Numerical Investigation of Void Fraction Distribution for Comparative Analysis of Flow Patterns Repartition in Thermal Driven Bubble Pumps

R. Garma, D. Sioud, Y. Stiriba, M. Bourouis, A. Bellagi

National Engineering School of Monastir, Unit of Thermic and Thermodynamics of the Industrial Processes, Ibn El Jazzar street, 5019 Monastir, Tunisia

raoudha.garma83@gmail.com
siouddoniazed@gmail.com
a.bellagi@enim.rnu.tn

Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans No. 26, 43007 Tarragona, Spain
youssef.stiriba@urv.cat
mahmoud.bourouis@urv.cat

Abstract — Bubble pump, one of the most important component in the diffusion absorption machine, is used for the circulation of the liquid mixture and has a considerable influence on its performances. In the present paper, numerical simulation of the heating repartition effect on the boiling flow in this component is performed with the commercial CFD package ANSYS-FLUENT 12.0. Eulerian multiphase flow framework is used to model the phases' interactions. User-Defined Functions (UDFs) are provided to compute the wall heat transfer and to calculate the inter-phase heat and mass transfer. Heat is supplied at the wall of the pump tube. Full and partial pipe heating are considered to examine two different configurations of the bubble pump. Pure water is used as working fluid. The void fraction distribution is calculated in order to localize the onset of vapor generation and to predict the flow patterns throughout the tube length.

Keywords — Bubble pump configuration, Tube heating, Boiling flow, Void fraction, Flow patterns, CFD Simulation

I. INTRODUCTION

Several advantageous characteristics such as the absence of mechanical moving part, causing vibration and noise, and the possibility to operate with waste heat or solar energy, attracted the attention of researchers to experimental and numerical investigations of diffusion absorption refrigerators (DARs) invented by Platen and Munters [1] in the 1920s. In these absorption systems, the bubble pump is an essential component. Therefore, significant attention has been devoted to this device to improve its performance, which would contribute to the performance of the whole system. The thermally driven bubble pump is a simple vertical tube which can be powered by heat from any source (electricity, burner, waste heat, solar energy). When the liquid solution is heated up, vapor bubbles are generated causing pressure difference between the bottom and the top of the tube. As a result, natural circulation of the liquid solution is occurring through the tube and so boiling flow takes place inside the bubble pump. Zohar et al.[2] developed and analyzed by computer simulation a detailed thermodynamic model for three generator and bubble pump configurations of a DAR to study their effect on the system performance. A mathematical model for the forced convective boiling of refrigerant-absorbent mixtures in vertical tubular generator is proposed by Pasupathy et al. [3]. A parametric analysis has been performed to study the effect of various factors on the performance of the generator. Two-fluid model is employed by Ma et al. [4] to describe the two-phase flow and heat transfer processes in a two-phase closed thermosyphon. Numerically predicted flow patterns and distribution of parameters under different conditions show a good agreement with experimental results. Taieb et al. [5,6] tested the pumping capacity of bubble pumps by using Behringer correlation (cited in Ref. [7]). Uniformly heated bubble pump configuration was numerically investigated by Garma et al. [8,9] using the commercial CFD package ANSYS-FLUENT. It was found that the onset boiling point is reduced and the void fraction at tube’s outlet is increased when the wall heat input is increased. An experimental investigation of an air-cooled diffusion-absorption machine operating with a binary light hydrocarbon mixture is presented by Ben Ezzine et al. [10]. A new concept of generator consisting in a separated boiler and bubble pump instead of the usual combined generator is tested. The experimental results show that the bubble pump exiting temperature as well as those of the major components of the machine is very sensitive to the heat input to the bubble pump. Experimental study and theoretical thermodynamic study...
The momentum conservation equation for \(\dot{\mathbf{v}} = \dot{\mathbf{v}}^{} \) and \(\dot{\mathbf{v}}^{} \) gives:

\[
\dot{\mathbf{v}} = \dot{\mathbf{v}}^{} + \frac{1}{\rho} \mathbf{F}_{\text{lbf/ft}} - \mathbf{F}_{\text{Lift,}\text{a}} - \mathbf{g}
\]

where \(\mathbf{F}_{\text{lbf/ft}} \) is an interaction force between phases, \(\mathbf{F}_{\text{Lift,}\text{a}} \) is an external body force, \(\mathbf{g} \) is the gravitational acceleration vector.

