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Abstract— Many researches were realized for the robotics 

command in order to ensure the tracking of a desired reference 

trajectory. This current work concentrates on computed torque 

controller for robotic manipulator system by applying the linear 

and nonlinear control to ensure the position tracking. Indeed, the 

approach conventional control was applied to control a nonlinear 

dynamic system in order to displace the terminal organ of 

manipulator arm of an initial position towards any desired 

destination. The linear control allow us to linearize our system 

around a fixed point so-called an equilibrium point. Then, the 

application of the nonlinear control allows widening the 

application field. Simulations are presented to show the 

performance of the conventional control to guarantee the 

boundedness of the outputs robotic systems. 

 
Keywords: Nonlinear systems, computed torque control, nonlinear 

control, position control 

I. INTRODUCTION 

In the last decades, the factories have been working faster 

than ever with the manipulator robots. The Manipulator arms 

have been widely used in industrial applications. Thanks to an 

adequate control, they accomplish the same task several times 

a remove day without errors and with great precision. As the 

manipulator arms are complex and non-linear systems, a 

number of theoretical and experimental studies attempt to 

develop robust commands based on new methods and 

algorithms. [1] [2] [3] [4]. By giving the complexity and 
nonlinearity of articulated systems, the use of mathematical 

tools becomes less effective in modelling and controlling such 

a process. However, several conventional control approaches 

[1] have been established to control these non-linear systems. 

The question of the position control for robot manipulators 

is the choice of the appropriate torques so that the manipulator 

can follow the desired trajectory. Among these controls, there 

is linear control and nonlinear control. Indeed, this work 

proposes the realisation of a high-speed control of the robotic 

system. In order to have an accurate simulated model, the 

modelling of the robotic mechanical system 6 axis Staubli RX-
60 has been done [5]. The dynamic model of three first links 

of six-axis Staubli RX60 robot has been developed according 

to the Lagrange-Euler formalism [6] [7] which translates the 

movement of the various articulations of the manipulator arm 

in order to validate the proposed controls. The linear approach 

will be used on the linearization of the equations of the robot's 

motion around an arbitrary chosen point of equilibrium. Then 

we implement the nonlinear control approach to extend the 

application field of our Robot Staubli RX-60. The present 

paper is organized as following. In section 2, we give a 

dynamic model of an industrial Staubli RX-60 wich has been 

done in the reference [5]. Then, the linear control is applied in 

section 3. Next, the nonlinear computed torque controller is 

designed in section 4. The conclusions are given in section 5 
 

II. DYNAMIC MODEL FOR CONTROL OF A ROBOTIC SYSTEM 

The robot RX-60 is an articulated with 6 degrees of freedom. 

Staubli RX-60 is an anthropomorphous industrial non 

redundant robot with simple open structure (serial structure). 

In this section, the dynamical model of the robot arm 

considers a relation between the joint torques/forces used by 

the actuators and the position, velocity and acceleration of the 

robot arm with respect to the time. The parameters of a 

dynamic model introduced here of a manipulator arm were 

estimated on experiments [5]. 
As reported Lagrange theory, a robot manipulator is 

described by the following equations: 

 

𝐽(𝜃)�̈� + 𝐻(𝜃, �̇�)�̇�+𝐺(𝜃)=U     (1) 

𝜃, �̇�, 𝜃  ̈ :Vector dimension nx1, respectively, positions, 
velocities and accelerations joint 

J( ) ∈ ℝ𝑛×𝑛: Inertia matrix, positive definite symmetric 

matrix 

H(θ, θ̇) ∈ ℝn×1: Coriolis and centripetal forces vector 

G(θ) ∈ ℝn×1 : Gravity torques 

U ∈ ℝn×1:  Input torques  
The last three joints of this manipulator which constitute the 

wrist are fixed at the zero(the positions 𝜃4 = 𝜃5 = 𝜃6 =
0).The dynamic model for the first three joints of the Staubli 

RX60 robot arm is taken from [5] as follows in the relation : 

[
𝑈1

𝑈2

𝑈3

] = [
𝐽11 𝐽12 𝐽13

𝐽21 𝐽22 𝐽23

𝐽13 𝐽23 𝐽33

] [

�̈�1

�̈�2

�̈�3

]+[

𝐻1(𝜃, �̇�)

𝐻2(𝜃, �̇�)

𝐻3(𝜃, �̇�)

] + [

𝐺1(𝜃)
𝐺2(𝜃)
𝐺3(𝜃)

]           (2)                                                          

     The expressions of the elements of the matrices J, H and the 

vector G are taken from the reference [5]. 

