
International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)
Proceedings - Copyright IPCO-2014, pp.164-170
ISSN 2356-5608

Effects of Churn on Structured P2P Overlay

Networks

Zied Trifa
a
, Maher Khemakhem

b

a
Department of Computer Science, University of Sfax, Tunisia

b
College of Computing and Information Technology, University of King Abdulaziz, Saudi Arabia

a
trifa.zied@gmail.com,

b
maher.khemakhem@fsegs.rnu.tn

Abstract— As structured p2p systems becomes largely

deployed, the size of the network becomes large enough that any

kind of churn has a significant influence on the performance of

such overlay. In structured p2p systems, peers create interactive

link with other peers called neighbours that both depend on and

influence each other. While peers trust each other’s to delivers

services, the network effects exerted from peer to peer

interactions remain virtually unexplored. This paper focuses on

peer churn, where a significant number of peers join and leave

the overlay frequently in a short time interval. The effects of such

problem remain widely ignored yet may play a vital role in

protection of such overlay. The direction and strength of this

effect are evaluated experimentally on Chord and Kademlia

protocol by measurement the set of metrics that describe the

performance attributes such as efficiency, stability and

scalability.

Keywords— structured P2P overlay networks; churn;

measurement; performance.

I. INTRODUCTION

Structured p2p systems, based on distributed hash table
(DHT) such as Chord [1] and Kademlia [2], have the potential
to harness huge amount of resource shared by peers having
high connectivity. Unfortunately, it has been shown that most
of these DHT systems suffer from a large fraction of churner
peers, who refers to the effect of independent join and leave of
a large fraction of peers in short interval time.

The problem of churn, or the independent arrival and
departure of participating peer, is a problem facing almost p2p
networks. This phenomena is a major source of breaking down
the overlay structure, because it is generally much more
difficult to notify neighbours to restructure the overlay
topology. Thus, causing stale neighbour pointers or data lose.
Each instance of join or leave a network causes the protocol to
rebalance its keys and the data among the present peers, which
generate a considerable traffic load and degrades the
performance of the system. Therefore, it is important to
understand the effects of churn on the performance of such
systems characterized by high dynamicity and decentralized
nature.

In structured p2p overlay networks, there is no barrier to
join or leave the network. Peers can join or leave the network
whenever they want. A peer joins the network when a
participant starts the application and leaves when the
participant exits. Although, such systems have to deal with

churn problem. We define churn as the change in the set of
nodes in the networks due to joins, friendly leaves or node
failures. Join is such a condition that nodes join the network
one by one or leave gracefully by informing their neighbour to
restructure the overlay topology and save objects. However, a
node failure is such a condition that large percent of nodes join
or silently leave the network simultaneously and frequently [3].
This failure damages the structure and affects the performance
of the overlay.

In this paper we evaluate the impact of churn on the
performance of Chord protocol as the most cited structured p2p
overlay and Kademlia protocol as the most deployed one. The
evaluation of such overlays is commonly done using defined
scenarios and a set of metrics such as the number of hops, the
response time, the number of requests and the success rate.

The rest of the paper is organized as follows. Section II
reviews the related works. In section III, we provide
background information on Chord and Kademlia as DHT
systems. Also, we introduce the problems of churn. Section IV
describes the set of metrics and scenarios used in our
measurement. In Section V, we give details analysis about the
results of our measurement. Finally, section VI concludes.

II. RELATED WORK

Because the dynamic and decentralized nature of structured
p2p overlay networks, join and leave process have been a
prime issue from the beginning. Each DHT system employs a
specific mechanism to deal with such phenomena. But after
churning a large set of peers in a short time interval, the system
will crashes.

