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Abstract— To adapt the voltage levels and to control the energy 

between the storage elements and the other equipment of an 

electric vehicle, DC/DC power converters must be interposed. 

This paper focuses on the modeling and performance 

comparison between boost converter topologies interfacing a 

lithium battery and DC link. The design of classic boost 

converter (BC), interleaved boost converter (IBC) and 

Interleaved Double Dual Boost converter (IDDBC) is proposed. 

Simulation results that have been reached put emphasis on the 

advantages of the IDDBC. 
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I. INTRODUCTION 

Conventional vehicles are in critical condition due to their 

heavy dependence on petroleum and their contribution to the 

greenhouse effect. For this reason, the future generation of 

vehicles must therefore rise this problems. 

For this purpose, researchers and vehicle manufacturers 

focused their work towards electric vehicles. 

One of electric vehicle key is batteries [1]. Thanks to their 

high energy density, they can offer an interesting range. [2],[3] 

Manufacturers distribute batteries over three large families 

according to their electrode nature: lead-acid, nickel and 

lithium batteries. Basic condition must therefore be fulfil by 

these different technologies in electric vehicles such as: 

 A high energy density in order to extend range of 

electric vehicle 

 A stable voltage which leads regular performance.  

 Long cycle life which result a lower cost.  

 Low maintenance.  

Furthermore, Most electric vehicle batteries are lithium 

due to their performance, especially the energy density 

[2],[3],[4],[5],[6]. 

To adapt voltage and current levels and to control the 

energy between vehicle equipment, a DC/DC converter must 

be interposed between the storage elements and the DC link[8] 

[10], [11]. 

In this work average model and performance of Boost 

Converter (BC), Interleaved boost Converter (IBC) and 

Interleaved Double Dual boost converter (IDDBC) are 

discussed. The aim is to compare the three boost converter 

topologies.  

This paper is organized as follows: Section II describes the 

Electric vehicle topology. Section III describes the modelling 

and the sizing of the lithium battery. Section IV presents the 

average model of the three boost converter topologies. 

Section V presents simulation results and the comparison 

between the proposed DC/DC converter, and finally the 

conclusion is presented in section VI. 

 

II. ELECTRIC VEHICLE TOPOLOGY 

The proposed structure used in this paper is the parallel 

active hybrid topology shown in Fig. 1. The storage elements 

are connected via a DC/DC power converter to a common DC 

Bus [8],[9],[10]. 

This topology adapt the voltage level between the different 

storage elements and the electric vehicle system through 

DC/DC converters. A Boost converter is connected to the 

battery and a Buck-Boost converter is used for the 

ultracapacitor.  
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Fig.  1: Diagram of the electric vehicle 

In this work, the vehicle is able of producing the required 

power to accelerate from 0 to100 km/h in 11.5 s and a 
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maximum speed of 125km/h. The DC bus voltage Vbus is 

400V. 

 

III. MODELING OF BATTERY DYNAMICS 

Several researchers around the world have proposed many 

kinds of models with varying degrees of complexity and 

different objectives. Existing battery models can be classified 

into physical models, analytical models, and equivalent 

circuit models. [2],[3],[4],[5],[6]. 

Due to their performance, especially the energy density, 

most of electric vehicles are powered by lithium-ion (Li-Ion) 

batteries. [4],[6]. 

A.  PROPOSED MODEL 

The dynamic equivalent circuit model is proposed in Fig. 2. 

The model circuit consists of a DC voltage source, resistances 

and capacitors.  The R0 represent the resistance of the current 

collectors on both sides of the electrodes and the two RC 

networks (R1, C1, R2, C2) represent the dynamics of the 

concentration and activation polarization. Ibat is the external 

current of the battery, Vbat is the terminal voltage of the 

battery.[6],[7] 
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Fig.  2: Equivalent circuit model of a Li-ion battery [7] 

In this model, the parameters are dependent on SOC, it can 

be calculated as Equation (1): 

0
bat

usable

I
SOC SOC dt

C
       (1) 

