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Abstract— We address a combinatorial optimization problem
(COP), namely a particular variant of the matrix chain product
problem (MCPP) where the chain involves square dense and
triangular matrices. Besides the classical dynamic programming
algorithm of cubic complexity, exact greedy algorithms (GA) of
linear complexity are also known in the literature. We present in
this paper new exact GA’s of linear complexity too and leading in
general to different optimal chain parenthesizations (OCP). Our
objective is to optimize, while building an OCP represented by a
binary tree, its parallelism degree. Indeed, this criterion is quite
useful for an efficient parallel computation of the chain product
according to a given OCP. Our theoretical contribution is validated
by an experimental study permitting to establish comparisons
between several OCP’s through their representative binary trees,
thus precising the practical interest of the approaches we
developed.
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I. INTRODUCTION

The matrix chain product problem (MCPP) is an easy COP
arising in various scientific applications e.g. in robotics,
computer animation, process control, mathematical program-
ming, etc ... [1][2].

Given a chain of, say, n matrices A;, ..., A, where the
dimensions of A; (i=1...n) are (p;.i,p;), the (standard) MCPP
consists in constructing an optimal chain parenthesization
(OCP) with minimal number of operations (MNO) for
computing the product matrix A;...A,. An exact and optimal
dynamic programming algorithm (DPA) of complexity O(n’) is
known in the literature since 1973 [3]. A more recent algorithm
based on polygon triangulation (PT) of complexity O(nlogn) is
also known [4].

A particular variant of the MCPP in which we are interested,
denoted MCPP-DLU, corresponds to the case where the chain

matrices are square and either dense (D), lower (L) or upper
triangular (U). Besides the DPA, two exact greedy algorithms
(GA) of complexity O(n) are known since 2011[5].

It has to be underlined that an OCP may be represented by a
binary tree (RBT) where each node corresponds to a matrix
product and the root to the chain product. Since the MCPP-DLU
may admit, in general, several solutions i.e. OCP’s whose
corresponding RBT’s may be differently structured, an
interesting and worthwhile aspect of the problem may be raised
here. It consists in constructing different OCP’s and define
criteria permitting to establish an accurate comparison between
them, hence choose the best according to these criteria. It turns
out that the structural properties of the corresponding RBT’s
may well be used for this purpose.

The main objective of our contribution based on [5] consists
in fact in the design of new greedy algorithms leading to OCP’s
optimizing the structure of the corresponding RBT’s. To be
more precise, this optimization targets an efficient parallel
computation of the matrix chain product. For this purpose,
starting from two known GA’s called GA and AGA, denoted
henceforth GA1 and GA2, we first propose two modified
versions denoted GA1’ and GA2’. We then propose two new
algorithms denoted GA3 and GA4. The rationale behind these
series of algorithms is to generate an OCP, thus an RBT leading
to the fastest parallel computation of the chain product.

The remainder of the paper is organized as follows. In section
2, after giving some useful definitions on OCP’s and RBT’s, we
proceed to a description of the two known greedy algorithms
GA1 and GA2, then our four new greedy algorithms GAl’,
GA2’, GA3 and GAA4. Section 3 is devoted to an experimental
study permitting to establish a comparison between the diverse
algorithms previously discussed and validate our contribution.
Finally, we conclude our work and propose some perspectives in
section 4.
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II. GREEDY ALGORITHMS

A. Representative Binary Tree of an Optimal Chain Parenthesi-
zation

As previously precised, an optimal (or any) chain
parenthesization of a matrix chain product may be represented
by a binary tree (RBT) [4]. This latter is built such that the
leaves are in the top level and the root at the bottom. We precise
that each node corresponds to a matrix product, the leaves
correspond to the product of two successive matrices of the
chain ie. (AjAj;;) and the root to the final product.
Furthermore, each node is weighted by the amount of
computation (i.e. number of operations) required by the
associated matrix product.

If we adopt a level decomposition of the RBT where each
level involves independent i.e. non related nodes, we can define
for the RBT a height (or a depth) h and a width w. The height h
is defined as the number of levels in the decomposition i.e. the
maximal number of nodes in a path relating a leaf to the root.
The width corresponds to the maximal number of nodes in a
level. Remark that the RBT is in fact a top-down directed graph
[6].

