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Abstract—State space representation of complex systems is
highly recommended in system control and automation. This
theory which is usually based on physical and theoretical equa-
tions of the target system have no success when dealing with
unknown systems that are represented only by input/output
data measurements. in This paper, we study the possibility of
extraction the state space equations of black box systems using
a dataset of input/output measurements. For that, we use a sub-
class of input/output model which satisfies the necessary and
sufficient conditions that guaranteed the realization of the state
space model based on the input/output model. The resulted
state-space model is identified using a feed-forward modular
neural networks. This approach is applied to realize an industrial
hydraulic systems.

Index Terms—Modular Neural Networks, State space realiza-
tion, identification and modeling

I. INTRODUCTION

Modelling of dynamical systems is a high topic in science
an social fields that was used in many applications related to
industrial processes, communication, electronics, traffics and
many other things. Despite the great evolution of this theory,
internal dynamical behaviours of nonlinear systems are still
difficult to understand using classical modelling methods. This
difficulty concerns black-box nonlinear systems which are rep-
resented only by input/output measurements that represent the
relations between external inputs and outputs of the system. In
spite of the success of modelling in characterising input/output
relations, external input/output models alone are not suitable
for many dynamical analysis and control applications. On the
other hand, space models that arise naturally from the govern-
ing physical laws, and constitute the basis of stability analysis
and feedback design of dynamical systems, are very difficult
to achieve in nonlinear systems. On this way, many research
has been done on the hope of constructing state space models
based only on input/output data measurements. Few papers
are published related to state space realization of nonlinear
systems (See [1] [2] [3] for continuous-time systems and [4]
[5] for discrete-time systems). The last results on the state

space realisation are devoted to [6] [7] [5] which contribute
to the establishment of the necessary and sufficient conditions
that guaranteed the transformation of input/output model into
an equivalent state space model. These conditions deal with
the observability and controllability of the input/output model.
In paper [8] these conditions are verified algebraically in
continuous time domaine, the state coordinates of the model
are realized first by finding the integrating factors and sec-
ond by integrating certain 1-form subspaces. This procedure
needs to apply the well-known Frobenius theorem and some
elementary knowledge of differential 1-forms to extract the
equivalent state space model. The paper [7] introduces the
theoretical background of the discrete-realization theory using
the differential geometry and propose explicitly the necessary
and sufficient conditions to transform difference input-output
map into a state space model.
In this paper, which extend the last author paper [9], we
propose a general form of input/output model that satisfies the
realizability conditions (controllability and observability) and
we give the equivalent state space model in form of standard
difference equations. The input/output model is based on a
reduced NARX representation in which neural networks is
used to identify the internal parameters of the model. This
approach helps largely on the identification of state space
coordinates based on input/output data measurements and the
synthesis of output feedback controller of nonlinear systems.

The present paper is organized as follows: In section 2
we recall the essential theoretical backgrounds that formu-
late the necessary and sufficient conditions to transform an
input/output model into a state-space model, next we propose
a graphical map (based on the input/output model) that helps
the design of accessible state-space models. Section 3 explains
the realization of black-box systems using modular neural
networks, and how to extract the corresponding state model
of a non-linear system. In Section 4 we present simulation
results to validate the theoretical approach. Finally, Section 5
concludes the paper.
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II. PRELIMINARIES ON STATE-SPACE REALIZATIONS

Consider a nonlinear discrete system S represented by
the Nonlinear AutoRegressive eXogenous (NARX) difference
equation:

y[k] = ϕ(u[k − 1], . . . , u[k − n], y[k − 1],⋯, y[k − n]) (1)

where n is the order of the system, {u[k − i]} ∈ Rn and
{y[k− i]} ∈ Rn are respectively the n past values of the input
and the output of the system, and ϕ(⋅) is a continuous function
in R.

Assumption 1 We assume that either ∂ϕ
∂u

or ∂ϕ
∂y

is different
from zero.