Unfortunately, very few studies examine the impact of
churn problem. Abraham and al [4] study the scalability and
resilience to worst case joins and leaves. They focus on
maintaining a balanced network in the presence of high churn
rate. Loguinov and al [5] examines graph-theoretic properties
of existing peer-to-peer architectures and proposes a new
infrastructure based on optimal-diameter de Bruijn graphs.
They study routing performance of Chord, CAN and Bruijin.
Li and al [6] present a comparative study of the effects of DHT
parameters on the performance of structured p2p protocols
under churn. Lam and al [7] address the question of how high a
rate of node dynamics can be supported by these systems. They
present a measurement studies to CAN protocol only.
Furthermore, authors in [3] address the question of how to
make p2p service available under churn and where is the

extreme of a system’s resistibility to high churn. They present a
measurement study of some overlay network and propose a
crash point to deal with such problem.

Our aim is to deepen study the impact of churn on the
performance of structured p2p overlay networks. A careful
evaluation will contribute to find basic solution to such
problem. Our study is therefore concentrated towards the
analysis of churner peers under Chord and Kademlia protocols,
which considered as the most cited and deployed protocols.

III. BACKGROUND

A. Distributed Hash Systems

Structured p2p overlay networks are an important and
powerful class of overlays that has emerged in recent years.
They are typically targeted at peer-to-peer deployments
involving user-managed machines on the Internet. Structured
overlays such as Chord [1] and Kademlia [2], presents a
distributed hash table abstraction on top of a population of
networked participants. Each participating node in the overlay
has an identities from a large identifier space, and is
responsible for handling messages addressed to an extent of the
identifier space around its own ID. In order to route messages
in the overlay, every node maintains a routing table of “links”.
The set of nodes and links in the system forms a structured
network graph, over which ID lookups can be routed to the
responsible node efficiently. When used to store data,
structured overlays are often called distributed hash tables
(DHTs), though many applications do not require storage.

1) Chord

Chord [1] is the most cited overlay in the field of

distributed hash table systems. Chord assigns m-bit identifiers
to each node and object using a base hash function. The node
identifier is calculated as the hash of the IP address or the
cryptography of the public key of the node. It is worth to
underline that the identifiers are ordered in a ring topology.
The successor of a given key k, is the node characterized by the
identifier equal to or immediately subsequent to the identifier
of k. Each peer in Chord knows the list of its predecessors and
successors, which called neighbours. For a given peer, the
main knowledge of this list is not sufficient to guarantee a good
performance especially in terms of number of hops needed to
route queried and the response time. For this reason, each peer
in Chord connects to other neighbouring nodes, called fingers,
which constitute its routing table.

In Chord, nodes can join or leave at any time. To join the
overlay, the node n must know at least an existing node s in the
ring. It initializes first the predecessor and the fingers of node
n. The peer n asks s to look them up. After that it update the
fingers and the predecessor regarding the addition of n. Finally,
once the node n is entered in the system, it is necessary to
move responsibility for all the keys for which n is now the
successor. When a node wants to find an object, it sends a
request to his fingers to locate the appropriate node whose
identifier corresponds to the requested object. The node that
receives the request runs in turn the same process until the
object is reached. To maintain the structure of the overlay,
when a node leave, chord run periodically the maintenance

process in order to update the links to sequential neighbours
and neighbouring fingers in the routing table. Verification of
fingers is similar to the construction of the routing table. In
addition to minimize failures of queries, each node maintains a
list of its successors, which can alternatively be used for
routing.

2) Kademlia

Kademlia [2] is the most deployed overlay in the field of

distributed hash table systems. The participant nodes form a
virtual tree structure. Each node is identified by a 160-bit node
ID. This ID serves not only as identification, but the Kademlia
protocol uses to locate objects. In fact, the node ID provides a
direct map to objects.

Kademlia uses an XOR metric to define distance between
nodes and objects. The XOR metric allows extending routing
table beyond single bits. Thus, reducing the number of hops
needed to locate an object. Kademlia nodes store contact
information about each other to route query messages. Every
node keeps a list of IP address, UDP port, Node ID triples for

nodes of distance between 2� and 2��� from itself. We call
these lists k-buckets.