The energy conservation equation for \(q \) phase is given by:

\[
\frac{\partial}{\partial t} \left(\sum_{p=1}^{n} \rho_a q_a \right) + \nabla \cdot \left(\sum_{p=1}^{n} \rho_a q_a \dot{v}_a \right) = -\sum_{p=1}^{n} \rho_a q_a \dot{v}_a + \sum_{p=1}^{n} \left(\nabla q_a \cdot \mathbf{v}_a - \nabla \cdot \mathbf{q}_a \right) + \sum_{p=1}^{n} \left(Q_{pq} + m_{pq} h_{pq} \right)
\]

where \(\dot{\mathbf{v}} \) is the stress-strain tensor, \(\mathbf{F}_{pq} \) is an interaction force between phases, \(\dot{\mathbf{v}}^{} \) is an external body force, \(\mathbf{F}_{\text{Lift,}\text{a}} \) is a lift-force, \(\dot{\mathbf{v}}_{\text{Lift,}\text{a}} = \mathbf{F}_{\text{Lift,}\text{a}} \) is a virtual mass force, \(p \) is the pressure shared by all phases, and \(\mathbf{g} \) is the gravitational acceleration vector.

The conservation equations are written for each phase, liquid and secondary phase (vapor bubble), \(\alpha \) and then applied in CFD codes to be finally implemented in ANSYS-FLUENT.
C. Momentum equation

The interfacial drag force between liquid and vapor phases per unit volume is calculated as:
\[R_f = 0.75 C_d \rho_v a_v v_r \] \[\frac{d}{d_v} \] (10)
where \(C_d \) is the drag coefficient determined by choosing the minimum of the viscous regime \(C_d^{vis} \) and the distorted regime \(C_d^{dis} \).
\[C_d = \min \left(C_d^{vis}, C_d^{dis} \right) \] (11)

The lift coefficient is calculated as (Moraga et al. [24]):
\[C_l = \begin{cases} 0.0767, & \varphi \leq 6000 \\ 0.12 - 0.2 \exp \left(\frac{-\varphi}{36000} \right) \exp \left(\frac{\varphi}{3e7} \right), & 6000 \leq \varphi \leq 190000 \\ -0.002, & \varphi \geq 190000 \end{cases} \] (12)
where \(\varphi = Re_b Re_v \).

This lift coefficient combines the opposing action of two lift forces:
- Classical aerodynamic lift force resulting from the interaction between bubble and liquid shear.
- Lateral force resulting from the interaction between bubble and vortices shed by the bubble wake.

Here, \(Re_b = \frac{d_b \varphi}{v} \) is the bubble Reynolds number and \(Re_v = \frac{d_v \varphi}{v} \) is the bubble shear Reynolds number.

D. Turbulence model

The mixture turbulence model, default multiphase turbulence model, was used. It represents the first extension of the single-phase k-\(\varepsilon \) model. In the present case, using mixture properties and mixture velocities is sufficient to capture important features of the turbulent flow. The equations describing this model are respectively:
\[\frac{\partial}{\partial t} (\rho_m k) + \nabla \cdot (\rho_m v_m k) = -\nabla \cdot \left(\frac{\mu_m}{\rho_k} \nabla k \right) + G_{k,m} - \rho_m \varepsilon + S_k \] (13)
\[\frac{\partial}{\partial t} (\rho_m \varepsilon) + \nabla \cdot (\rho_m v_m \varepsilon) = -\nabla \cdot \left(\frac{\mu_m}{\rho_k} \nabla \varepsilon \right) + \] \[\frac{\varepsilon}{k} (C_{1k} G_{k,m} - C_{2k} \rho_m \varepsilon) + S_\varepsilon \] (14)

where \(\rho_m \) and \(v_m \) are the mixture density and velocity, \(\mu_m \) is the turbulent viscosity, \(G_{k,m} \) is the production rate of turbulence kinetic energy, \(k \) is the turbulent kinetic energy, \(\varepsilon \) is the dissipation rate. \(C_{1k} \) and \(C_{2k} \) are constants.