If the system (1) respects the conditions of controllability
and observability, then (1) admits a state representation in the
form :

x[k + 1] = f(u[k],x[k])
y[k] = h(x[k])

(2)

where x is the state vector, and f(⋅, ⋅), h(⋅) are smooth (C∞)
functions.
Through the rest of the paper, the term ”realization” means
the transformation of the input/output model (1) into an
equivalent state space representation such as (2).

Problem Statement: Given the input and output data from
simple experiments, with input pulses, the goal is to extract
the time-delay and construct a state-space representation such
as (2).

In the rest of this section we formulate the input-output
map that generate the dynamic of the system, next we extract
the minimal state-space realization that is observable and
controllable.
Indeed, the concept of observability and controllability is dual
in the sense that a realization M is observable if and only if
the dual M−1 is controllable and vice versa A realization M is
observable if the observability matrix O(M) is full rank, then
we can always reconstruct the initial state x(0) from observing
the evolution of the output. A realization is controllable if
the controllability matrix C(M)is full rank, so for any initial
state it is always possible to construct a sequence of input that
conducts the system to the desired output.
Before formulating the realization structure, we first examine
the input-output variables of the equation (1). We start by
defining the variable blocs y,u,v as following

Notation 1
y(t) = (y(t), y(t + 1),⋯, y(t +m − 1))
u(t) = (u(t), u(t + 1),⋯, u(t +m − 1))
v(t) = (u(t +m), u(t +m + 1),⋯, u(t + 2m − 1))

Notation 2
y(t −m) = (y1,⋯, ym) , for yi = y(t −m + i − 1)
u(t −m) = (u1,⋯, um) , for ui = u(t −m + i − 1)
v(t) = (v1,⋯, vm) , for vi = u(t +m + i − 1)

Using these notations, a step response realization can be
constructed from model (1) by evaluating
y[t], y[t + 1], . . . , y[t + n − 1), recursively in term of
y[t − 1], . . . , y[t − n], u[t − 1], . . . , u[t + n − 1].
we obtain,
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(t)
y(t + 1)
y(t + 2)
⋮

y(t + n − 2)
y(t + n − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕ(u1 ⋯ un y1 ⋯ yn)
ϕ(u2 ⋯ v1 y2 ⋯ yn+1)
ϕ(u3 ⋯ v2 y3 ⋯ yn+2)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ϕ(un−1 ⋯ vn−2 yn−1 ⋯ y2n−2)
ϕ(un ⋯ vn−1 yn ⋯ y2n−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=Φ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1 ⋯ un y1 ⋯ yn
u2 ⋯ v1 y2 ⋯ yn+1
u3 ⋯ v2 y3 ⋯ yn+2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

un−1 ⋯ vn−2 yn−1 ⋯ y2n−2
un ⋯ vn−1 yn ⋯ y2n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

Which is equivalent to the following bloc input/output map
equation:

y(t) = Φ(u(t −m),y(t −m),v(t)) (4)

where Φ = [ϕ1, ϕ2, . . . , ϕn]T represents the bloc input-output
map of the system composed of n partial function ϕi(u,y,v)
defined in (3) by:

ϕ1(u,y,v) = ϕ(u1,⋯, un, y1,⋯, yn)
ϕ2(u,y,v) = ϕ(u2,⋯, un, y2,⋯, yn, ϕ1, v1)

⋮
ϕi(u,y,v) = ϕ(ui,⋯, un, yi,⋯, yn, ϕ1,⋯, ϕi−1,

v1,⋯, vi−1)
ϕn(u,y,v) = ϕ(un, yn, ϕ1,⋯, ϕn−1, v1,⋯, vn−1)

The realization Φ(u,y,v) was studied largely in many paper
[sadagh] to give the necessary an sufficient conditions that
guaranteed the observability of the function Φ(u,y,v), and
consequently the minimal representation of the matrix:

M=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 ⋯ un y1 ⋯ yn
u2 ⋯ v1 y2 ⋯ yn+1
u3 ⋯ v2 y3 ⋯ yn+2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

un−1 ⋯ vn−2 yn−1 ⋯ y2n−2
un ⋯ vn−1 yn ⋯ y2n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

This form of M that is not necessary controllable, is the
product of extended observability matrix and extended con-
trollability matrix.
The generalization of Assumption 1 gives ∂Φ