A node that would like to join the net must first go through
a bootstrap process. In this phase, the joining node needs to
know the IP address and port of another node that is already
participating in the Kademlia network. The joining node inserts
the bootstrap node into one of its k-buckets. It then does a
FIND_NODE of its own ID against the bootstrap node. After
this, it refreshes all k-buckets. This refresh is just a lookup of a
random key that is within that k-bucket range. When searching
for some value, the protocol needs to know the associated key
and explores the network in several steps. Each step will find
nodes that are closer to the key until the contacted node returns
the value or no closer nodes are found. When Kademlia node
receives any message from another node, it updates the
appropriate k-bucket for the sender’s node ID. If the sending
node already exists in the recipient’s k-bucket, the recipient
moves it to the tail of the list. If the node is not already in the
appropriate k-bucket and the bucket has fewer than k entries,
then the recipient just inserts the new sender at the tail of the
list. If the appropriate k-bucket is full, however, then the
recipient pings the k-bucket’s least-recently seen node to
decide what to do. If the least-recently seen node fails to
respond, it is evicted from the k-bucket and the new sender
inserted at the tail. Otherwise, if the least-recently seen node
responds, it is moved to the tail of the list, and the new sender’s
contact is discarded.

B. The problem of churn

Users like to use p2p, because there are few restrictions.
They can join and leave the network whenever they want. The
independent arrival and departure of peers creates the
collective effect called churn [1]. However, such freedom
causes unpredictable network environment, which leads to the
most complex design challenge of structured p2p protocols.

The effect of joining peers is usually the less problematic
aspect of churn, since it mainly results in temporary failures
like routing inconsistencies or resources, which might be

temporarily located at a wrong position in the overlay. The
process of peers leaving the system, however, can result in
irreparable damage like loss of the overlay structure or loss of
data stored in the overlay. In general, node departures can be
divided into friendly join/leave and failure join/leave [3].

Friendly join/leave is such a condition that nodes join the
network one by one, or leave gracefully by informing their
neighbours. However, failure join/leave is such a condition that
large percent of nodes join and/or silently leave the network
simultaneously and frequently.

There have been very few large-scale DHT based
application deployments to date, and so it is hard to derive
good requirements on churn-resilience. These systems provide
a simple indexing service for locating files on those peer nodes
currently connected to the network, a function that can be
naturally mapped onto a DHT based mechanism. While some
DHT applications might require greater client availability,
others may show similar churn rates to file-sharing networks.
As such, we believe that DHTs should at least handle churn
rates observed in to day’s file-sharing networks. There is
always a price to churn which may manifest itself as dropped
messages, data inconsistency, increased user-experienced
latency, or increased bandwidth use.

A pervasive requirement of structured p2p systems is to
deal with churn. A high churn rate can increase costs or
decrease service quality. For example, a large number of
maliciously controlled peers could leave the network
simultaneously; the power is cut off over a wide area. Each
instance of join and leave causes a DHT to rebalance its keys
and the data among the nodes, which generates a considerable
traffic load and degrades the performance of the system. The
higher the churn rate is, the more difficult it becomes for the
network to maintain its consistency. Too high churn can affect
the overlay structure and damage the selection of key design
parameters. Also this dynamics can cause routing failures that
cause subsequent lookups to return inconsistent results, loss of
stored resources or inconsistent views of the peers on the
overlay.

Churn has a significant effect on the performance of
structured P2P systems, e.g. frequent nodes joining and leaving
result in stale routing information in the routing table and
inconsistency of the stored resource items, the distribution of
session length affects the overlay topology and key design
parameters, just to name a few. Consequently, the effects of
churn should be taken into account when design or evaluate a
structured p2p system.

IV. THE EFFECTS OF CHURN

The nature of structured p2p overlay networks introduces
some relevant quality aspects each application has to consider.
For example, efficiency, stability and scalability are issues
brought by the fact that peers can randomly leave, join, or
perform queries. It results in a big variation of network size,
number of exchanged messages, number of stale contacts in
routing tables, etc. Efficiency is defined as the performance of
overlay operations and costs of the services provisioning.
Stability describes the behaviour of the system under changed
condition friendly join/leave or failure join/leave. Scalability is

the quantitative adaptability of the overlay to a changing
number of participants.

