the complex 

plane. Enforcing all poles of a system in a specified region is 

named D-stability problem. 

The main contribution of this paper is to study the problem 

of H-infinity control with D-stability constraint for uncertain 

continuous-time repetitive systems with external disturbances 

for all admissible uncertainties. In the first part, we will prove 

an equivalence between a two-dimensional control system 

and a repetitive control scheme such that study of 

convergence and stability properties. In the second part, all of 

the obtained conditions are formulated in the form of linear 

matrix inequalities and solutions gives the agreed controller 

gains. Finally, an example shows the efficiency of the 

proposed approach will be presented. 

II. PROBLEM FORMULATION 

Consider the uncertain linear system defined by the following 

state-space equation 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

u u d d

u

x t A A x t B B u t B B d t

y t C x t D u t

= + ∆ + + ∆ + + ∆
 = +

ɺ
  (1) 

where ( )x t is the state vector, ( )u t is the input control, ( )y t is 

the output of the system and ( )d t is an external disturbance. 

A ,
u

B ,
d

B , C and
u

D are real matrices. 

A∆ , u
B∆ and d

B∆ denote real matrix functions representing 

norm-bounded time varying parametric uncertainties in the 

system model.  
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We consider the following assumptions: 

(i) The pair ( , )
u

A B is stabilizable 

(ii) ( )d t is an external disturbance signal with finite 

energy in the space [ )2
0,L +∞   

(iii) Uncertainties under consideration have the following 

form 

    ( )

( )

( )

( ). ( )

A

u u u u Bu

d d d d Bd

T

A A A A HF t E

B B B B HF t E

B B B B HF t E

F t F t I

∆

∆

∆

= + ∆ = +
 = + ∆ = +
 = + ∆ = +
 <

                             (2) 

where I is the identity matrix of appropriate dimensions. 

( )F t  is unknown real time varying matrix contain uncertain 

parameters and H , 
A

E , 
Bu

E  and 
Bd

E  are known constant 

real matrices of appropriate dimensions denote how the 

uncertain parameters ( )F t affect the system (1). 

The nominal plant is considered when 0
u d

A B B∆ = ∆ = ∆ = . 

We can obtain:  

( ) ( ) ( ) ( )

( ) ( ) ( )

u d

u

x t Ax t B u t B d t

y t C x t D u t

= + +
 = +

ɺ
                                       (3) 

The output error is defined by ( ) ( ) ( )e t r t y t= −  where 

( ) ( )r t r t T= +  is the periodic reference and T  is the 

fundamental period.  

Fig. 1 represents the basic repetitive control system where G 

is the plant model. 

 

Fig. 1: Basic repetitive control system 

The robust repetitive control law proposed of the system is 

( ) ( ) ( )rob repu t G x t G t= + Φ                                                   (4) 

   
( ),                   0

( )
( ) ( ),    

e t t T
t

t T e t t T

≤ <
Φ = Φ − + ≥

                                    (5) 

where ( )tΦ defines the output signal of the repetitive 

controller and pair ( ),rob repG G creates gain matrices to be 

determined. The first describes control action and the second 

describes the learning action. 

Consider now the variables k ∈ℕ which used to describe 

learning between periods, [ [0,Tτ ∈ is a domain to depict 

control inside a period and ( )tψ which is described in the 

time domain by 

( ) ( ) : ( )

( ) ( ) ( ) : ( )

k

k

t kT

t t t T

ψ ψ τ ψ τ
ψ ψ ψ ψ τ

= + =
∆ = − − = ∆

                                  (6) 

Then, according to (1) - (6), we have 

( ) ( ) ( ) ( )
k k u k d k

x A x B u B dτ τ τ τ∆ ∆ ∆∆ = ∆ + ∆ + ∆ɺ                      (7) 

1
( ) ( ) - ( ) - ( )

k k k u k
e e C x D uτ τ τ τ−= ∆ ∆                                   (8) 

Equations (7) and (8) creates a two-dimensional (2D) 

continuous-discrete hybrid model of the repetitive control 

system. Furthermore, (7) and (8) explicitly depict the robust 

control and learning actions, but the model (1) only 

characterizes the combined effect of those two actions.  