∂y or ∂Φ
∂u is

different from zero, and using the implicit theorem it can seen
that Φ(u,y,v) is a local diffeomorphism with respect to y.
That is, there exist locally a smooth function Φ−1y , such that
y = Φ−1y (u,x,v)⇒ x = Φ(u,y,v) for any constant v.
Taking the partial derivative of x = Φ(u,Φ−1y (u,x,v),v) with
respect to u. This results that

DuΦ
−1
y (u,x,v) = [Dy(Φ(u,y,v))]−1Du(Φ(u,y,v)) (6)

which is independent of the third variable v.
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Definition 1 : A realization Φ(u, y, v) is minimal if and only
if it is controllable and observable.

Hypothesis 1 : A realization Φ(u, y, v) is minimal if the
differential DxΦ(u, y, v) with respect to the y and u, are upper
triangular matrices independent of the variable v having the
form:

Dy(Φ(u, y, v)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂ϕ1/∂y1 ∂ϕ1/∂y2 ⋯ ∂ϕ1/∂yn
0 ∂ϕ2/∂y1 ⋯ ∂ϕ2/∂yn−1
0 0 ⋱ ⋮
0 0 0 ∂ϕn/∂y1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Du(Φ(u, y, v)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂ϕ1/∂u1 ∂ϕ1/∂u2 ⋯ ∂ϕ1/∂un

0 ∂ϕ2/∂u1 ⋯ ∂ϕ2/∂un−1

0 0 ⋱ ⋮
0 0 0 ∂ϕn/∂u1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(8)

And the matrix R = [Dy(Φ)]−1Du(Φ) is also independent
of v.

Note that matrix R play a key role on determining the
realizability conditions.
R has always an upper structure in the form:

R(u,y,v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ϕ1/∂u1

∂ϕ1/∂y1
r1,2 ⋯ r1,n

0 ∂ϕ2/∂u1

∂ϕ2/∂y1
⋱ r2,n−1

0 0 ⋱ ⋮
0 0 0 ∂ϕn/∂u1

∂ϕn/∂y1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

and the terms ri,j are given by

ri,j =

∂ϕi

∂uj
−

j

∑
p=2

∂ϕi

∂yp
r(i+p−1,j−p+1)

∂ϕi

∂u1

(10)

In the case of a linear system y[t] = ∑n
i=1 aiy[t − i] +

∑n
i=1 biu[t − i], for all i the matrix R can be expressed in

term of the coefficients of the input-output map as.

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 ⋯ an
0 a1 ⋱ an−1
⋮ ⋱ ⋱ ⋮
0 0 ⋯ a1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1 b2 ⋯ bn
0 b1 ⋱ bn−1
⋮ ⋱ ⋱ ⋮
0 0 ⋯ b1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Using the upper structure of matrices (7) (8) (9), we arrive
at the following structure of the input-output bloc realization.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1 u2 ⋯ un y1 y2 ⋯ yn
0 u2 ⋱ un 0 y2 ⋱ yn
0 0 ⋱ ⋮ 0 0 ⋱ ⋮
0 0 0 un 0 0 0 yn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(12)

The general form of the input-output bloc realization is given
by

M̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1 ⋯ u1+d y1+d ⋯ y1+q
u2 . . . u2+d y2+d . . . y2+q
. . . . . . . . . . . . . . . . . .
un−q ⋯ un−q+d yn−q+d . . . yn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(13)

for q = 0,1, . . . , n − 1 and d = 0,1, . . . , q

And the dynamical input-output map Φ(u,y,v) is given by

Φ(u,y,v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1(u1 ⋯ u1+d y1+d ⋯ y1+(q+1))
ϕ2(u2 . . . u2+d y2+d . . . y2+(q+1))
. . . . . . . . . . . . . . . . . .

ϕi(ui . . . ui+d yi+d . . . yi+(q+1))
. . . . . . . . . . . . . . . . . .