While many metrics of a system (e.g. number of hops,
response time, efficiency of routing, message overhead, file
popularity) affect its usefulness to the participant, one
commonly problem is the ability of overlay to stay connected
and ensure the availability of resources in the face of random
failures. It may be explored that compromised connectivity is
one of the most fundamental by-products of churn that directly
affects routing efficiency and other metrics observed by the
user.

In order to make statements on the performance of an
overlay under churn, a suitable scenario and the appropriate
metrics are needed.

A. Metrics

Following set of metrics is relevant to the mentioned
performance of structured p2p overlays:

Number of hops is the common used metric for evaluating
the performance of peer-to-peer overlays. It presents the
number of contacted peers on the way from the source to the
destination for an observed query (e.g. lookup in structured
overlays) message. Routing in distributed hash tables (DHTs)
can be either recursive or iterative.

Response time is defined as the duration of a query
operation. It is different in iterative and recursive routing even
if the number of hops is the same. The parallelization of lookup
queries like in Kademlia brings significant performance
benefits, which is evidently reflecting on this metric.

Number of request is defined as the number of exchanged
request during a simulation, which presents all messages of
overlay operations involved in node interaction and all
necessary messages for transfer of the data.

Number of message per second is defined as the total
number of messages sent per second form different peers
present in the overlay.

Overall success rate is important as both the number of
hops and the response time cannot show the share of
successfully answered query operations. Therefore, the metrics
catalogue for the evaluation has to include the average success
rate of requests defined as ratio of number of successfully
resolved and overall number of query operations.

B. Scenario

The scenario defines which overlay operations certain peers
or a group of peers perform at which point of time. The
scenarios considered in this benchmark set are described in the
following:

Ideal is the scenario where peers first join the network and
once the bootstrapping process is over, peers start to perform
specific overlay operations. A new overlay operation will not
take place before an appropriate stabilization phase is over.
Churn is not expected. Ideal scenario is depicted in Fig.1.

During the first interval time [0m, 60m] all peers join the
network and publish their data. In the next interval time [60m,

90m] the system stabilizes. After that, peers perform a number
of overlay operations starting at 90m.

Fig. 1. Ideal scenario

Join/Leave is the scenario where a significant number of
peers joins and leaves the overlay at specific time interval.
Fig.2 describes the time line of this scenario.

Fig. 2. Join/Leave scenario

Peers are divided in two groups G1 and G2. G1 first join
the network and publish their data. Once the bootstrapping
process is done, G1 start to perform some overlay operations.
Besides G2 join the network and perform the appropriate
actions analogue to G1. After an appropriate stabilization
phase, G2 leave the network during the interval time [120m,
200m]. We activate the churn at t=120m, in which peers from
G1 joins and leaves the network in a short interval time
(0,5/20m).

Churn is the scenario where a significant number of peers
joins and leaves the overlay in a short time interval. Churn
scenario is the same like ideal scenario, with difference that we
activated churn at t=90m and each time we vary the
as depicted in Fig.3.

Fig. 3. Churn scenario

V. EVALUATION

We performed several experiments on PeerfactSim.Kom
[8] simulator. With the proposed metrics and scenarios we are
able to evaluate the effects of churn on the performance of
existing structured p2p overlays. Among them we identified
Chord [1] (Ring structure) and Kademlia [2] (Tree structure).

We evaluate the effect of churn on the Chord protocol and
Kademlia by varying two parameters: the network size and the
churn rate. First, we simulate a network of fixed size (Ideal
scenario: 1000 nodes). Once the network is stable, nodes send
a message to a randomly chosen node every 60 seconds.

90m] the system stabilizes. After that, peers perform a number

Join/Leave is the scenario where a significant number of
peers joins and leaves the overlay at specific time interval.
Fig.2 describes the time line of this scenario.