Equation (7) represents the robust control action inside k-th 

period and second part describes the learning action between 

the k-th and (k-1)-th periods. As (7) doesn't includes the term 

( )
k

e τ , the control action during each period is explicitly 

independent of the learning action. In fact, (8) clarifies that 

learning is highly affected by the control action. For this 

reason, the convergence of the robust control action is fast, 

but learning is slower. 

Next, the 2D control law can be written  

1 2 1
( ) ( ) ( )

k k k
u G x G eτ τ τ−∆ = ∆ +                                               (9) 

where  

1

1

1

2

=( ) ( )

( )

rep u rob rep

rep u rep

G I G D G G C

G I G D G

−

−

 + −


= +

                                      (10) 

Therefore, it is easy to conclude that the design of a 2D 

control law (9) is equally equivalent to design of a control law 

(4). Thus, the control system (4) is stable if a 2D stabilizing 

control law (9) is designed for the 2D system (10) and the 

matrices gains are given by 

1

1 2 2 1

1

2 2

( ) ( )

( )

rob u u

rep u

G G G I D G D G C

G G I D G

−

−

 = + − +


= −
                         (11) 
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Consequently, it is easy to adjust independently the robust 

control and learning actions using 
1

G  and 
2

G  respectively 

because the control action depends on both gains 
1

G  and 
2

G , 

while the learning action depends only on 
2

G . However, it is 

very difficult to do that using
rob

G and
repG . 

III. PRELIMINARIES 

In order to achieve the main results, some necessaries 

preliminaries will be introducing.  

Lemma 1. [19]: Consider the following system: 

d
x Ax B d

y Cx

= +
 =

ɺ
                                                                (12) 

The system (12) is stable and satisfy H-infinity constraint if 

exists a Lyapunov function ( )V x , for all 0t >  and given a 

scalar 0γ > and a symmetric matrix 0P > ,  such that  

2 0T TV y y d dγ+ − <ɺ                                                      (13) 

Lemma 2. (Shur complement) [20]: For any symmetric 

matrix, Θ , of the form 11 11

12 22

T Θ Θ
Θ =  Θ Θ 

. If 
22Θ  is invertible 

then the following property hold: 

1

22 11 12 22 12
0  0  - 0Tif and −Θ < Θ < Θ Θ Θ Θ <                        (14) 

Lemma 3. [21]: Given matrices TK K= , J , F  and E of 

appropriate dimensions, then 

( ) 0
T

K JFE JFE+ + <                                                     (15) 

for all F  satisfying TF F I≤ , if and only if there exists some 

0ε > such that 

1
0

T T
K JJ E Eε ε −+ + <                                                   (16) 

Definition 1. [22]: An LMI region is defined by a subset of 

the complex plane given by 

{ }: 0z

T
z zD z= ∈ ϒ + Λ + Λ <ℂ                                      (17) 

where Tϒ = ϒ and Λ are two real matrices. 

In this paper, LMI region chosen is the intersection of three 

regions given in Fig. 1 by  

         D1: conical sector : 

Re( ) Im( ) 0

arctan

a z b z

a
h

b

 + <

  = − 

 

 

         D2: disk of radius r centered at (q,0) 

         D3: stabilityα − : Re( )z α< −  

 

Fig. 2: LMI region 

Theorem 1. [22]: Let Π a real matrix and 

1 2 3zD D D D= ∩ ∩  be an LMI region. All the eigenvalues of 

Π  are in LMI region zD if exists a symmetric matrix Ψ such 

that we have the followings LMI 

( ) ( )
0

( )

T

T T

h

h

 ΠΨ + ΨΠ ∗
< ΨΠ − ΠΨ ΠΨ + ΨΠ 

                            (18) 

( )
0

T

r

q r

− Ψ ∗ 
< − Ψ + ΨΠ − Ψ 

                                                (19) 

2 0TαΨ + ΠΨ + ΨΠ <                                                      (20) 

In the next section, we will study the problem of H∞ control 

with D-stability constraint for uncertain continuous-time 

repetitive systems which is used to analyze the system 

stability and to prove the convergence of the tracking error. 

The synthesis of this control law will be based on the 

optimization problem under LMI constraints. 

