
International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.19-27

ISSN 2356-5608

On Greedy Algorithms for Solving the Matrix Chain
Product Problem with Square Dense and Triangular

Matrices
Khaoula Bezzina#1, Zaher Mahjoub#2

#
 Faculty of Sciences of Tunis, University of Tunis El Manar

University Campus - 2092 Manar II, Tunis, Tunisia
1khaoulabezzina@gmail.com
2Zaher.Mahjoub@fst.rnu.tn

Abstract— We address a combinatorial optimization problem

(COP), namely a particular variant of the matrix chain product

problem (MCPP) where the chain involves square dense and

triangular matrices. Besides the classical dynamic programming

algorithm of cubic complexity, exact greedy algorithms (GA) of

linear complexity are also known in the literature. We present in

this paper new exact GA’s of linear complexity too and leading in

general to different optimal chain parenthesizations (OCP). Our

objective is to optimize, while building an OCP represented by a

binary tree, its parallelism degree. Indeed, this criterion is quite

useful for an efficient parallel computation of the chain product

according to a given OCP. Our theoretical contribution is validated

by an experimental study permitting to establish comparisons

between several OCP’s through their representative binary trees,

thus precising the practical interest of the approaches we

developed.

 Keywords— Binary tree, complexity, dynamic programming,

grain, greedy algorithm, matrix chain product, parallel algorithm,

parenthesization.

I. INTRODUCTION

The matrix chain product problem (MCPP) is an easy COP
arising in various scientific applications e.g. in robotics,
computer animation, process control, mathematical program-
ming, etc ... [1][2].

Given a chain of, say, n matrices A1, …, An where the
dimensions of Ai (i=1…n) are (pi-1,pi), the (standard) MCPP
consists in constructing an optimal chain parenthesization
(OCP) with minimal number of operations (MNO) for
computing the product matrix A1…An. An exact and optimal
dynamic programming algorithm (DPA) of complexity O(n3) is
known in the literature since 1973 [3]. A more recent algorithm
based on polygon triangulation (PT) of complexity O(nlogn) is
also known [4].

A particular variant of the MCPP in which we are interested,
denoted MCPP-DLU, corresponds to the case where the chain

matrices are square and either dense (D), lower (L) or upper
triangular (U). Besides the DPA, two exact greedy algorithms
(GA) of complexity O(n) are known since 2011[5].

It has to be underlined that an OCP may be represented by a
binary tree (RBT) where each node corresponds to a matrix
product and the root to the chain product. Since the MCPP-DLU
may admit, in general, several solutions i.e. OCP’s whose
corresponding RBT’s may be differently structured, an
interesting and worthwhile aspect of the problem may be raised
here. It consists in constructing different OCP’s and define
criteria permitting to establish an accurate comparison between
them, hence choose the best according to these criteria. It turns
out that the structural properties of the corresponding RBT’s
may well be used for this purpose.

The main objective of our contribution based on [5] consists
in fact in the design of new greedy algorithms leading to OCP’s
optimizing the structure of the corresponding RBT’s. To be
more precise, this optimization targets an efficient parallel
computation of the matrix chain product. For this purpose,
starting from two known GA’s called GA and AGA, denoted
henceforth GA1 and GA2, we first propose two modified
versions denoted GA1’ and GA2’. We then propose two new
algorithms denoted GA3 and GA4. The rationale behind these
series of algorithms is to generate an OCP, thus an RBT leading
to the fastest parallel computation of the chain product.

The remainder of the paper is organized as follows. In section
2, after giving some useful definitions on OCP’s and RBT’s, we
proceed to a description of the two known greedy algorithms
GA1 and GA2, then our four new greedy algorithms GA1’,
GA2’, GA3 and GA4. Section 3 is devoted to an experimental
study permitting to establish a comparison between the diverse
algorithms previously discussed and validate our contribution.
Finally, we conclude our work and propose some perspectives in
section 4.

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.19-27

ISSN 2356-5608

II. GREEDY ALGORITHMS

A. Representative Binary Tree of an Optimal Chain Parenthesi-

zation

As previously precised, an optimal (or any) chain
parenthesization of a matrix chain product may be represented
by a binary tree (RBT) [4]. This latter is built such that the
leaves are in the top level and the root at the bottom. We precise
that each node corresponds to a matrix product, the leaves
correspond to the product of two successive matrices of the
chain i.e. (Ai,Ai+1) and the root to the final product.
Furthermore, each node is weighted by the amount of
computation (i.e. number of operations) required by the
associated matrix product.

If we adopt a level decomposition of the RBT where each
level involves independent i.e. non related nodes, we can define
for the RBT a height (or a depth) h and a width w. The height h
is defined as the number of levels in the decomposition i.e. the
maximal number of nodes in a path relating a leaf to the root.
The width corresponds to the maximal number of nodes in a
level. Remark that the RBT is in fact a top-down directed graph
[6].

Both height and width are important characteristics of a RBT
representing a given OCP and may be used as criteria in order to
establish a fine comparison between different OCP’s through
their associated RBT’s. We’ll see further a third criterion
leading to a finer comparison. Let us add that for a given RBT,
we may define in general several level decompositions having
the same height but different widths [6].