Peers are divided in two groups G1 and G2. G1 first join
the network and publish their data. Once the bootstrapping
process is done, G1 start to perform some overlay operations.
Besides G2 join the network and perform the appropriate

. After an appropriate stabilization
phase, G2 leave the network during the interval time [120m,
200m]. We activate the churn at t=120m, in which peers from
G1 joins and leaves the network in a short interval time

significant number of peers
joins and leaves the overlay in a short time interval. Churn
scenario is the same like ideal scenario, with difference that we
activated churn at t=90m and each time we vary the churn rate

We performed several experiments on PeerfactSim.Kom
[8] simulator. With the proposed metrics and scenarios we are
able to evaluate the effects of churn on the performance of
existing structured p2p overlays. Among them we identified

ing structure) and Kademlia [2] (Tree structure).

We evaluate the effect of churn on the Chord protocol and
Kademlia by varying two parameters: the network size and the
churn rate. First, we simulate a network of fixed size (Ideal

nce the network is stable, nodes send
a message to a randomly chosen node every 60 seconds.

Second, we simulate a network of variable size 250 to 1000
nodes (Join/Leave scenario).

The settings for all experiments are the following. In
Chord, the number of successor is
is set to 10 also. In Kademlia, the bucket size is set to 20 and
the degree of parallelism is
Kademlia based on the following metrics: the number of hops,
the response time, the number of
message sent per second and the success rate.

A. Effects on Chord

Fig.4 shows the evolution of the number of hops in both
scenarios, Ideal and Join/leave. In the first scenario, we note
that the number of hops stabilize duri
300m] to reach 5,8. This is due to the stabilization of the
number of peers in the network (1000 nodes)
of queries sent by each peer. However, in the second scenario,
we note that the number of hops has significant vari
during the same interval time. This
network size. The effect of the peer arrivals and departures are
clearly visible in the results. For example, b
[90m..120m], the number of hops increase slightly to reach 6,8.
After that, we notice a high variation in the number of hops
between [200m..300m], to reach 11
churn that reach 0,5 each 20 minutes and also the departure of
750 peers.

Fig. 4. Evolution of the number of

Fig.5 presents the evolution of the response time. We note
that response time is steady in the first scenario. Therefore, it
has a lot of variation in the second
scenario is produced by the stability in
However, the variation in second scenario is
events, the join/leave of nodes and the high churn rate.

Fig. 5. Evolution of the response time (Chord)

0
1
2
3
4
5
6
7
8
9

10
11

80 100 120 140 160

N
h

o
p

s

Time (m)

Nhops (Ideal)

Nhops

(join/leave)

0

1

2

3

4

5

6

7

8

9

80 100 120 140 160 180

R
e

s
p

o
n

s
e

 T
im

e

Time (m)

Response Time

(Ideal)
Response Time

(join/leave)

Second, we simulate a network of variable size 250 to 1000

The settings for all experiments are the following. In
successor is 10 and the number of fingers

is set to 10 also. In Kademlia, the bucket size is set to 20 and
is α=3. We evaluate Chord and

Kademlia based on the following metrics: the number of hops,
, the number of request, and the number of

message sent per second and the success rate.

Fig.4 shows the evolution of the number of hops in both

scenarios, Ideal and Join/leave. In the first scenario, we note
that the number of hops stabilize during the interval [90m,

. This is due to the stabilization of the
number of peers in the network (1000 nodes) and the number

. However, in the second scenario,
we note that the number of hops has significant variations
during the same interval time. This is due to the variation in the

The effect of the peer arrivals and departures are
clearly visible in the results. For example, between
[90m..120m], the number of hops increase slightly to reach 6,8.

e notice a high variation in the number of hops
to reach 11 since the activation of

churn that reach 0,5 each 20 minutes and also the departure of

Evolution of the number of hops (Chord)

Fig.5 presents the evolution of the response time. We note
that response time is steady in the first scenario. Therefore, it
has a lot of variation in the second one. The stability in the first

roduced by the stability in the network size.
ever, the variation in second scenario is caused by two

leave of nodes and the high churn rate.