This model contains two additional terms describing additional bubble stirring and dissipation. \(S_k \) is the bubble-induced turbulence in the turbulent kinetic energy equation and \(S_\varepsilon \) the bubble-induced dissipation in the dissipation rate equation:
\[S_k = 0.75 C_d \rho_v a_v v_r \] \[\frac{d}{d_v} \] (15)
\[S_\varepsilon = S_{e3} \frac{3}{d_v} \] (16)
with \(C_{e3} = 0.45 \)

The turbulent diffusion force is calculated as [23]:
\[\nabla \cdot \left(\rho \nu \nabla \right) = -\nabla q + q \varepsilon \] (17)
with \(C_{TD} \) being the turbulent dispersion coefficient \(C_{TD} = 1 \). This force simulates liquid turbulence induced diffusion of bubbles from the wall into the liquid bulk.

E. Wall boiling model

According to the basic Rensselaer Polytechnic Institute (RPI) model [22], the total heat flux from the wall to nucleate boiling consists of three different components, namely the convective heat flux, the quenching heat flux, and the evaporative heat flux:
\[q_W = q_C + q_Q + q_E \] (18)

The heated wall surface is subdivided into a portion \(\Omega \) (0\(\leq \Omega \leq 1 \)) covered by nucleating bubbles and the rest of the surface area (1-\(\Omega \)), is covered by the liquid.

- The convective heat flux is expressed as:
\[q_C = h_c (1 - \Omega) (T_w - T) \] (19)
where \(h_c \) is the single phase heat transfer coefficient, and \(T_w \) and \(T \) are the wall and liquid temperatures, respectively.

- The quenching heat flux models the cyclic averaged transient energy transfer related to liquid filling the wall vicinity after bubble detachment, and is expressed as:
\[q_Q = 2 \Omega \left(\frac{f \Delta \rho}{C_p} \right)^0.5 \left(T_w - T \right) \] (20)

where \(f \) is the bubble departure frequency, \(\lambda \), the thermal conductivity, \(C_p \), the specific heat, and \(\rho \), the density.

- The evaporative flux is given by:
\[q_E = \frac{\pi \lambda}{6} d_{bw} \rho_v N_a L \] (21)

Where \(d_{bw} \) is the bubble departure diameter, \(\rho_v \), the vapor density, \(N_a \), the active nucleate site density. These equations need closure for wall boiling parameters:

1) Bubble Departure Diameter: The default bubble departure diameter (mm) for the RPI model is based on empirical correlations and is estimated as:
\[d_{bw} = \min \left(0.0014, 0.0006 \exp \left(\frac{T_{sub}}{45} \right) \right) \] (22)
with \(T_{sub} = T_{sat} - T_\ell \) the sub-cooling temperature.

2) Nucleate Site Density: The nucleate site density is represented by a correlation [24] based on the wall superheat \((T_w - T_{sat}) \) as follow:
\[N_a = \left(\frac{200 (T_w - T_{sub})}{4.8} \right)^{3.8} \] (23)
3) Frequency of Bubble Departure: The bubble departure frequency is calculated as:

\[f = \left[\frac{4g}{3 \rho \gamma _{lv}} \right]^{0.5} \]

(24)

4) Area density:
The effective wall area occupied by boiling sites definition is based on the departure diameter and the nucleate site density:

\[\Omega = \min \left(1, 3 \frac{\pi d_{bw}^2}{N_dK} \right) \]

(25)

Where \(K = 4.8 \exp \left(-J_{\text{sub}}/80\right) \), and \(J_{\text{sub}} = \frac{(\rho L C_p T_{\text{sat}})}{\rho L} \) is the Jacob number [25].