ϕn−q(un−q ⋯ un−q+d yn−q+d . . . yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(14)

That correspond to a realizable input-output model in the form

y[t] =ϕ(u1, . . . , un, y1, . . . , yn) =
n−q

∑
i=1

ϕi (15)

The realizable analytic form of the model is given by

y[t] =[n−q−1∑
i=1

ϕi(ui,⋯, ui+d, yi+d,⋯, yi+q+1)]
+ ϕn−q(un−q,⋯, un−q+d, yn−q+d,⋯, yn)

(16)

The state vector [10] is given by

x1 = y[k]
⋮
xq−d+1 = y[k + q − d]
xq−d+2 = y1[k + q − d + 1)
⋮
xn−p = yn−q−1[k + n − d − 1]
xn−p+1 = u[k − d]
⋮
xn = u[k − 1]

(17)

with,

yj[k +m] =
m−q−j−1

∑
i=0

ϕi(y[k + d + i], . . . , y[k + q + i + 1],

u[k + i], . . . , u[k + d + i])
j = 1, . . . ,m − q − 1

(18)
The state equations are obtained from the state vector as the

following

x+1 = x2

⋮
x+q−d = xq−d+1

x+q−d+1 = xq−d+2 + ϕn−q(u,x1,⋯, xq−d+1, xn−d+1,⋯, xn)
x+q−d+2 = xq−d+3 + ϕn−q+1(u,x1,⋯, xq−d+1, xn−d+1, x

+

n−d+1,⋯, xn)
⋮
x+n−d−1 = xn−d + ϕ2(u,x1,⋯, xq−d+1, x

+

q−d+1, xn−d+1,⋯, xn)
x+n−d = ϕ1(u,x1, , xq−d+1, x

+

q−d+1, xn−d+1, , xn)
x+n−d+1 = xn−d+2

⋮
x+n = u
y = x1

(19)
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State-space representation is an important property of the
control system, which provides a convenient and compact
way for its further modelling and analysis.

The construction of the state space model needs the iden-
tification of functions ϕi which are separated in time and
causes complexity when using standard identification toolbox
like Matlab.
In this paper, we propose a modular neural networks as
a solution to identify the state variables based on i/o data
measurements taken from the real non-linear system.

III. MODULAR NEURAL NETWORKS STATE-SPACE
IDENTIFICATION

The theory of realization presented in the last section was
adopted to design the adequate Neural networks that represent
the state space model based on the sub-class i/o model (16).
By using a neural network with restricted connectivity struc-
ture, the structure of the NN state space model is depicted in
Fig. 1 where each sub-NN represent a state variable of the
system.

Fig. 1. Modular Neural-Network state space model

The output of the system is given by

y[t] =[n−q−1∑
i=1

Cifi(W [ui,⋯, ui+d, yi+d,⋯, yi+q+1]T)]
+Cn−q fn−q(W [un−q,⋯, un−q+d, yn−q+d,⋯, yn]T)
=∑ϕi

(20)

Where Wi, Ci are input and output matrices of the synaptic
weights of the i-th module, and fi(x) = 1/(1 + e)−x is an
activation function of the ith sublayer neurons. Each module
is chosen to have the same dimension as the whole network.
The training is done in parallel using the well known
Levenberg-Marquardt (LM) algorithm.
The main advantage of this structure is that state equations
can be directly written down from the NN-model without any
additional computations. The resulted State space equations

are given by

x+1 = x2

⋮

x+q−d = xq−d+1

x+q−d+1 = xq−d+2 +Cn−q(Wn−q[u,x1,⋯, xq−d+1, xn−d+1,⋯, xn]
T
)

x+q−d+2 = xq−d+3+

+Cn−q+1(Wn−q+1[u,x1,⋯, xq−d+1, xn−d+1, x
+

n−d+1,⋯, xn]
T
)

⋮

x+n−d−1 = xn−d +C2(W2[u,x1,⋯, xq−d+1, x
+

q−d+1, xn−d+1,⋯, xn]
T
)

x+n−d = C1(W1[u,x1, , xq−d+1, x
+

q−d+1, xn−d+1, , xn]
T
)

x+n−d+1 = xn−d+2

⋮

x+n = u

y = x1

(21)