 
Where SOC0 is the initial SOC, and Csable is the usable 

battery capacity 

B. SIZING THE BATTERY MODULE 

The battery must be ready to supply the sufficient power so 

it rolls to a maximum speed of 125 km/h. Thus and according 

to the characteristics of the vehicle the necessary power 

produced by the Li-ion battery is 23.48 kw. In this paper, we 

choose a SAFT Li-ion battery with the following 

characteristics: 

 

 Nominal voltage (Unom): 3.6 V 

 Average capacity C/3 (Cnom-bat) : 41Ah 

 Minimum capacity C/3(Cmin-bat): 39Ah 

 Open circuit voltage(Uoc) : 4V 

 Weight (Webat): 1.07 Kg 

 Volume (Vbat): 0.51dm3 

 

For Vbat=120V and Vbus=400V, the Li-ion battery 

parameters are calculated by equations described in Table 1. 

 

TABLE I 

LI-ION BATTERY PARAMETERS 

Parameters Equations VALUE 

Series cells  
bat

s

bat oc

U
N

U 



 

30 

Courant totale (A) 
ch bat

tot bat

bat

P
I

U


 

 

195.7 

Parallel branches 

min

tot bat
p

bat

I
N

I







 

2 

Battery cells number tot bat p sN N N  
 

60 

Battery module 

weight (Kg) 
bat tot bat tot batWe We N  

 64.2 

Battery module 

volume (dm3) 
bat tot bat tot batV V N  

 
30.6 

Total energy (wh) 

bat tot p nom bat

s nom bat

E N C

N U

 



  



 

8856 

 

IV. DIFFERENT TOPOLOGIES OF BOOST CONVERTER 

The chosen converter is a boost converter which allows the 

increase of the lithium battery output voltage in order to 

supply the DC bus. 

A. CLASSIC BOOST CONVERTER  

Fig. 3 shows the electrical circuit of a classic boost 

converter. 
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Fig.  3: Circuit design of a classic Boost Converter 

There is two modes of operation: 

  During the first interval   : S is ON and D is OFF : 
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Fig.  4: Configuration of the Boost Converter for S:ON 

The state space model and matrices are: 
.

1 1 x A x B u       (2) 

1y C x        (3) 



With : 

[ ]T

L busx i V ; batu V
; busy V

 

In that case: 

1

0

0

1
0

ch

r

L
A

R C

 
 
 
  
  ; 

1

1

0

 
 
  
 

B L

; 
1

0

1

 
  
 

T

C

  (4) 

 During the second interval  S is OFF and D is ON :  
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Fig.  5: Configuration of the Boost Converter for D:ON 

The state space model and matrices are: 
.

2 2 x A x B u
      (5) 

 2y C x
      (6) 

In this case: 

2

0 0

1

1 1

ch

r

L L
A

C R C

 
  
 
  
  ; 

2

1

0

 
 
  
 

B L

; 
2

0

1

 
  
 

T

C

    

Then the averaged model is: 
.

 x Ax Bu      (7) 

y Cx
      (8) 

With: 

 1 2. 1A d A d A        (9) 

 1 2. 1B d B d B        (10) 

 1 2. 1C d C d C        (11) 

d: duty cycle 

We obtain: 

0 0

(1 )

1 1

ch

r d

L L
A

d

C R C

 
  

 
  

 

; 

1

0

 
 
  
 

B L

; 

0

1

 
  
 

T

C

    

B. INTERLEAVED BOOST CONVERTER: 

 

The circuit diagram of an IBC is shown in Fig. 6. The 

configuration is composed of switches S1 and S2, inductors L1 

and L2, diodes D1 and D2, Capacitor C0 and load resistor Rch. 
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Fig.  6: Interleaved Boost Converter 

    The power switches S1 and S2 have 180° phase 

difference [11], [12]. 

There are two duties cycle of operation converter: for 

d<0.5 and d>0.5. 

For d>0.5 the converter has four modes of operation and 

the switching states are given in Table 2. 