Both height and width are important characteristics of a RBT
representing a given OCP and may be used as criteria in order to
establish a fine comparison between different OCP’s through
their associated RBT’s. We’ll see further a third criterion
leading to a finer comparison. Let us add that for a given RBT,
we may define in general several level decompositions having
the same height but different widths [6].

On the other hand, the height may be seen as the number of
successive steps required to perform the chain product, whereas
the width may be considered as the number of independent
substeps involved by each step. Height and width may be easily
bounded as follows [5]:

[logon]l <h<n-1; 1<w<[n/2]

The height upper bound (n-1) and width lower bound (1) are
both reached for a chain-structured RBT and mean that each
step involves only one substep. Two particular associated OCP’s
are the standard left-right parenthesization (LRP) i.e.
((...((A1A2)A3).. )AL DA, and its symmetric, the right-left
parenthesization (RLP) i.e. (Aj(Ax(...(Ap2(An1Ap))...). On the
other hand, the height lower bound (rlogzn—b and width upper
bound (Ln/2.) correspond, particularly when n is a power of 2, to
a complete binary tree (CBT). The corresponding parenthesi-
zation is induced by the so called Associative Fan In Algorithm
(AFIA) whose basic principle is to combine the chain matrices
couple by couple. One may think that a CBT is an optimal RBT
i.e. the best suited for the parallel computation of the chain since

the maximal number of matrix couples is performed in parallel.
Although this case corresponds to the maximal parallelism
degree, it scarcely corresponds to an OCP and may induce a
higher amount of computations (see the experimental study
further). In fact, one very decisive criterion is as detailed below.

Let us consider a path relating a leaf to a root in the RBT.
Clearly, it involves h nodes. Such a path is called critical if the
sum of the costs (or weights) of its h nodes is maximal, the cost
(or weight) of a node being the number of operations required to
perform the corresponding matrix product. Using the standard
terminology in parallel computing, the RBT is called a task
graph where each task corresponds to a node and has a cost (the
cost or weight of the node). It is well known that, disposing of
an unlimited number of (identical) processors, the optimal (i.e.
minimal) time to execute the task graph, i.e. compute in parallel
the matrix products of the RBT, is equal to the cost of a critical
path (ccp) [5][6][7]. Remark here that a number of processors
equal to the width w of the RBT is sufficient to reach this
minimal time [6][8]. Therefore, given different OCP’s and their
associated RBT’s, we’ll use for their comparison, in addition to
the heights and widths, the discriminating ccp criterion.

B. Improved Greedy algorithms GAI’ and GA2’

Consider a chain of n square matrices Ay,..., A, of size, say p,
where each matrix may be either dense (M:D), lower triangular
(M:L) or upper triangular (\:U).

Let c(AB) be the cost (number of operations) required for
computing two square matrices of size p where A and B are
either D, L or U. Concerning both structures and costs, we recall
that :

o HE=HE\-EAN-HEV=-ENE-H\ =H;

A =E;AA=h;NN=

* ¢(DD)=2p’+0(p); ¢(DU)=c(UD)=c(DL)=c(LD)=p’+O(p’)
e ¢(LU)=c(UL)=2p’/3+0(p?); ¢(LL)=c(UU)=p*/3+O(p°)

Therefore ¢(DD) =2¢(DU) = 2¢(UD) = 2¢(DL) = 2¢(LLD)
= 3c(UL) = 3¢(LU)
= 6¢(LL) = 6¢(UU)

Remark that (i) the highest (resp. lowest) cost occurs when
both A and B are dense (resp. triangular of same structure) and
(ii) combining an L matrix with a U one creates a D one. These
relations are in fact at the basis of the two greedy algorithms
introduced in [5]. Their basic idea consists in avoiding,
whenever it is possible, to increase the number of D-matrices,
since a new D-matrix is created when combining an L one with
a U one.

The greedy algorithms, denoted GA1 and GAZ2, involve in
fact two phases as follows:
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® A compressing phase consisting in computing every sub-
chain involving matrices of same structure. The LRP (—) or
the RLP («) are used here. This leads to a compressed chain
(Cc) where any two successive matrices are necessarily of

different structures.

e Compute the Cc by avoiding the creation of new D

matrices.