Evolution of the response time (Chord)

180 200 220 240 260 280 300
Time (m)

Nhops (Ideal)

180 200 220 240 260 280 300

Time (m)

Response Time

Response Time

Fig. 6. Evolution of the number of message/sec (Chord)

Fig.6 demonstrates the evolution of the number of
messages sent per second. We note that the total number of
messages increase in both scenario between [40m..90m]. This
is caused by the join process. We notice that this number
stabilize in the first scenario since the stabilization of the
number of peers and the number of messages sent by each
peer. However, the total number of messages increase linearly
in the second scenario between [120m..200m] since the
evolution of the network size. Also, we notice a high variation
between [200m..300m]. This is due to the high churn rate.

Thereafter, we vary the churn parameter. We used a Churn
scenario with 1000 nodes. We activated the churn process at
t=90m and each time we vary the churn rate (0/20m: ideal,
0,1/20m, 0,2/20m, 0,3/20m, 0,4/20m, 0,5/20m).

Fig. 7. Evolution of the number of request (Chord)

Fig. 8. Success Rate (Chord)

0

20

40

60

80

100

0 0,1 0,2 0,3

S
u

c
c

e
s

s
 R

a
te

Churn Rate

Success Rate

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100120140160180200220

M
e

s
s

a
g

e
s

/
s

e
c

Time (m)

Message/sec (Ideal)

"Message/sec

(Join/Leave)"

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0,1 0,2 0,3

N
b

 R
e

q
u

e
s

t

Churn Rate

Nb Request

Evolution of the number of message/sec (Chord)

Fig.6 demonstrates the evolution of the number of
sent per second. We note that the total number of

messages increase in both scenario between [40m..90m]. This
is caused by the join process. We notice that this number
stabilize in the first scenario since the stabilization of the

and the number of messages sent by each
peer. However, the total number of messages increase linearly
in the second scenario between [120m..200m] since the
evolution of the network size. Also, we notice a high variation

the high churn rate.

Thereafter, we vary the churn parameter. We used a Churn
scenario with 1000 nodes. We activated the churn process at
t=90m and each time we vary the churn rate (0/20m: ideal,
0,1/20m, 0,2/20m, 0,3/20m, 0,4/20m, 0,5/20m).

Subsequently, we evaluate the evolution of the total
number of requests and the succes
7 and 8 show the results respectively. We note that the success
rate decreases each time we increase the churn rate. For a
churn rate equal 0,5/20m, the success rate drops below 45%.
Churn also affects the total number of requests, we note that
the number of requests decreases. Indeed the number of nodes
decreases, it goes from 1000 peers at t=60m to reach 350 at
t=299m. This is caused by the high churn rate in the network.

B. Effects on Kademlia

We present now the results of the Kademlia protocol. The
bucket size is fixed at 20 and the degree of parallelism is
We use the same parameters and scenarios simulation.

Fig. 9. Evolution of the number of hops (Kademlia)

Fig. 10. Evolution of the response time (Kademlia)

Fig.9 and 10 demonstrate the evolution of the number of
hops and the evolution of response time in Kademlia
As we can notice that the number of hops and the response
time in Kademlia protocol are shorter than Chord protocol.
This due to the fact that Kademlia uses parallel research on all
nodes in the buckets, which reduces the search paths and thus
reduce the response time. Also varying the number of peers in
the network and the churn rate has some influence on the
performance of such protocol. Figure 9 show that the number
of hops stabilize in the first scenario,
the second scenario the number of hops increase
reach 5,5. Similarly, the response time stabilize in the first
scenario to reach 0,3, but increase in the second to reach 0,6.

0,4 0,5

Success Rate

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

80 100 120 140 160

R
e

s
p

o
n

s
e

 T
im

e

220240260280300

0,4 0,5

Nb Request

0

1

2

3

4

5

6

80 100 120 140 160 180

N
h

o
p

s

Time (m)

Subsequently, we evaluate the evolution of the total
and the success rate of search queries. Fig.

7 and 8 show the results respectively. We note that the success
eases each time we increase the churn rate. For a

churn rate equal 0,5/20m, the success rate drops below 45%.
Churn also affects the total number of requests, we note that

decreases. Indeed the number of nodes
1000 peers at t=60m to reach 350 at

the high churn rate in the network.