      The demonstration and the calculation of elements of the 

matrix of the dynamic model is presented in the reference [5]. 

     As of Staubli RX-60 manipulator dynamic formulation, this 

system is nonlinear, multi-input multi-output and uncertainly 
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III. LINEAR CONTROL : 

     The aim of modelling any process is to get the adequate 

command. First, we will implement a linear control based on 

the technique of linearization of the system's matrix writing 

around an equilibrium point fixed according to our choice.  
       The linear command is defined by the relation (3): 

u = Ueq + V                                                                                  (3) 

        The equilibrium state is represented by the following 
relations (4) and (5): 

Ueq = G(θeq)                                                                                (4) 

θeq = θ − φ                                                                                   (5) 

With: 

Ueq : The torque required to maintain the robot to the 

equilibrium position 

θeq : The static equilibrium position 

φ : The variation around equilibrium point 

      The linearization of the equation of motion around a 

chosen equilibrium point θequsing the first order Taylor series 

approximation and substituting (5)  into  (1) , we obtain the 

following relation (6): 

J(θeq)φ̈ + G(θeq) + (
∂G

∂θ
)

eq
φ = Ueq + V                            (6) 

Substituting by (4) we obtain the matrix relation (7): 

J(θeq)φ̈ + (
∂G

∂θ
)

eq
φ = V                                                           (7) 

The matrix writing of the second order equation is rewritten by 

the following representation (8): 

Ẋ = A. X + B. V                                                                            (8)  

with 

X = [
φ
φ̇]

6×1
 : System state vector                                        (9) 

X =̇ [
φ̇
φ ̈

]
6×1

                                                                          (10) 

A = [
𝕆3×3 𝕀3×3

−J−1(θeq) (
∂G

∂θ
)

eq
𝕆3×3

]

6×6

 : State Matrix        (11) 

B = [
𝕆3×3

J−1(θeq)
]
6×3

 : order Matrix                                     (12) 

 

 Stability and controllability of the robotic system 

In order to develop a control of a system, we study the 
stability of dynamical system by calculating the eigenvalues of 

matrix A. The condition of stability is explained by all 

eigenvalues of state matrix A have negative real parts. These 

eigenvalues are only the roots of the characteristic polynomial 

showed by the relation (13): 

det(λI − A) = λ2I + J−1(θeq) (
∂G

∂θ
)
eq

= 0                      (13) 

According to the above equation, the robotic system is 

always unstable in open loop. In order to ensure local stability 

around a point of equilibrium and to design a feedback 

controller so that the process goes from any initial state X0,  to 

a specified desired state X𝑇 ,   in some finite time. , the 

controllability of the system must be verified. . We proceed to 

calculate the matrix Q: 

Q = (B,AB,… . , A5B). A necessary and sufficient condition for 

the complete controllability is that matrix Q is full rank. 

Q = [
𝕆3×3 J−1(θeq)

J−1(θeq) 𝕆3×3

]

6×6

                                               (14)  

The matrix Q is full rank so our system is controllable. This 

leads to the possibility of controlling our robotic system. 

 Linear control law synthesis 

We focus mainly on the design of a torque control U which 

ensures the displacement of our manipulator arm from an 

initial position  θ0, θ̇0 and θ̈0   to an equilibrium 

position θeq, θ̇eq and θ̈eq. 

We will ensure the stability in closed loop by the state 
feedback V. 

V = K. X = K1. φ + K2φ̇  Avec K ∈ 𝔑3×3 : the position 

feedback gains K 1 and the velocity feedback gain  K2  are 

defined by the following differential equation: 

θ̈ + Λ1θ̇ + Λ2φ = 𝕆6×6 Avec Λ1 et Λ2 ∈ 𝔑3×3 which present 

the poles imposed on the robotic system. 
These are two diagonal matrices that represent respectively the 

sum matrix poles and the product matrix poles. So our system 

is written as follows in the relation (15): 

J(θeq)φ̈ + (
∂G

∂θ
)

eq
φ = K1. φ + K2φ̇                                     (15)  