Remark that the authors considered several cases in this second
phase and precised for each a procedure leading to a final OCP.
The following example illustrates GA1 and GA2:

n=15, C = DDDDDUDDLUUDLDL, MNO= (21+1/3) p’ (we
restrict MNO and ccp to p’ terms for sake of simplicity)

e GAIl: final result : (h,w,ccp) = (12,3,19)
- Phase 1: C = ((DD)D)D)D)U(DD)L(UU)DLDL

- Cc=DUDLUDLDL

- Phase 2: Cc = ((((DU)D)L)U)D)L)D)L
® GA2 : final result : (h,w,ccp) = (8,5,15)

- Phase 1: Cc= DUDLUDLDL (same as in GA1)
- Phase 2: Cc = ((DU)((DL)U)))(DL))(DL)

We can see that GA2 improves GAl (lower h, larger w and

lower ccp).

We underline the fact that for a subchain involving matrices

GAT’

of same structure, any parenthesization is optimal i.e. leads to
the same number of operations (NOP). Therefore, we may
choose anyone. Our first contribution consisted in improving
both GA1 and GA2 by designing two new algorithms, denoted
GAl’ and GA2’, where we used, in the two phases, the
Associative Fan-In algorithm (AFIA) when combining matrices
of same structure in order to increase the parallelism degree of
the final OCP.

Remark. As previously precised AFIA combines matrices
couple by couple. Let m be the length of the processed chain.
When m=2, there is only one chain parenthesization (CP). For
instance, for m=8, we get the following CP:
((((A1A2)(A3A))(AsA6)(A7A%)))).

But, when m is not a power of 2, we may define several CP’s.
For instance for m=7, we have the following CP’s:

(A1A2)(A3A9))((AsA6) A7) 5 ((A1A2)(A3A4))(As(AsA7))
(A1A2)A3)((A4As5)(AsA7)) 5 (A1(A2A3))(A4As5)(AsA7)) ...

Therefore, when applying AFIA several times on successive
subchains whose lengths are not powers of 2, we must choose
judicious CP’s. It could be done by defining in this case a
completed chain whose length is m'=29 where q = [logon |, the
m’- m created matrices being of size 0.

We can now describe algorithms GA1’ and GA2’ as follows
(Fig. 1) by adopting the same notations as in [5]:

GAY2’

Phasel

Compression phase: compute the product of every subchain involving matrices of same structure by using AFIA. Let Cc be the

obtained compressed chain.

Phase2

Case 1. Cc involves no D matrix: compute C¢ according to either LRP (—) or RLP («)

Case 2. C¢ involves at least one D matrix.
Cc may be written as follows: Cc=C;DC,
where C, involves no D-matrix but
C, may involve.

% Ci=0: compute DC, according to
LRP.

s C=@: compute C,D according to
RLP.

% C#0, C#0: Compute C,D ac-
cording to RLP. Then, the result being a
D-matrix, compute DC, according to
LRP. An alternative consists in computing
DC, according to LRP. Then, the result
being a D-matrix, compute C,D according
to RLP.

Case 2. Cc involves at least one D-matrix. Cc may be written as follows:
C=C,DGC,D...CD...C.;DC, where each subchain C;, i=1...r, involves no D matrix.

% C=C=0 i.e. Cc=DC,DC;...CD...C. D : compute DC;, i=2...r-1, according to
LRP. Then compute the resulting chain involving r-1 D-matrices according to AFIA

% C=0, C#0@ i.e. C.=DC,DC;...CD...C,DC; : compute DC;, i=2...r, according to
LRP. Then, compute the resulting chain involving r-1 D-matrices according to AFIA.
% Ci#09, C=0 i.e. C.=C,DC,DC;...CiD...C.D: compute C\D, i=1...r-1, according
to RLP. Then, compute the resulting chain involving r-1 D-matrices according to
AFIA.

% C#0, C#Di.e. C=C,DC,DC;...CD...C.DC,: compute CD, i=I...r-1, ac-
cording to RLP. Then, (i) compute the resulting chain involving r-1 D-matrices
according to AFIA; (ii) compute DC, according to LRP. Or symmetrically compute
DC;, i=2...r, according to LRP. Then (i) compute the resulting chain involving r-1 D-
matrices according to AFIA; (ii) compute (C,D) according to RLP.

Fig. 1 Greedy Algorithms GA1” & GA2’
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As for GA1 and GA2, GA1’ and GA2’ are obviously of
linear complexity i.e. O(n).