IV. REALIZATION OF AN HYDRAULIC NON-LINEAR
SYSTEM

The system considered in this paper is represented in
figure2 , it is composed of an hydraulic tank with a pressure
accumulator and a water flow.
The physical parameters of the system are:
H1 = Height of the water in the tank
H2 = Height of the water in the accumulator
P1 = Pressure in the tank
P2 = Pressure in the accumulator
A1 = Cross sectional area of the tank
A2 = Cross sectional area of the accumulator
R1 = Fluid resistor between the tank and the accumulator
R2 = Fluid resistor between the accumulator and the outside
k = Spring constant of the spring in the accumulator
u = Input volumetric flow rate of the hot water
uc = Input volumetric flow rate of the cold water
Q1 = Volumetric flow rate across the first fluid resistor
Q2 = Volumetric flow rate across the second fluid resistor
Th = Temperature of the input hot water
Tc = Temperature of the input cold water
T = Temperature of the water in the tank
ρ = Density of the water
g=Acceleration of gravity

The system is assumed to be three dimension where the state
space variables x1,x2 and x3 represent the internal parameters
T , P1 and P2 respectively; And the output is the temperature
T .
The identification dataset is extracted from the following
differential state equations given in [11].

ẋ1 =
ρg

A1x2
(uTh + ucTc − x1(u + uc))

ẋ2 =
ρg

A1
(u + uc −

x2 − x3

R1
)

ẋ3 = (
ρg

A2
+ k

A2
2
)(x2 − x3

R1
− x3

R2
)

y = x1

(22)
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Fig. 2. Hydraulic non linear system

The input was chosen to be composed of the sum of four
sine waves of different frequencies, 3, 4, 6, and 9. Each of
the sine waves had a bias of 1 (i.e. mean value was 1) and
the sum of the sine waves was multiplied by 0.005 to result
in the mean value of the input to be 0.02m3/s. Plots of the
input and the corresponding output are depicted respectively
in figures (3, 4 , 5 and 10) .

Fig. 3. Input of the system used for identification

Fig. 4. Output Temperature of the Tank used for identification

Fig. 5. Tank Pressure used for identification

Fig. 6. Accumulator Pressure used for identification

A. Identification of state state space model

To identify the state space variables of the system, we apply
the theory of realization presented in section 3.
For that, we start by constructing the structure of the canonical
state space model based on the model (16), we get the
following state model taking p = q = 0.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1( u1 u2 u3 )
y1 y2 y3

ϕ2( u2 u3 )
y2 y3

ϕ3( u3 )
y3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1(u1, y1, y2)

ϕ2(u2, y2, y3)

ϕ3(u3, y3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

The corresponding Modular Neural Networks is given in
Figure 7, the learning data set is composed of 2000 samples
divided into three groups: 50% for leaning, 25% for validation
and 25% for testing. We use the Marquart-Levenburg algo-
rithm to approximate the partial functions ϕi.

ϕ1(u1, y1, y2) = C1f1(W1[u1, y1, y2]T )
ϕ2(u2, y2, y3) = C2f2(W2[u2, y2, y3]T )

ϕ3(u3, y3) = C3f3(W3[u3, y3]T )
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After learning the model parameters, the state space model is
straightforward using (21) as the following

x1 = y(t)
x+1 = x2 + ϕ3(u,x1)
x+2 = x3 + ϕ2(u,x1, x

+

1)
x+3 = ϕ1(u,x1, x

+

1)

The output of the actual system as well as the realized state-
space model are shown on Fig.8, Fig.9, and Fig.10.

Fig. 7. Three Dimension Modular Neural-Network state space model

Fig. 8. Realized state space x1 vs the real x1

Fig. 9. Realized state space x2 vs the real x2

V. CONCLUSION

The problem of identification and transforming of I/O
models into state space equations is a challenge for many
researchers. In this paper, we presented the mathematical
background of this theory and formulated the necessary and

Fig. 10. Realized state space x3 vs the real x3

sufficient conditions that, when respected, one can transform
an input/output model to a state space representation when it
is possible. To evaluate the performance of this approach, we
used a nonlinear hydraulic system represented by a dataset of
input/output to extract the equivalent state space model.
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