5) Bubble diameter
The bubble diameter in the free stream is correlated with the local sub-cooling temperature \(T_{\text{sub}} = T_{\text{sat}} - T_1 \):

\[d_v = \begin{cases} 1.5 \times 10^{-4}, & T_{\text{sub}} > 13.5K \\ 1.5 \times 10^{-3}, & 0 < T_{\text{sub}} < 13.5K \\ 1.5 \times 10^{-3}, & T_{\text{sub}} < 0 \end{cases} \]

(26)

III. CFD MODELLING

Mathematical model utilized in this paper was developed and then applied in CFD codes to be finally implemented in ANSYS-FLUENT via user-defined functions (UDFs) in conjunction with the Eulerian multiphase model in which the conservation equations are written for each phase, liquid and vapor [8,9].

The commercial CFD code ANSYS-FLUENT 12.0 [26] is used to perform the simulations. The interfacial forces models and the wall boiling model described previously were implemented in the code through User-Defined Functions (UDFs). The stainless-steel made vertical tube is 1m in length and 10 mm in diameter. Wall thickness is fixed to 2 mm. The sub-cooled water enters the system at the bottom, and then boils due to the constant heat flux supplied from the pipe walls.

A. Mesh geometry
The geometry used for problem formulation was two-dimensional axi-symmetric. Quadrilateral computational mesh is recommend for Eulerian multiphase model [27]. We started first to find the best computational meshes, Figure 1 shows the adopted grid consisting uniform rectangular cells.

B. Initial and Boundary conditions
Bubble pump saturation temperature is fixed to 425.15 K corresponding to the operating pressure of the machine. Fixed sub-cooling temperature \((T_{\text{sub}} = 5K) \) and fully-developed profile of velocity are applied at the inlet (no vapor at the inlet \(\alpha = 0 \)). No-slip conditions on the tube wall. Liquid-vapor mixture leaves the tube at the saturation temperature. Heat Flux are specified at the external wall. The effect of the heat distribution is investigated for various heating rates ranging between 628 and 1728 W. At the interface wall-liquid, the UDFs was used to specify heat flux and heat transfer coefficient. Symmetry is used at the centreline axis.

C. Solution techniques
Unsteady state calculations with a time step of 0.1s were performed for all cases. SIMPLE algorithm was applied for the calculations of the pressure velocity-coupling with first order upwind calculation scheme for the discretization of momentum, energy and volume fraction equations.

IV. NUMERICAL MODEL VALIDATION
To examine the validity of the mathematical model, using ANSYS-FLUENT, the numerical predictions are compared [27, 28, 29] with the experimental data of Bartolomei and Chanturiya [30]. Braz Filho [27] proved that ANSYS-FLUENT code results are in reasonable agreement with the experimental data for void fraction and in excellent agreement for inner wall temperature evolution versus the fluid enthalpy, figure 2.

![Fig. 2 Model validation :Void fraction and wall temperature vs. Enthalpy [27]](image-url)
The predictions of axial distribution of average void fraction along the tube length [28] show an excellent agreement with experiments, figure 3.

VI. RESULTS AND DISCUSSION

A. Effect of heating configuration on void fraction profiles

Figures 6 and 7 depict the effect of the heat inputs on the void fraction profiles along the bubble pump for various heat inputs from 628 to 1728 W respectively for test 1 (Uniformly heated tube) and test 2 (partially heated tube).

One can see in the two cases that the higher the heat is, the lower is the start up of boiling and the higher is the void fraction. In fact, when the heat input is increased from 628 W to 1728 W, the onset boiling length is reduced from 96 to 15 cm for uniformly heated pipe and from 5 to 1.5 cm for the partially heated one. Here, one can obviously remark how greatly this parameter is sensitive to the heating repartition. Actually, for the same heat input, 628 W, boiling starts at 96 cm in the first heating model (test1) and at 15 cm in the second one (test2) which can be explained by the higher heat density in the bottom of the tube; which have a great impact on the performances of the bubble pump, flow regime repartition, liquid vapour velocities arrangement and temperature profiles [31, 32].
On the other hand, the void fraction at the tube outlet is increased from 0.001 to 0.39 and from 0.22 to 0.58 respectively for the totally heated tube and the partially heated tube. One also can observe, as illustrated in figure 8, that for the first heating model the void fraction increases slightly over the whole tube length \([8, 9]\), attains a value of 0.016 at \(z = 30\) cm and a maximum of 0.39 at the tube outlet for \(\Phi_{\text{tot}} = 1728\) W.