Finally, the linear control applied to our robotic system as  

following (16): 

U = Ueq + V =  G(θeq) + K1. φ + K2φ̇                               (16) 

With: 

K1 = −J(θeq).Λ2 + (
∂G

∂θ
)

eq
and K2 = −J(θeq).Λ1             (17) 

 

Fig. 1  Block diagram of linear control 

𝐺(𝜃𝑒𝑞) 

K 

𝑈 

𝑉 

+ 

+ 

𝑈𝑒𝑞 

[
∅

∅̇
] 

[
𝜃𝑒𝑞

�̇�𝑒𝑞
] [

𝜃
�̇�
] 
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 Simulation of the linear control 

To begin we choose the vector of the initial position in 

degrees 𝜃0 = [𝜃01 𝜃02 𝜃03    �̇�01 �̇�02 �̇�03]
𝑇 =

[0 0 0    0 0 0]𝑇and the vector equilibrium position 

in degrees 𝜃𝑒𝑞 = [45 45 45    0 0 0]𝑇. 

Next, the angular position gain matrix K1 and the angular 
velocity gain matrix K2 are calculated by placing the poles of 

the system at (-8). Hence the values Λ1 = 16 × 𝕀3×3 and Λ2 =

64 × 𝕀3×3. 
The simulation results: 

𝐴 =

[
 
 
 
 
 
0 0 0        1 0 0
0 0 0        0 1 0
0
0
0
0

0
0.0215
4.3308

 −3.9458

0
0
0
0

0
0
0
0

0
0
0
0

1
0
0
0 ]

 
 
 
 
 

;  

𝐵 =

[
 
 
 
 
 

0 0 0
0 0 0
0

0.1289
0.00030
0.0002

0
0.0009
0.1748

−0.1593

0
−0.0004
−0.1593
1.8098 ]

 
 
 
 
 

;  

𝐾1 = [
−496.5120 2.5812 0.1257

0.8304 −422.8159 −35.0276
0.1257 −35.0276 −38.4448

];  

𝐾2 = [
−124.1280 0.6453 0.0314

  0.2076 −99.5102 −8.7569
0.0314 −8.7569 −9.6112

] 

The curves obtained at the angular positions are showed by 

the figure 2 as follows: 

 

 

Fig. 2 Angular positions of the Staubli RX60 robot at the linear control case 

 

The angular positions converge towards the desired values 

of equilibrium point. So the linear control ensures the local 

stability of the system. But, it does not present the adequate 

control for the robotic system. It has limitations. 

IV. NONLINEAR COMPUTED TORQUE CONTROLLER : 

         In this research, we focus on design nonlinear robust 

controller that guarantee stability, little tracking error and 

superb perturbation rejection. 

     This work is interested in the dynamics of the first three 

joints of the articulated mechanical system. The last three 

joints of this manipulator which constitute the wrist are fixed 

at the zero that is the angular positions 4 = 5 = 6 = 0 the 

angular velocities θ̇4 = θ̇5 = θ̇6 = 0  and the angular 

accelerations θ̈4 = θ̈5 = θ̈6 = 0.  

       We concentrate mainly to design a torque control U that 

ensures the displacement of our manipulator arm from an 

initial position  θ0, θ̇0 and θ̈0   to desired 

positionθdes, θ̇des and �̈�𝑑𝑒𝑠 . The nonlinear computed torque 

control guarantees the global stability while compensating the 

non-linear part of the robotic system and imposing a stable 

dynamic loop. 

The dynamics imposed by the following reference model 

presented by the relation (18): 

�̈� + Λ1�̇� + Λ2(𝜃 − 𝜃𝑑𝑒𝑠) = Θ3x3                                           (18) 

Once the reference model is imposed, the nonlinear control 

by position and velocity feedback is developed using the 

dynamics of our robotic system and the dynamics of the 

reference model. 

𝐽(𝜃)�̈� + 𝐻(𝜃, �̇�) + 𝐺(𝜃) = 𝑈                                            (19) 

The equation of the reference model can be put in the 

following form showed by (20): 

�̈� = −Λ1�̇� − Λ2(𝜃 − 𝜃𝑑𝑒𝑠)                                                      (20) 

 By substituting equation (20) into equation (19), we obtain 
the nonlinear control law presented by equation (21). 