We reconsider the previous example:

n=15, C = DDDDDUDDLUUDLDL, MNO= (21+1/3) p’
e GA1’: final result : (h,w,ccp) = (11,4,17)
- Phase 1: C = ((DD)(DD))D)U(DD)L(UU)DLDL
- Cc=DUDLUDLDL
- Phase 2: C¢ = (((((DU)D)L)U)D)L)D)L.
e GA2’: final result : (h,w,ccp) = (6,6,11)
- Phase 1: Cc = DUDLUDLDL (same as in GA1’)
- Phase 2: Cc = ((DU)((DL)U))((DL)(DL))
This leads to the following RBT’s (Fig. 2). We can see that
GA1’ improves GA1l (lower ccp) and GA2’ improves GA2
(lower ccp).

D DPU U D DD DD DU U D DD DU UD Lp L D DD DD DU UD LD L

B = te """" Tt ;x\I """ ) V

GA1 GAT' GA2

h=12, w=3, ccp=19 h=11, w=4, ccp=17 h=8, w=5, ccp=15

DERYAIR)

GA2'
h=6, w=6, ccp=11

Fig. 2 RBT’s for GAl, GAl’, GA2 and GA2’

C. New Greedy Algorithms GA3 and GA4

1) GA3: It involves 3 phases. The first is, as for GA1’ and
GA2’, a compressing phase. Remark here that combining D-
matrices is not necessary and is postponed in GA3. Let Cc be
the compressed chain. In the second phase, two cases have to be
considered. The first occurs when C¢ involves no D-matrix.
Here we can use either LRP or a RLP. We may also mix the
two. The second case occurs when Cc involves at least one D-
matrix. The idea consists here in successively combining lowest
cost couples as much as possible i.e. we begin by couples LD,
DL, UD, DU until only D-matrices remain. Then we use AFIA
to combine the remaining D-matrices.

GAZ3 is detailed below.

e Phasel : LU Compressing phase

Compute every subchain involving matrices of same structure
for only L and U (D’s are not considered) according to AFIA.
The compressed chain may be written as follows:

Ce = ClD*CzD*. . .CiD*. . .C,_ID*CP, where each subchain C;,
i=1...rinvolves no D-matrix and D" is a subchain of D-matrices.

e Phase 2 : Two cases have to be considered :

(i) Case 1. Cc involves no D-matrix: compute C¢ according
to either LRP or RLP. The two may also be combined.
(ii) Case 2. C¢ involves at least one D-matrix. Proceed as
follows.
- Stepl. C,#@ : compute C;D according to RLP.
- Step2. C#Q : compute DC,; according to LRP.
Cc may now be written a follows :
Cc=D'C,D"...CD"...C,,D" . Each subchain C; may be
split into two subchains C;; and C;; of nearly same
lengths.
- Step3. For each subchain D*C“CQD*, compute DC;
according to LRP and C;;D according to RLP.

e Phase 3: Compute the resulting chain involving only D-
matrices according to AFIA.

We reconsider the previous example:

n=15, C = DDDDDUDDLUUDLDL, MNO= (21+1/3) p’ (MNO
and ccp are given in terms of p’ for sake of simplicity).

Final result : (h,w,ccp) = (6,6,9+1/3)

e Phase 1: C = DDDDDUDDL(UU)DLDL
- Cc=DDDDDUDDLUDLDL
¢ Phase 2:
-Stepl : Cc = DDDDDUDDLUDLDL (no modification)
-Step2 : Cc= DDDDDUDDLUDL(DL)
- Cc=DDDDDUDDLUDLD
-Step3 : Cc=DDDD(DU)D(DL)(UD)(LD)
e Phase 3: Cc = (((DD)(DD))((DD)(DD)))D
The OCP is C = ((DD)(DD))(DU)D)((DL)((UU)D))))(L(DL))

Notice that GA3 improves GA2’ (lower ccp).