IV. MAIN RESULTS 

This section is devoted to developing the robust H∞ control 

based on a repetitive control for uncertain system (1) and it is 

desired that the poles of the closed-loop system remain in 

region 
zD  of the complex plane.  
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Consider the following two-dimensional Lyapunov function  

1, 2,
( ) ( ) ( ) ( ) ( ) ( ) ( )

T T

k k k k k k k
V V V x P x e Qeτ τ τ τ τ τ τ= + = ∆ ∆ + (21)            

( ) ( )
( ) ( )

1,

2,

( ) . .

( ) . .

T

k k k

T

k k k

V x P x

V e Q e

τ τ τ

τ τ τ

 = ∆ ∆       


=        

                                     (22) 

where 0P > and 0Q > are a symmetrical matrices. 

The associated increment with Lyapunov function is defined 

by 

1, 2,
( ) ( ) ( )

k k k
V V Vτ τ τ∆ = + ∆ɺ                                                (23)            

1,

2, 1 1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T T

k k k k k

T T

k k k k k

V x P x x P x

V e Qe e Qe

τ τ τ τ τ

τ τ τ τ τ− − −

 = ∆ ∆ + ∆ ∆


∆ = −

ɺ ɺ ɺ
                     (24) 

Using Lemma 1, it easy shown that the H∞ disturbance 

attenuation holds if there exist a scalar 0γ >   such that the 

Hamiltonian satisfies  

( ) ( ) ( ) ( ) ( )2

1 1( ) 0
T T

k kk kk kV e e d dτ τ γ ττ τ τ− − −+ ∆= ∆ ∆ <H    (25) 

Equation (25) can be set in the following form 

( )
( )
( )

[ ]
( )
( )
( )

1 1 0( )

T

k k

k

k

k k

k

x x

e e

d d

τ τ
τ τ

τ
τ

τ
− −

∆ ∆   
   Χ <   
   ∆ ∆   

=H                              (26) 

A. Design of Robust Control for Nominal Plant 

In this section, we will develop an H-infinity norm based on a 

repetitive control for the nominal plant which is used to 

analyze the system stability and to prove the convergence of 

the tracking error. It is in addition desired that the poles of the 

closed-loop system remain in regions of the complex plane to 

ensure certain performances on the transient response. The 

problem of control law synthesis must be satisfied with 

sufficient existence conditions solutions solved by the 

following theorem: 

Theorem 2.: Suppose the linear repetitive processes 

described by model (3). There exists a control law of the form 

(4) such that the closed-loop system is stable and satisfies the 

H-infinity constraint if and only if exist two symmetric  

matrices
1

0Π > , 
2

0Π > and two matrices
1

Γ , 
2

Γ  such that 

we have the following LMI 

2

1 2

3 2 2

2

4 2

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

00 0 ( ) ( ) ( )

0 0 0 ( ) ( )

0 0 0 0 0 ( )

0 0 0 0 0

T T

u

T

d

B

B I

I I

α α
α

γ
α

−Π ∗ ∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗ ∗ 
 Γ −Π ∗ ∗ ∗ ∗
  <− ∗ ∗ ∗ 
 −Π ∗ ∗
 

−Π ∗ 
 − 

           (27) 

2

1 1 1 1 2

(*)
0

T T T

u u

h

A A B B h

α
α

 
< Π − Π + Γ − Γ 

                        

(28) 

 

 

1

1 1 1 1

( )
0

T T T

u

r

q A B r

− Π ∗ 
< − Π + Π + Γ − Π 

                               

(29)

 

 

1 2
2 0α αΠ + <                                                                 (30)  

where  

1 1 1

2 1 1 1 1

3 2 2

4 1 1

T T T

u

T T T

u u

T T

u

u

C D

A A B B

D

C D

α
α
α
α

 = Π + Γ


= Π + Π + Γ + Γ


= Γ − Π
 = Π + Γ

                                   (31) 

then the system is generalized quadratically D-stable with 

H∞  performance γ . After resolution of the LMI (27-30), the 

stabilization gains are given by 

1

1 1 1

1

2 2 2

.    

.