 

TABLE II 

STATES OF SWITCHES 

Stages Mode of Operation S1 S2 D1 D2 

1 
1

0 ( )
2

t Ts d    
1 1 0 0 

2 

1
( )

2 2

Ts
Ts d t  

 

1 0 0 1 

3 
2

Ts
t dTs   

1 1 0 0 

4 dTs t Ts   0 1 1 0 

 

Fig. 7 shows the inductor current waveforms of the IBC for 

d>0.5 : 
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Fig.  7: Inductor Current of IBC Converter for d > 0.5 

 

The states are shown in Fig. 8: 
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Fig.  8: (a) S1,D2: ON (b) S2,D1:ON (c) S1,S2:ON 

State-space average models are : 
.

2 2i ix A x B u        (12) 

2iy C x         (13) 

Where i is the stage rank, Then: 

1 2[ ]T

L L busx i i V ;
batu V ;

busy V  

Matrices are given by: 

1

1

2
21 23

2

0

0 0

0 0

1
0 0

ch

r

L

r
A A

L

R C

 
 
 
 

   
 
 

  
 

1

1

2
22

2 2

0 0

0 0

1
0

1 1
0

ch

r

L

r
A

L L

C R C

 
 
 
 

   
 
 

  
 

 

1

1 1

2
24

2

0 0

1
0

0 0

1 1
0

ch

r

L L

r
A

L

C R C

 
  
 
 

  
 
 

  
 

 

21 22 23 24

1 2

1 1
0

T

B B B B
L L

 
     

 

 

 21 22 23 24 0 0 1C C C C     

Taking the average of the above state models results in the 

following average state-space model : 
.

2 2x A x B u         (14) 

2y C x         (15) 

2 21 22 23 24

1 1
( ) (1 ) ( ) (1 )

2 2
A A d A d A d A d             (16) 

2 21 22 23 24

1 1
( ) (1 ) ( ) (1 )

2 2
B B d B d B d B d               (17) 

2 21 22 23 24

1 1
( ) (1 ) ( ) (1 )

2 2
C C d C d C d C d                   (18) 

The corresponding A2, B2 and C2 matrices are : 

1

1 1

2
2

2 2

0 0 0

(1 )
0

(1 )
0

(1 ) (1 ) 1

ch

r d

L L

r d
A

L L

d d

C C R C

 
  

 
 

   
 
  

  
 

;
2

1 2

1 1
0

T

B
L L

 
  
 

 2 0 0 1C   

C. The Interleaved Double Dual Boost converter 

 

The circuit diagram of an IDDBC is shown in Fig. 9. The 

topology consists of two single boost converters with input 

coupled inversely [13]. As the IBC, the control switching is 

adjusted by Ts/2where Ts is the switching period. 
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Fig.  9: Interleaved Double Dual Boost converter 

The output voltage Vbus is given by : 

1 2bus C C batV V V V               (19) 

The input current delivred by the battery is given by : 

1 2bat L L busi i i i               (20) 

Based on table 2, the states are shown in Fig. 10: 
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  (c) 

Fig.  10: (a) S1,D2: ON (b) S2,D1:ON (c): S1,S2:ON 

For: 
1 1 2 2[ ]T

L C L Cx i V i V ;
batu V ;

busy V  

Based on equation (12),(13) matrices are given by:   

1

1

1 2

21 23

2

2

2 2

0 0 0

1 1
0 0

0 0 0

1 1
0 0

ch ch

ch ch

r

L

R C R C
A A

r

L

R C R C

 
 
 
 

  
  
 

 
 
 

  
 

1

1

1 2

22

2

2 2

2 2 2

0 0 0

1 1
0 0

1
0 0

1 1 1
0

ch ch

ch

r

L

R C R C
A

r

L L

C C R C

 
 
 
 

  
 
 

  
 
 

 
 

 

1

1 1

1 1 1

24

2

2

2 2

1
0 0

1 1 1
0

0 0 0

1 1
0 0

ch ch

ch ch

r

L L

C R C R C
A

r

L

R C R C

 
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 
 

  
 
 

 
 