𝑈 = 𝐽(𝜃) (−Λ1�̇� − Λ2(𝜃 − 𝜃𝑑𝑒𝑠)) + 𝐻(𝜃, �̇�) + 𝐺(𝜃)     (21) 

The figure 3 shows the block diagram of the nonlinear control 

of the robot. It's about two feedback loops which a tracking 

error loop is an outer loop and a compensate loop is an inner 

loop 
 

 

Fig. 3 Block diagram of nonlinear control 

 

In this part we will apply the nonlinear feedback position 

and velocity robot arm control in order to move the terminal 
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organ of the manipulator arm from an initial position  𝜃0 

towards a final position θdes. 

 

 Simulation of the nonlinear control 

We will validate these results by simulations on Matlab 

Simulink environment. First, we choose the initial positions  

vector in degrees 𝜃0 = [0 0 0 0 0 0]𝑇 and the Final positions 

vector in degrees 𝜃𝑑𝑒𝑠 = [10 10 10 0 0 0]𝑇 

Then, we proceed to calculate the angular position gain 

matrix  Λ1 and the angular velocity gain matrix Λ2 by placing 

the poles of the system to -4. Hence the values Λ1 = 8 × 𝕀3×3 

and Λ2 = 16 × 𝕀3×3. 

The simulation of the evolution of positions and angular 

velocities was carried out over a period of 10 seconds. 

The simulation of the angular positions are showed by the 

figures 4 and 5. 

 

 
 

 

 

Fig. 4: Angular positions of the Staubli RX60 robot at the nonlinear control 

case 

 

 

 

 

Fig. 5: Variation of the torques applied to the Staubli RX-60 provided with 

the nonlinear control by position and velocity feedback 

 
To confirm the pertinence of the nonlinear control, it 

is proposed to attain a target in presence of uncertainty in 

unstructured input (e.g. disturbance). The simulation results in 

the presence of disturbance are given in the figures 6 and 7. 

The measurement noise is used the Simulink block diagram as 

white noise. 

 

 

 

 

Fig. 6 Angular positions of the Staubli RX60 robot at the nonlinear control 

case in the presence of external disturbance 
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Fig. 7: Variation of the torques applied to the Staubli RX-60 in the presence 

of external disturbance 

This command ensures the global asymptotic stability 

system. But the disadvantage of such control is the sensitivity 

against the uncertainties and disturbances. On the other hand, 

the modelling of a complex system is not always precise. So, 

we design the nonlinear feedback control of position, velocity 

and acceleration to improve the performance the behaviour of 

the robot in different circumstances.  

 

         Substitution of the equation’s the reference model (18) in 

the equation of the dynamics of the robot (1), we get the control 

law: 

𝑈 = (𝐽(𝜃) + 𝐼)�̈� + 𝐻(𝜃, 𝜃)̇ + 𝐺(𝜃) + Λ1�̇�
+ Λ2(𝜃 −𝜃𝑑𝑒𝑠)                         (22) 

       The figure 8 shows the control loop of the nonlinear 

control by position, velocity and acceleration feedback: 

 

 

Fig. 8  Block diagram of nonlinear control by position, velocity and 

acceleration feedback 

 

    The same curves as the nonlinear feedback control of 

position and speed are obtained with and without incorporating 

external disturbance. So, the computed torque controller is able 

to hold each link at a particular angle but it is so sensible 

against unmodeled dynamics. 

 
 

V. CONCLUSIONS 

We studied nonlinear controller applied to control of 

robot manipulator to achieve the specified joint acceleration, 

velocity and position state. This strategy guarantees accurate 

tracking in joint space and stability. We implemented the PD-
computed torque controller on a dynamic modeling in 

MATLAB/SIMULINK environment. This designed controller 

is tested by band limited white noise with a predefined 40% of 

relative to the input signal amplitude which the sample time is 

equal to 0.1. These tools become less effective and less robust 

against disturbances and uncertainties and / or inaccuracy. 

Faced with this problem, the use of unconventional learning 

approaches has become a necessity in order to develop a 

command able to tolerate the uncertainties and neutralize the 

effect of external disturbances. 

 

REFERENCES 

 
[1] Wisama Khalil, Etienne Dombre (1999), “ Modélisation, Identification 

et Commande des Roobots ̋, Hermes Science Publications, Paris. 