G

G

−

−

 = Γ Π


= Γ Π
                                                               (32) 

Proof. : 

By using (26), we can be set X in the following form 

11

21 22

2

( ) ( )

( ) 0

0
T

d
B P Iγ

Χ ∗ ∗ 
 Χ = Χ Χ ∗ < 
 − 

                                          (33) 

where 

11 1 1 1 1

21 2 2 1

22 2 2

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

T T

u u u u

T T

u u u

T

u u

X A B G P A B G C D G Q C D G

X B G P D G I Q C D G

X D G I Q D G I I Q

 = + + + + +


= + − +
 = − − + −

(34) 

The inequality (33) becomes in the following expression 
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( )
2

*
0

T T T T

T

W V VW T RT Y RY Z Z S
X

U V Iγ
 + + + + −

= < − 
    (35) 

where 

   
1 2

0 0

u uA B G B G
W

+ 
=  
 

, 
1 2

0 0

u u

T
C D G D G I

 
=  + − 

,     

    
1 0

0 0

uC D G
Y

+ 
=  
 

,     [ ]0Z I= , 
0

dB
U

 
=  
 

. 

    
0

0 0

P
V

 
=  
 

, 
0

0

Q
R

Q

 
=  
 

, 
0 0

0
S

Q

 
=  
 

 

For eliminate bilinearities, lemma 2 is used as many times as 

necessary and (35) can be rewritten by 

2

(*) (*) (*) (*)

(*) (*) (*)

0 (*) (*)

0 0 (*)

0 0 0

T T

T

R

T R W V VW S

X U V I

RY R

Z I

γ

− 
 + − 
 = −
 − 
 − 

              (36) 

After replacing the variables with their expressions in (36), 

we get the following LMI 

1 2

3 4

2

1

5

(*) (*) (*) (*) (*) (*)

(*) (*) (*) (*) (*)

(*) (*) (*) (*)

0 0 (*) (*) (*)

0 0 0 (*) (*)

0 0 0 0 0 (*)

0 0 0 0 0

T

d

Q

Q

X B P I

Q

Q

I I

λ λ
λ λ

γ
λ

− 
 
 
 −
 = − 
 −
 

− 
 − 

              (37) 

where 

1 1

2 1 1

3 2

4 2

5 1

( )

( ) ( )

( )

( )

( )

T

u

T

u u

T

u

T

u

u

C D G Q

A B G P P A B G

D G I Q

B G P

Q C D G

λ
λ
λ
λ
λ

 = +


= + + +
 = −
 =
 = +


                                 (38) 

Equation (37) will be pre-multiplying and post-multiplying, 

respectively, by { }1 1 1 1 1 1
, , , , , , ,diag Q Q P Q I Q Q I

− − − − − −
 and its 

transpose. Therefore, the LMI becomes             

1

1 2

1

3 4

2

1

5

1

(*) (*) (*) (*) (*) (*)

(*) (*) (*) (*) (*)

(*) (*) (*) (*)

0 0 (*) (*) (*)

0 0 0 (*) (*)

0 0 0 0 0 (*)

0 0 0 0 0

T

d

Q

Q

X B I

Q

Q

I I

δ δ
δ δ

γ
δ

−

−

−

−

 −
 
 
 −
 

= − 
 −
 

− 
 − 

       (39) 

where 

1

1 1

1 1

2 1 1

1

3 2

1

4 2

1

5 1

( )

( ) ( )

( )

( )

( )

T

u

T

u u

T

u

T

u

u

P C D G

P A B G A B G P

Q D G I

Q B G

C D G P

δ
δ
δ
δ
δ

−

− −

−

−

−

 = +


= + + +
 = −
 =
 = +

                           (40) 

Let 

1

1

1

2

1 1 1

2 2 2

P

Q

G

G

−

−

Π =


Π =


Γ = Π
Γ = Π

                                                                    (41)                                                                   

After replace and rearrange correspondent’s terms, we obtain 

(27).  

Now, it suffices to apply theorem 1 and replace the matrix Ψ  

by 
1cl u

A A B G= +  and choose 
1

Π = Π . After rearranging the 

terms, we can get LMI (28-30). Therefore, resolving the 

control law problem is to find two gains matrices 
rob

G and 

rep
G minimizing the H∞  cost under D-stability constraint. 

This completes the proof. 