This behavior is completely different from that of the second heating model. In fact, for this case (test 2) the void fraction rises sharply, reaches a value in the order of 0.42 at the outlet of the heated zone (\(z = 30\) cm) and then increases slightly over the remaining length of the tube to attain a maximum of 0.58 at the outlet. The same remark can be observed for the other heat inputs as shown in figure 9.

B. Identification of different flow regimes in the bubble pump

In this section the void fraction is used to predict the flow regime repartition in the thermally driven bubble pumps. As it was previously reported, the critical void fraction for bubbly-to-slug, slug-to-churn and churn-to-annular transition are respectively 0.3, 0.52, and 0.8. Figures 9 and 10 show the flow patterns limit for different heating distribution and heat fluxes. Specially, the heating repartition effect can be remarked.

Tables I recapitulate the length of the zone occupied by different flow regimes along the bubble pump for each heating configuration and various tested heating power. One can remark that as we reduce the heating power, the slug zone length is reduced to disappear completely at low heat input for partially heated tube (test2). In fact, it is reduced from 69 cm to 20 cm when the heat input reduced from 1257 to 785 W before totally disappearing for 628 W. Nevertheless, the bubbly flow regime occupies the hall tube length for all previous heat input ranging from 785 to 1257 W when the pump is uniformly heated (test1).

The same table show that increasing heat input from 1414 W to 1728 W decreases the slug zone length from 63 cm to 43 cm in favour of the churn flow zone which increases from 10 to 35 cm in case of the partial heating configuration. As regards the uniformly heated configuration, the slug flow...
zone length varies from 0 to 14 cm to occupy part the bubbly flow zone for the same variation of heat input to the bubble pump, namely from 1414 to 1728W.

VII. CONCLUSION

Numerical simulation of the heating distribution effect on the boiling flow of water in vertical tube was carried out with the commercial CFD package ANSYS-FLUENT. User defined Functions (UDFs) are employed to model the boiling phenomena. Void fraction distributions are calculated, discussed and then flow patterns throughout the tube length are predicted. It was found that the void fraction is higher when heating partially the wall. Flow regimes repartitions are identified referring to the void fraction variation along the tube. It was found that the void fraction at the tube outlet is higher for the partially heated tube then the totally heated tube. Moreover, when the heating power, is increased for the partially heated tube, the slug flow zone length first increases and then decreases in favour of the churn flow regime.

| TABLE I |
|-----------------|-----------------|-----------------|
| Heating at 628W | Zone regime length (m) | Bubbly 0 Slug 0 Churn 0 |
| Test 1 | 1 0 0 |
| Test 2 | 1 0 0 |
| Heating at 785W | Zone regime length (m) | Bubbly 0 Slug 0 Churn 0 |
| Test 1 | 1 0 0 |
| Test 2 | 0.80 0.20 0 |
| Heating at 943W | Zone regime length (m) | Bubbly 0 Slug 0 Churn 0 |
| Test 1 | 1 0 0 |
| Test 2 | 0.59 0.41 0 |
| Heating at 1100W | Zone regime length (m) | Bubbly 0 Slug 0 Churn 0 |
| Test 1 | 1 0 0 |
| Test 2 | 0.42 0.58 0 |
| Heating at 1257W | Zone regime length (m) | Bubbly 0 Slug 0 Churn 0 |
| Test 1 | 1 0 0 |
| Test 2 | 0.31 0.69 0 |
| Heating at 1414W | Zone regime length (m) | Bubbly 0 Slug 0 Churn 0 |
| Test 1 | 1 0 0 |
| Test 2 | 0.27 0.63 0.1 |
| Heating at 1571W | Zone regime length (m) | Bubbly 0 Slug 0 Churn 0 |
| Test 1 | 0.94 0.06 0 |
| Test 2 | 0.244 0.536 0.22 |
| Heating at 1728W | Zone regime length (m) | Bubbly 0 Slug 0 Churn 0 |
| Test 1 | 0.86 0.14 0 |
| Test 2 | 0.22 0.43 0.35 |

VIII. REFERENCES

[29] Fluent Tutorial: Modeling Nucleate Boiling Using FLUENT.