 

  
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21 22 23 24

1 1 2 2

1 1 1 1
T

ch ch

B B B B
L R C L R C

 
     

 

; 

 21 22 23 24 0 1 0 1C C C C     

 21 22 23 24 1D D D D      

Based on equation (14),(15), in this case: 

2 21 22 23 24

1 1
( ) (1 ) ( ) (1 )

2 2
A A d A d A d A d               (21) 

2 21 22 23 24

1 1
( ) (1 ) ( ) (1 )

2 2
B B d B d B d B d               (22) 

2 21 22 23 24

1 1
( ) (1 ) ( ) (1 )

2 2
C C d C d C d C d                   (23) 

2 21 22 23 24

1 1
( ) (1 ) ( ) (1 )

2 2
D D d D d D d D d                   (24) 

The corresponding A2, B2  C2 and D2 matrices are : 

1

1 1

1 1 1

2

2

2 2

2 1 2

(1 )
0 0

(1 ) 1 1
0

(1 )
0 0

1 (1 ) 1
0

ch ch

ch ch

r d

L L

d

C R C R C
A

r d

L L

d

R C C R C

 
  

 
 

  
 
 

  
 
 

  
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2

1 1 2 2

1 1 1 1
T

ch ch

B
L R C L R C

 
  
 

;  2 0 1 0 1C  ;  2 1D    

 

V. MATLAB/SIMULINK SIMULATION 

In this paper, we modeled in matlab the average model of 

the different topologies of the boost converter. Closed loop 

control is used with classic PI regulators. The PI controller is 

configured to regulate the output voltage (Vbus) 
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Fig.  11: waveform of output voltage and battery current in changed 

load

0.9997 0.9997 0.9998 0.9998 0.9999 0.9999 1 1 1.0001 1.0001 1.0002

399

399.5

400

400.5

401

Time(s)

 

 

 

0.9997 0.9998 0.9998 0.9999 0.9999 1 1 1.0001 1.0001 1.0002

195.4

195.6

195.8

196

Time(s)

 

 

 
Fig.  12: Inductor current ripple and output voltage ripple of the BC 
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Fig.  13: Output voltage ripple of the IBC 
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Fig.  14: Inductors currents (iL1, iL2) of IBC 

0.9998 0.9999 0.9999 1 1

195.64

195.66

195.68

195.7

195.72

 
Fig.  15: Inductor current ripple of IBC 
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Fig.  16: Outputs Voltages (VC1, VC2) ripple of IDDBC 
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Fig.  17: Output voltage (Vbus) ripple of the IDDBC 
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Fig.  18: Inductors currents (iL1, iL2) of IDDBC 
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Fig.  19: Inductor current ripple of IDDBC 

TABLE III 

COMPARISON BETWEEN BC, IBC AND IDDBC 

PARAMETERS BC IBC IDDBC 

Duty Cycle 0.7 0.7 0.5385 

Inductor( H ) 510 255 255 

Capacitor ( F ) 611 611 305 

Input Current 

Ripple(A) 

0.6 0.065 

 

0.06 

 

Output Voltage 

Ripple(V) 
2.1 0.59 0.49 

Efficiency (%) 97,31 98,9 99,98 

 

It is clear from the table III that the ripples of output 

current and output voltage are reduced for IDDBC compared 

with BC and IBC. These results shows the advantages of 

IDDBC having the highest efficiency and the lower duty 

cycle. 

VI. CONCLUSION 

This paper discusses the principle, operating modes and 

mathematical model of various boost converter topologies. 

The waveforms of BC, IBC and IDDBC have been simulated. 

Using these results, the IDDBC has advantages based on 

comparison with BC and IBC such as the decrease of the size 

of the filtering component and the reduction of the input 

current and output voltage ripple. Due to the decrease of the 

current ripple at the input the stress on the battery will be 

reduced. The decrease of the duty cycle can improve the 

efficiency of the IDDBC. Therefore, from the comparative 

study, the IDDBC proves to be a promising topology for 

Electric Vehicle Application. 
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