B. Design of Robust Control for Plant with Uncertainties 

Now, let consider the plant with uncertainties under 

consideration have the following form 

  ( )

( )

( )

A

u u Bu

d d Bd

A A HF t E

B B HF t E

B B HF t E

∆

∆

∆

= +
 = +
 = +

                                                     (42) 

A sufficient existence conditions solutions must be satisfied 

and the problem of control law synthesis is solved by the 

following theorem: 

Theorem 3. : For the uncertain system (1) and a given 

constant 0γ > , if there exists two symmetric matrices
1

0Π > , 
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2
0Π > and two matrices 

1
Γ , 

2
Γ  and a scalar 0ε >  

satisfying the followings LMI: 

2

1 2

3 2 2

2

4 2

2

5 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 ( ) ( ) ( ) ( ) ( )

0 0 0 ( ) ( ) ( ) ( )

0 0 0 0 0 ( ) ( ) ( )

0 0 0 0 0 ( ) ( )

0 0 0 0 0 0 ( )

0 0 0 0 0

T T

u

T

d

Bu Bd

B

B I

I I

H I

E E I

α α
α

γ
α

ε ε
α ε

−Π ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗ ∗ ∗
 Γ −Π ∗ ∗ ∗ ∗ ∗ ∗
 − ∗ ∗ ∗ ∗ ∗
 −Π ∗ ∗ ∗ ∗


−Π ∗ ∗ ∗
 − ∗ ∗


− ∗
Γ −

0







<





 
 



   (43) 

2

6 2

5

5

(*) (*) (*) (*) (*)

(*) (*) (*) (*)

(*) (*) (*)
0

0 (*) (*)

0 0 0 (*)

0 0 0 0

T T

T T

h

h

hH H I

H hH I

I

I

α
α α

ε
ε

α ε
α ε

 
 
 
 − −

< − 
 −
 

−  

                     (44) 

1

1 1 1 1

5

(*) (*) (*)

(*) (*)
0

0 (*)

0 0

T T

u

T

r

q A B r

H I

I

ε
α ε

− Π 
 − Π + Π + Γ − Π  <
 −
 − 

               (45) 

1 2

5

2 (*) (*)

(*) 0

0

TH I

I

α α
ε ε
α ε

Π + 
 − < 
 − 

                                            (46) 

where 

1 1 1

2 1 1 1 1

3 2 2

4 1 1

5 1 1

6 1 1 1 1

T T T

u

T T T

u u

T T

u

u

A Bu

T T T

u u

C D

A A B B

D

C D

E E

A A B B

α
α
α
α
α
α

 = Π + Γ


= Π + Π + Γ + Γ
 = Γ − Π


= Π + Γ
 = Π + Γ

 = Π − Π + Γ − Γ

                                   (47) 

then the system is generalized quadratically D-stable with 

H∞  performance γ . After resolution of the LMI (43-46), the 

stabilization gains are given by 

1 1

1 1 1 2 2 2.  and .G G
− −= Γ Π = Γ Π                                           (48) 

Proof. : 

By using (24), we can be set X in the following form 

11

21 22

2

( ) ( )

( ) 0

0
T

d
B P Iγ∆

Χ ∗ ∗ 
 Χ = Χ Χ ∗ < 
 − 

                                           (49) 

where 

11 1 1 1 1

21 2 2 1

22 2 2

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

T T

u u u u

T T

u u u

T

u u

A B G P A B G C D G Q C D G

B G P D G I Q C D G

D G I Q D G I I Q

∆ ∆ ∆ ∆

∆

Χ = + + + + +

Χ = + − +
Χ = − − + −

(50) 

Let 

    
1 2

0 0

u uA B G B G
W

∆ ∆ ∆+ 
=  
 

, 
1 2

0 0

u u

T
C D G D G I

 
=  + − 

,     

     
1 0

0 0

uC D G
Y

+ 
=  
 

, [ ]0Z I= , 
0

dB
U

 
=  
 

. 