We present now the results of the Kademlia protocol. The

bucket size is fixed at 20 and the degree of parallelism is α=3.
e parameters and scenarios simulation.

Evolution of the number of hops (Kademlia)

Evolution of the response time (Kademlia)

9 and 10 demonstrate the evolution of the number of
hops and the evolution of response time in Kademlia protocol.
As we can notice that the number of hops and the response
time in Kademlia protocol are shorter than Chord protocol.
This due to the fact that Kademlia uses parallel research on all
nodes in the buckets, which reduces the search paths and thus
educe the response time. Also varying the number of peers in

the network and the churn rate has some influence on the
performance of such protocol. Figure 9 show that the number
of hops stabilize in the first scenario, to reach 4. However, in

enario the number of hops increases linearly to
reach 5,5. Similarly, the response time stabilize in the first

but increase in the second to reach 0,6.

160 180 200 220 240 260 280 300

Time (m)

Response Time (Ideal)

Response Time

(join/leave)

180 200 220 240 260 280 300
Time (m)

Nhops (Ideal)

Nhops (join/leave)

Fig.11 presents the evolution of the number of message
sent per second. We note that the total number of messages
increase linearly in both scenario between [40m..90m]. This is
caused by the joining process. Also we notice that the number
of messages decreases at t=90m due to the fact that the system
stabilize and during this period of time there is only the
stabilization messages. Besides, figure 11 demonstrates that the
number of messages stabilizes in both scenarios since
Kademlia uses parallel research on all nodes in the buckets.
But this number increases in the join/leave scenar
800 messages per second since we activated the churn attack.

Fig. 11. Evolution of the number of message/sec (Kademlia)

By varying the churn rate, we can notice through the Fig.
12 and 13 that the number of requests and the success rate
decrease. As we can notice that the number request
than Chord protocol. However, the success rates are better.
This results from the fact, that Kademlia protocol uses parallel
research request on all nodes in the k buckets.

Fig. 12. Evolution of the number of request (Kademlia)

Fig. 13. Success Rate (Kademlia)

0

20

40

60

80

100

0 0,1 0,2 0,3

S
u

c
c

c
e

s
s

 R
a

te
 %

Churn Rate

Success Rate

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180 200

M
e

s
s

a
g

e
s/

s
e

c

Time (m)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0,1 0,2 0,3

N
b

 R
e

q
u

e
s

t

Churn Rate

Nb Request

11 presents the evolution of the number of messages
that the total number of messages

increase linearly in both scenario between [40m..90m]. This is
process. Also we notice that the number

of messages decreases at t=90m due to the fact that the system
of time there is only the

stabilization messages. Besides, figure 11 demonstrates that the
number of messages stabilizes in both scenarios since
Kademlia uses parallel research on all nodes in the buckets.
But this number increases in the join/leave scenario to reach
800 messages per second since we activated the churn attack.

Evolution of the number of message/sec (Kademlia)

we can notice through the Fig.
and the success rate

can notice that the number requests are worst
than Chord protocol. However, the success rates are better.

that Kademlia protocol uses parallel
research request on all nodes in the k buckets.

Kademlia)

VI. C

In this paper, we showed the effects of churn on the
performance of structured p2p overlay networks. We presented
a measurement study of Chord protocol as the most cited
overlay in the field of distributed hash table systems and
Kademlia as the most deploye
weakness of such overlay to deal with such problem. As we
can notice, there are differences between topologies. More
precisely, the performance of Kademlia under a high churn rate
is much better than Chord because this protocol is fault tolerant
by guaranteeing multiple paths
topology is more compact and that is way the performance of
such overlay is a bit lower.

Also, in such systems, peers are autonoums,
leave the network whenever they want.
make barriers to join the overlay. Thus, the main challenge is
to protect the ability of the system to locate every
future work, we plan to analyze
techniques employed to ensure the availability of objects under
high churn rate and develop a new replication technique to
improve the performance of such systems

REFERENCES

[1] I. Stoica, R. Morris et al., Chord: A Scalable Peer
Protocol for Internet Applications, IEEE/ACM Trans. Net, vol. 11, no.
1, 2003, pp. 17–32.