[2] M. Spong, M. Vidyasagar, “Introduction to robotics. Robot dynamics 

and control”, MIT Press, Cambridge, 1989. 

[3] Freeman, R et P. Kokotovix (1995) “ Optimal Nonlinear controllers for  

feedback linearizable system” In Proc. The Amer Contr ConfSeattle, 

Washington, pp2722-2726 

[4] Ali Hamlili (1993) “ contribution to the dynamic modelling of 

articulated systems” doctoral thesis, Ecole Nationale des Ponts et 

Chaussées 

[5] O. KARAHAN, Z. BINGUL, “Modelling and Identification of  

STAUBLI RX-60”, IEEE, 2008 

[6] R. Sepulchre, M. Jankovic et P.V . KOKOTOVIC (1997) “ constructive 

nonlinear control” Springer-Verlag 

[7] The zodiag ( collective work) (1996) “ Theory of robot control” 

C.Canudas de Wit, B. Siciliano, G.Bastin Eds, Springer-Verlag, Berlin 

[8] Lyapunov, “The general problem of the stability of Motion”, Taylor and 

Francis, 1982. 

[9] A Dayal Udai, S. Kumar Saha, “Dynamic simulation of serial robots 

under force control”, int.J.Intelligent Machines and Robotics, Vol1, 

No.1,2018. 

[10] F. Piltan1, A. Taghizadegan1 and N.B Sulaiman C, “Modeling and 

Control of Four Degrees of Freedom Surgical Robot Manipulator 

Using MATLAB/SIMULINK”, International Journal of Hybrid 

Information Technology Vol.8, No.11 (2015), pp.47-78 

[11] R. Freeman, P. Kokotovic,”Optimal Nonlinear Controllers for feedback 

– Linearizable systems”, In Proc. the Amer. Contr Conf, Seattle, 

Washington, pp. 2722-2726, 1995. 

[12] N. Bouzid, “Neuronal control  of the robotics systems”, Research 

Master, National Institute of Applied Sciences and Technology,  

[13] Robot Manipulator Control Theory and Practice, Second Edition, 

Revised and Expended, 2011 

[14] Jolly Shah1, Prof S.S.Rattan2, Prof B.C.Nakra3 “Dynamic analysis of 

two link robot manipulator for control design using computed torque 

control”, International Journal of Research in Computer Applications 

and Robotics Vol.3 Issue.1, Pg:52-59 January 2015 

[15] Luis Garcia-Valdovinos, Jesus Carlos Pedraza Ortega “ 5DOF 

manipulator simulation based on MATLAB-Simulink methodology”, 

IEEE, February 2010 

[16] Shuyou Yu, Yu Zhou, Ting Qu, Fang Xu, and Yan Ma, « Control 

Invariant Sets of Linear Systems with Bounded Disturbances », 

International Journal of Control, Automation and Systems 16(X) (2018) 

pp.1-8 

 

 

 

 

 
 

User1
Typewritten Text
Copyright IPCO-2019ISSN 1737-9296

User1
Typewritten Text
International Journal of Scientific Research & Engineering Technology (IJSET)Vol.7 pp. 43-47


	The linear command is defined by the relation (3):
	u=,U-eq.+V                                                                                  (3)
	The equilibrium state is represented by the following relations (4) and (5):
	With:
	,U-eq.: The torque required to maintain the robot to the equilibrium position
	,θ-eq. : The static equilibrium position
	φ : The variation around equilibrium point
	Substituting by (4) we obtain the matrix relation (7):
	This command ensures the global asymptotic stability system. But the disadvantage of such control is the sensitivity against the uncertainties and disturbances. On the other hand, the modelling of a complex system is not always precise. So, we design ...
	Substitution of the equation’s the reference model (18) in the equation of the dynamics of the robot (1), we get the control law:
	𝑈=,𝐽,𝜃.+𝐼.,𝜃.+𝐻(𝜃,,𝜃).+𝐺,𝜃.+,Λ-1.,𝜃.+,Λ-2.,𝜃−,𝜃-𝑑𝑒𝑠..                         (22)
	The figure 8 shows the control loop of the nonlinear control by position, velocity and acceleration feedback:
	The same curves as the nonlinear feedback control of position and speed are obtained with and without incorporating external disturbance. So, the computed torque controller is able to hold each link at a particular angle but it is so sensible agai...