     
0

0 0

P
V

 
=  
 

,
0

0

Q
R

Q

 
=  
 

, 
0 0

0
S

Q

 
=  
 

 

The inequality (49) becomes in the following expression 

( )
2

*
0

T T T T

T

W V VW T RT Y RY Z Z S

U V Iγ
 + + + + −

Χ = < − 
     (51) 

Lemma 2 is used as many times as necessary and (51) can be 

rewritten by 

 2

(*) (*) (*) (*)

(*) (*) (*)

00 (*) (*)

0 0 (*)

0 0 0

T T

T

R

T R W V VW S

U V I

RY R

Z I

γ

− 
 + − 
 Χ = <−
 − 
 − 

        (52) 

After replacing the variables with their expressions in (52), 

we get the following LMI 

1 2

3 4

2

5

(*) (*) (*) (*) (*) (*)

(*) (*) (*) (*) (*)

(*) (*) (*) (*)

00 0 (*) (*) (*)

0 0 0 (*) (*)

0 0 0 0 0 (*)

0 0 0 0 0

T

d

Q

Q

B P I

Q

Q

I I

λ λ
λ λ

γ
λ

∆

− 
 
 
 −
 Χ = <− 
 −
 

− 
 − 

         (53) 
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where 

1 1

2 1 1

3 2

4 2

5 1

( )

( ) ( )

( )

( )

( )

T

u

T

u u

T

u

T

u

u

C D G Q

A B G P P A B G

D G I Q

B G P

Q C D G

λ
λ
λ
λ
λ

∆ ∆ ∆ ∆

∆

 = +


= + + +
 = −
 =
 = +


                            (54) 

Pre-multiply and post-multiply (53), respectively, by 

{ }1 1 1 1 1 1
, , , , , , ,diag Q Q P Q I Q Q I

− − − − − −
 and its transpose. Thus, 

the LMI becomes             

1

1 2

1

3 4

2

1

5

1

(*) (*) (*) (*) (*) (*)

(*) (*) (*) (*) (*)

(*) (*) (*) (*)

00 0 (*) (*) (*)

0 0 0 (*) (*)

0 0 0 0 0 (*)

0 0 0 0 0

T

d

Q

Q

B I

Q

Q

I I

δ δ
δ δ

γ
δ

−

−

∆
−

−

 −
 
 
 −
 

Χ = <− 
 −
 

− 
 − 

(55) 

where 

1

1 1

1 1

2 1 1

1

3 2

1

4 2

1

5 1

( )

( ) ( )

( )

( )

( )

T

u

T

u u

T

u

T

u

u

P C D G

P A B G A B G P

Q D G I

Q B G

C D G P

δ
δ
δ
δ
δ

−

− −
∆ ∆ ∆ ∆

−

−
∆

−

 = +


= + + +
 = −
 =
 = +

                      (56) 

Let 

[ ]
[ ]

1

1

1

2

1 1 1

2 2 2

0

0 1 1 2

0 0 0 0 0 0

0 0 0 0

T

T

A Bu Bu Bd

P

Q

G

G

H H

E E E E E

−

−

Π =


Π =
Γ = Π
Γ = Π

 =

 = Π + Γ Γ

    (57)                                                                    

Let
0

Σ be the matrix that we consider X for the nominal 

system. 

Now, it suffices to apply theorem 1 and replace the matrix Ψ  

by 
1cl u

A A B G∆ ∆= +  and choose
1

Π = Π .  

2

6 2

( )
0

h

h

α
α α

∆

∆ ∆

∗ 
< 

 
                                                            (58)                                         

1

1 1 1 1

(*)
0

T T T

u

r

q A B r∆ ∆

− Π 
< − Π + Π + Γ − Π 

                                (59)                                        

1 1 1 1 1
2 0T T T

u u
A A B Bα ∆ ∆ ∆ ∆Π + Π + Π + Γ + Γ <                        (60) 

where 

2 1 1 1 1

6 1 1 1 1

T T T

u u

T T T

u u

A A B B

A A B B

α
α

∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆

 = Π + Π + Γ + Γ


= Π − Π + Γ − Γ
                              (61)                                        

Let 

2

1

6 2

1

1 1 1 1 1

(*)

( , )
T T

A Bu A Bu

h

h

hH H
H

H hH

E diag E E E E

α
α α

  
Σ =  

 
   =  − 
 = Π + Γ Π + Γ



                     (62)                              

1

2

1 1 1 1

2

2 1 1

(*)