Remarks.

e Complexity. Phase 1 may be done in linear time by scanning
the initial chain and saving the cutting indices that will used by
AFIA. Phase 2 requires scanning the compressed chain in order
to detect the subchains involving only D-matrices and process
the CD, DC; subchains. A linear time is also required here.
Phase 3 requires scanning the obtained chain in order to find the
cutting indices that will be used by AFIA. Thus, an overall
linear time is required.

e Optimality. The proof is based on the two lemmas presented
in [5]. According to the latter, in an OCP, matrices of same type
(L or U) are necessarily combined together (Phase 1 in GA3).
Moreover, if the compressed chain C¢ involves no D-matrix,
both LRP and RLP are optimal (Phase 2-Case 1). When Cc
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involves at least one D-matrix, an OCP consists in never
combining an L-matrix with a U-matrix (Phase 2-Case 2).

e When the input chain involves no D-matrix, it is computed,
after been compressed, according to either LRP or RLP. The
two ways lead in general to different OCP’s.

2) GA4: Itinvolves like GA3 three phases. The first and third
are the same as in GA3. In fact, only Step 3 of Case 2 in Phase 2
is different.

We detail GA4 below.
e Phasel : LU Compressing phase same as in GA3

e Phase 2 : Two cases have to be considered :

(i) Case 1. Same as in GA3.

(ii) Case 2. C¢ involves at least one D-matrix. Proceed as

follows.
- Stepl. C1#0 : compute C;D according to RLP.
- Step2. C#@D : compute DC, according to LRP.
Cc may now be written a follows:
Cc =D'C,D"...CD"...C,,D". Each subchain C; may be
split into two subchains C;; and Cj; of nearly same
lengths.
- Step3. For each subchain D*CHCQD*, compute DCj;
according to LRP and C;;D according to RLP. If the
subchains D* involve more than 3 D-matrices (i.e.
D*=DD#D), then compute its inner subchain (D%
according to AFIA.

® Phase 3 : Same as in GA3.
Remark that GA4 is clearly of linear complexity.

We use the previous example to illustrate the approach:
n=15, C = DDDDDUDDLUUDLDL, MNO= (21+1/3) p’ (MNO
and ccp are given in terms of p* for sake of simplicity).

Final result : (h,w,ccp) = (5,6,8)

¢ Phase 1: Cc = DDDDDUDDLUDLDL
¢ Phase 2:
-Stepl : Cc = DDDDDUDDLUDLDL (no modification)
-Step2 : Cc= DDDDDUDDLUDL(DL)
- Cc=DDDDDUDDLUDLD
-Step3 : Cc= (DD)(DD)(DU)D(DL)(UD)(LD)
¢ Phase 3: Cc = (DD)(DD))((DD)D)
The OCP is C = ((DD)(DD))((DU)D))((DL)(UU)D))(L(DL)))

The induced RBT’s for GA2’, GA3 and GA4 are as follows.

We can see from Fig. 3 that GA3 improves GA2’ and GA4
improves GA3 (lower ccp).

y up Lp L D DD DD UD LU

SR

GA2' GA4
h=6, w=6, ccp=11 h=5, w=6, ccp=8

ub Lp pp pp UD LU UD L

h=6,w=6, ccp=9+1/3
Fig. 3 RBT’s for GA2’, GA3 and GA4

A comparative table including the 6 GA’s, LRP, RLP and AFIA
is given below.

TABLEI
CHARACTERISTICS OF OCP’S AND NON OCP’s
Algorithm MNO h |w| ccp
GAl 21+1/3 123 19
GA2 21+1/3 8|5 15
GAT’ 21+1/3 114 17
GA2’ 21+1/3 6|6 11
GA3 21+1/3 6 |6|9+1/3
GA4 21+1/3 516 8
LRP NOP=22 1411 22
RLP NOP=22 141 22
AFIA NOP=22+2/3| 4 |7 8

We can see that GA4 as well as AFIA gave the best ccp.
However, AFIA is not optimal since it does not correspond to an
OCP and requires 4p>/3 more operations than GA4.

III. COMPARATIVE EXPERIMENTAL STUDY

We achieved a series of experimentations in order to
establish an accurate performance evaluation of the four
designed algorithms. Intra and inter-algorithm comparative
studies were also done. For this purpose we used the following
parameters:

e MNO, h, w, ccp (previously defined)
e Intra-algorithm speed-ups :
- S$1=MNO/ccp_GAl ; S;:-=MNO/ccp_GAl’
- S,=MNO/ccp_GA2 ; S=MNO/ccp_GA2’
- S3=MNO/ccp_GA3 ; S;,=MNO/ccp_GA4
e Inter-algorithm versions speed-ups :
- Si1=ccp_GAl/cep_GAL’ ; Syp-=ccp_GA2/ccp_GA2’
e Inter-algorithm speed-ups :
- Syp=ccp_GATl’/cep_GA2’; Sys=ccp_GAT1’/ccp_GA3
- Syy=ccp_GAl’/ecep_GA4 ; Sy3=ccp_GA2’ /eccp_GA3
- Sya=ccp_GA2/ccp_GA4 ; S;4=ccp_GA3 /ccp_GA4
e Speed-ups with regard to AFIA :
- S3a= ccp_AFIA/ccp_GA3 ; Syp= ccp_AFIA/ccp_GA4
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TABLE II
MNO (GA’S), NOP (AFIA) AND RBT STRUCTURE
GAl GAYT’ GA2 GA2’ GA3 GA4 AFIA

n |MNO h | w| h|w|h|w/|h|w w w [NOP | h| w

50 | 188 | 35 | 11|35 |12 |19| 17 |12| 18 | 9 | 17 | 8 | 18 | 240 |6 25

75| 251 | 50 | 18] 50 | 19 [15] 27 |10 28 | 9| 29 | 10| 31 | 337 | 7| 37

100 361 | 71 (24| 71 | 25 |27 |37 |11 38 |10]| 38 | 9 | 39| 459 |7 | 50

125| 430 | 83 (26| 83 | 30 |27 | 37 |20| 41 | 14| 45 | 12| 45 | 552 |7 | 62

150 551 [ 95 37|95 |43 |36 51 |12 57 [11| 52 |11| 56| 707 | 8| 75

175| 637 [130|36|130| 38 |50 | 62 | 14| 64 | 11| 65 | 10| 66 | 817 | 8| 87

200| 638 [136(47|136| 51 [42] 66 |13| 70 | 11| 72 [ 11| 72 | 845 | 8| 100

225| 800 |[151(47|151| 56 (60| 72 | 14| 81 |15| 81 [12| 81 || 1010 |8 | 112

250 890 | 17154171 | 58 |55 79 |19 83 | 13| 86 11| 87 || 1132|8125

275 960 [184|61|181| 69 [65| 88 | 16| 96 |13 |101 | 11| 101 1247|9137

300 | 1099 |202|68(202| 76 |65| 89 | 14| 97 |13 [109 | 12| 111 1427 {9 | 150

325| 1159 [216|70|214| 83 [76[102 |18 |115|13|116|11|116| 1470|9| 162

350 1308 |239|79(239| 86 |86 (110 |14 | 117|13|124|11|126| 1630 (9| 175

375| 1310 [ 25388253 | 98 |88 |125|14|135|13|143 (12| 1431673 |9 | 187

400 | 1412 |260|85 (257|103 |89 (123 |16|141|13|146| 13| 148 1826 |9 | 200

TABLE IIT The analysis of the above results leads to the following
MNO,NOP AND CCP remarks:
n | MNO cep AFIA ® The height of the RBT in 'GAI’ (resp.GA2’) is always
GA1l | GAT’ | GA2 | GA2’ | GA3 | GA4| NOP | ccp lower or equal than the height in GA1 (resp. GA2).
50 | 188 | 135 ] 134 | 96 | 54 | 40 | 36 | 240 | 36 e The width of the RBT in GAl’ (resp.GA2’) is always
75 | 251 | 192 | 192 | 87 | 39 | 39 | 48 | 337 | 42 larger than the width in GA1 (resp. GA2).
100] 361 | 288 | 288 | 156 | 48 | 46 | 42 | 459 | 42 ® The width of the RBT in GA3 and GA4 is always larger
125] 430 [ 324 324 [ 156 | 72 | 57 | 59 | 552 [ 42 than the width in GA2".
150 551 | 381 | 381 | 207 | 57 48 | 48 | 707 | 48 ® The largest width is given by AFIA.
175| 637 | 528 | 528 | 282 60 48 48 | 817 | 48
200] 638 | 525 | 525 | 243 | 57 49 | 53 | 845 | 48 The series of tests we achieved (excerpts are depicted in
225| 800 | 607 | 607 | 334 | 58 64 | 54 1010 48 Tables' II and III? permit to rank the' different algorithms
2501 890 1672 | 672 | 327 | 81 60 | 574 11132 48 accord.mg to the induced ccp’s (see Fig. 4). We have the
following:

275| 960 | 744 | 726 | 387 | 64 58 54 | 1247 | 54
300 1099 | 792 | 792 | 381 | 66 58 | 54 | 1427 | 54 ® GA4 (resp. GA3) gave the lowest ccp in 75% (resp. 39%)
325] 1159 | 870 | 858 | 450 | 81 60 | 54 [ 1470 54 of the cases and was exclusively the best in 59% (resp. 23%)
350| 1308 | 963 | 963 | 504 | 66 | 61 | 54 | 1630 | 54 of the cases.
375| 1310 | 1014 1014 | 516 | 63 | 56 | 54 | 1673 | 54 ® GA2’ gave the lowest ccp in 2% of the cases and was
400 | 1412 | 1014 | 1014 | 504 | 72 63 60 | 1826 | 54 exclusively the best in 1% of the cases.

We precise that we choosed 90 values for n in the range [5
450] and 3 input chains for each n. The input chains were
randomly generated. The above tables depict excerpts of the
results we obtained. MNO (for the GA’s) and NOP (number of
operations for AFIA) are given in terms of p°/3 for sake of
simplicity.

We have to add that AFIA gave the lowest ccp in 86% of the
cases and was exclusively the best in 36% of the cases.
However, it never induced an OCP.

Intra-algorithm speed-ups (based on Tables Il and III and
depicted in Fig. 5 and Table IV below) illustrate the previous
remarks.
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Fig. 7 Inter-algorithm speed-ups

TABLE V
INTER-ALGORITHM SPEED-UP VARIATION INTERVAL

Speed-up
Variation Interval SI’Z’ Sl’3 SZ’3 S1’4 52’4 534

Lower bound 248 | 335 | 091 | 3.72 | 0.81 | 0.81

Upper bound 16.1 | 18.11 | 1.35 | 1878 | 1.5 | 1.19
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Fig. 4 Ranking of the GA’s according to ccp
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Fig. 5 Intra-algorithm speed-ups
TABLEIV
INTRA-ALGORITHM SPEED-UP VARIATION INTERVAL
Speed-up
Variation Interva Si Sp S, Sy Ss S4
Lower bound 1.21 | 1.21 | 1.96 | 3.48 5.22 6.44
Upper bound 1.39 | 14 | 2.89 | 20.79 | 23.39 | 24.26

From Fig. 6, we can remark that parallel GA2’ is always
faster (until 8 times) than parallel GA2. We hence deduce the
improvement introduced relatively to both GA1 and GA2.

As to intra-algorithms speed-ups, we particularly notice that
parallel GA3 and parallel GA4 are always better than the others
(see Fig. 7 and Table V). To be more exhaustive, we have:

® Parallel GA2’ is always better than parallel GA1’ since
S+ belongs to the interval [2.48 16.1].

e Parallel GA4 is almost always better than parallel GA2’
since S, is larger than 1 in 99% of the cases (see Fig. 7).

® Parallel GA3 is closely behind parallel GA4 i.e. Si
belongs to [0.81 1.19].
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If we compare GA3 and GA4 with AFIA which corresponds
to the more intuitive parallel algorithm for computing the matrix
chain, we can see that the two former gave ccp’s very close to
AFIA ccp (see Fig. 8). However, AFIA never gave an OCP and
required 29% to 70% more (sequential) operations than the
others. For this reason, AFIA is to be rejected.
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Fig. 8 Speed-ups GA3 and GA4 vs AFIA

We can therefore conclude that the experimental study
confirmed the interest of GA3 and GA4 vs GAl and GA2.
Needless to say that none is always the best.

IV.CONCLUSION

In this paper, we studied a particular variant of the matrix
chain product problem, namely a chain involving square dense
and triangular matrices. We proposed new linear complexity
greedy algorithms suited for an efficient parallel computation of
the chain matrix according to an optimal chain parenthesization.

The results we obtained enable us to precise the following
interesting points that deserve to be studied:

® Given an OCP and the corresponding RBT and its tuple
(h,w,ccp), determine the least number of processors puin
(<w) permitting the parallel computation of the chain matrix
in optimal time i.e. equal to ccp.

® Define and study the impact of other discriminating criteria
when comparing OCP’s inducing the same ccp.

e Achieve a series of experimentations on a target parallel
computer (e.g. multicore machine) in order to evaluate the
practical performances of the designed algorithms.
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