[2] P. Maymounkov and D. Mazieres, “Kademlia: A Peer
Information System Based on the XOR Metric,” Proc. IPTPS,
Cambridge, MA, USA, Feb. 2002, pp. 53

[3] Z. Liu, R. Yuan, Z. Li, H. Li, and C. Chen, “Survive under high churn in
structured p2p systems: evaluation and strategy,” in
ICCS 2006, 2006.

[4] I.Abraham, B.Awerbuch, Y.Azar, Y.Bartal, D.Malkhi, and E.Pavlov. A
Generic Scheme for Building Overlay Networks in Adv
Scenarios. In Proc. 17th Int. Symp. on Parallel and Distributed
Processing (IPDPS) 2003.

[5] D. Loguinov, A. Kumar, V. Rai, S. Ganesh: Graph
of Struc- tured Peer-to-Peer Systems: Routing Distances and Fault
Resilience. ACM SIG-  COM

[6] J. Li, J. Stribling, T. Gil, R. Morris, F. Kaashoek: Comparing the
performance of distributed hash tables under churn. IPTPS (2004)

[7] S.S.Lam and Huaiyu Liu: Failure Recovery for Structured P2P
Networks: Protocol Design and Performance Evaluation. ACM
SIGMETRICS/Performance ’04 (2004)

[8] K. Graffi: PeerfactSim.KOM
Experiences and Lessons Learned, In Proc.
Conference on Peer-to-Peer Computing (IEEE P2P ’11), 2011

0,4 0,5

Success Rate

200 220 240 260 280 300

Message/sec

(Ideal)
Message/sec

(join/leave)

0,4 0,5

Nb Request

CONCLUSION

In this paper, we showed the effects of churn on the
performance of structured p2p overlay networks. We presented

study of Chord protocol as the most cited
overlay in the field of distributed hash table systems and

mlia as the most deployed one. The results show the
kness of such overlay to deal with such problem. As we

there are differences between topologies. More
precisely, the performance of Kademlia under a high churn rate

because this protocol is fault tolerant
paths for a single destination. Chord

topology is more compact and that is way the performance of

Also, in such systems, peers are autonoums, they join and
leave the network whenever they want. There is no way to
make barriers to join the overlay. Thus, the main challenge is
to protect the ability of the system to locate every object. In

analyze in detail the replication
techniques employed to ensure the availability of objects under

and develop a new replication technique to
improve the performance of such systems.

EFERENCES

I. Stoica, R. Morris et al., Chord: A Scalable Peer-to-Peer Lookup
Internet Applications, IEEE/ACM Trans. Net, vol. 11, no.

P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric,” Proc. IPTPS,
Cambridge, MA, USA, Feb. 2002, pp. 53–65.

Li, H. Li, and C. Chen, “Survive under high churn in
structured p2p systems: evaluation and strategy,” in Proceedings of

I.Abraham, B.Awerbuch, Y.Azar, Y.Bartal, D.Malkhi, and E.Pavlov. A
Generic Scheme for Building Overlay Networks in Adversarial
Scenarios. In Proc. 17th Int. Symp. on Parallel and Distributed

D. Loguinov, A. Kumar, V. Rai, S. Ganesh: Graph-Theoretic Analysis
Peer Systems: Routing Distances and Fault
COMM (2003)

J. Li, J. Stribling, T. Gil, R. Morris, F. Kaashoek: Comparing the
performance of distributed hash tables under churn. IPTPS (2004)

S.S.Lam and Huaiyu Liu: Failure Recovery for Structured P2P
Networks: Protocol Design and Performance Evaluation. ACM
SIGMETRICS/Performance ’04 (2004)

K. Graffi: PeerfactSim.KOM – A Peer-to-Peer System Simulator:
Experiences and Lessons Learned, In Proc. of IEEE International

Peer Computing (IEEE P2P ’11), 2011