0

0

T T T

u

T

A Bu

r

q A B r

H
H

E E E

 − Π 
Σ =  − Π + Π + Γ − Π 
   =  

 
  = Π + Γ 


                             (63) 

3 1 1 1 1 1

3

3 1 1

2 T T T

u u

T

A Bu

A A B B

H H

E E E

αΣ = Π + Π + Π + Γ + Γ


=
 = Π + Γ

                       (64)                              

Applying Lemma 2 and Lemma 3, inequalities (55, 58-60) 

can be given in the form  

1

(*) (*)

(*) 0

0

x

T

x

x

H I

E I

ε
ε

−

Σ 
 − < 
 − 

                                                   (65) 

where index x=0,1,2,3. 

Equation (65) will be pre-multiplying and post-multiplying, 

respectively, by { }, ,diag I I Iε  and its transpose. Therefore, 

the LMI becomes             

(*) (*)

(*) 0

0

x

T

x

x

H I

E I

ε ε
ε

Σ 
 − < 
 − 

                                                   (66) 
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After replacing and rearrange correspondent’s terms, we get 

LMI (43-46). This ends the proof. 

V. ILLUSTRATIVE EXAMPLE 

In this section, we give an example to demonstrate the 

effectiveness of the proposed approach. Consider the 

following nominal linear system: 

[ ]

2 3 1 0.2
( ) ( ) ( ) ( )

4 5 2 0.2

( ) 4 0 ( ) ( )

x t x t u t d t

y t x t u t

 −     
= + +      −     

 = +

ɺ

                

(67) 

The uncertain matrices are described by: 

( ) ( )1 exp( ),sin(2 )F t diag t t= − −                                         (68) 

0 0

1 0.1
H

 
=  
 

,
1 0

0 1
AE

 
=  
 

,
0.5

0
BuE

 
=  
 

,
0.1

0.1
BdE

 
=  
 

 

The periodic reference trajectory and the external disturbance 

applied to the system has been defined, respectively, by the 

following functions: 

( ) 2 4
sin 0.5sin

10 10
r t t t

π π   = +   
   

                                     (69) 

( ) 2
0.5sin

10
d t t

π =  
 

                                                        (70) 

Thus, subject to constraints 
z

D  we can choose 

2,  0,  5 and 1h q r α= = = = . 

For the nominal system, by using Theorem 2, the gains of 2D 

controller and parameters of the robust repetitive control are: 

[ ]
[ ]

1 2     -2.9186   2.1421 ,    0.2265

-2.6019   2.7694 ,  0  .2928
rob rep

G G

G G

 =

=

=

=




                   (71) 

Simulation results (reference signal/output, tracking error and 

control input) in Fig. 3 show that the system is stable in 

closed-loop and enters the steady state in the third period.  

For the uncertain system, by using Theorem 3, the gains of 

2D controller and parameters of the robust repetitive control 

are: 

[ ]
[ ]

1 22.5794 1.3433  0.1053

 2.4122 1.5013  0.1

   ,  

1

 

, 7

 

7 
rob rep

G G

G G

 = − =

= − =




                     (72) 

 

 

 

Fig. 3: Simulation results (r(t)/y(t), e(t), u(t)) for the nominal system 

Simulation results are shown in Fig. 4. It easy to remark that 

the system is robustly stable for the periodic uncertainties and 

it enters into the steady state in the seventh period.  

 

 

 

Fig. 4: Simulation results (r(t)/y(t), e(t), u(t)) for the uncertain system 
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VI. CONCLUSION 

This paper is interested in the problem of H-infinity 

control with D-stability constraint for uncertain continuous-

time repetitive systems with external disturbances. The main 

objective is the design of a control law, such that the system 

closed-loop poles are placed within a particular region of the 

complex plane for all admissible uncertainties. All of the 

obtained conditions are formulated in the form of linear 

matrix inequalities and solutions gives the agreed controller 

gains. Finally, a numerical example is given to illustrate the 

effectiveness of the proposed approach. Repetitive control is 

no different from other control laws. It has its advantages, its 

disadvantages, its problems of robustness and applicability. 

However, it remains recommended for processes that work 

periodically or repetitively. Authors intend to continue 

research on this problem and the extension of obtained results 

to other class parameter uncertainty is actually under study. 
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