On the other hand, the height may be seen as the number of
successive steps required to perform the chain product, whereas
the width may be considered as the number of independent
substeps involved by each step. Height and width may be easily
bounded as follows [5]:

log2 n ≤ h ≤ n-1 ; 1 ≤ w ≤ n/2

The height upper bound (n-1) and width lower bound (1) are
both reached for a chain-structured RBT and mean that each
step involves only one substep. Two particular associated OCP’s
are the standard left-right parenthesization (LRP) i.e.
((…((A1A2)A3)…)An-1)An) and its symmetric, the right-left
parenthesization (RLP) i.e. (A1(A2(…(An-2(An-1An))…). On the

other hand, the height lower bound (log2n) and width upper

bound (n/2) correspond, particularly when n is a power of 2, to
a complete binary tree (CBT). The corresponding parenthesi-
zation is induced by the so called Associative Fan In Algorithm
(AFIA) whose basic principle is to combine the chain matrices
couple by couple. One may think that a CBT is an optimal RBT
i.e. the best suited for the parallel computation of the chain since

the maximal number of matrix couples is performed in parallel.
Although this case corresponds to the maximal parallelism
degree, it scarcely corresponds to an OCP and may induce a
higher amount of computations (see the experimental study
further). In fact, one very decisive criterion is as detailed below.

Let us consider a path relating a leaf to a root in the RBT.
Clearly, it involves h nodes. Such a path is called critical if the
sum of the costs (or weights) of its h nodes is maximal, the cost
(or weight) of a node being the number of operations required to
perform the corresponding matrix product. Using the standard
terminology in parallel computing, the RBT is called a task
graph where each task corresponds to a node and has a cost (the
cost or weight of the node). It is well known that, disposing of
an unlimited number of (identical) processors, the optimal (i.e.
minimal) time to execute the task graph, i.e. compute in parallel
the matrix products of the RBT, is equal to the cost of a critical
path (ccp) [5][6][7]. Remark here that a number of processors
equal to the width w of the RBT is sufficient to reach this
minimal time [6][8]. Therefore, given different OCP’s and their
associated RBT’s, we’ll use for their comparison, in addition to
the heights and widths, the discriminating ccp criterion.

B. Improved Greedy algorithms GA1’ and GA2’

Consider a chain of n square matrices A1,…, An of size, say p,
where each matrix may be either dense (�:D), lower triangular
(�:L) or upper triangular (�:U).

Let c(AB) be the cost (number of operations) required for
computing two square matrices of size p where A and B are
either D, L or U. Concerning both structures and costs, we recall
that :

• ��=�;��=�;��=�;��=�;��=�;��=�;
��=�;��=�;�� =�

• c(DD)=2p3+O(p2); c(DU)=c(UD)=c(DL)=c(LD)=p3+O(p2)

• c(LU)=c(UL)=2p3/3+O(p2); c(LL)=c(UU)=p3/3+O(p2)

Therefore c(DD) = 2c(DU) = 2c(UD) = 2c(DL) = 2c(LD)
 = 3c(UL) = 3c(LU)
 = 6c(LL) = 6c(UU)

Remark that (i) the highest (resp. lowest) cost occurs when
both A and B are dense (resp. triangular of same structure) and
(ii) combining an L matrix with a U one creates a D one. These
relations are in fact at the basis of the two greedy algorithms
introduced in [5]. Their basic idea consists in avoiding,
whenever it is possible, to increase the number of D-matrices,
since a new D-matrix is created when combining an L one with
a U one.

The greedy algorithms, denoted GA1 and GA2, involve in
fact two phases as follows:

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.19-27

ISSN 2356-5608

• A compressing phase consisting in computing every sub-
chain involving matrices of same structure. The LRP (→) or
the RLP (←) are used here. This leads to a compressed chain
(CC) where any two successive matrices are necessarily of
different structures.

• Compute the CC by avoiding the creation of new D
matrices.

Remark that the authors considered several cases in this second
phase and precised for each a procedure leading to a final OCP.

The following example illustrates GA1 and GA2:

n=15, C = DDDDDUDDLUUDLDL, MNO= (21+1/3) p3 (we
restrict MNO and ccp to p3 terms for sake of simplicity)

• GA1: final result : (h,w,ccp) = (12,3,19)

- Phase 1: C = ((((DD)D)D)D)U(DD)L(UU)DLDL
 � CC = DUDLUDLDL
- Phase 2: CC = (((((((DU)D)L)U)D)L)D)L

• GA2 : final result : (h,w,ccp) = (8,5,15)

- Phase 1: CC = DUDLUDLDL (same as in GA1)
- Phase 2: CC = (((DU)((DL)U)))(DL))(DL)

We can see that GA2 improves GA1 (lower h, larger w and
lower ccp).

We underline the fact that for a subchain involving matrices

of same structure, any parenthesization is optimal i.e. leads to
the same number of operations (NOP). Therefore, we may
choose anyone. Our first contribution consisted in improving
both GA1 and GA2 by designing two new algorithms, denoted
GA1’ and GA2’, where we used, in the two phases, the
Associative Fan-In algorithm (AFIA) when combining matrices
of same structure in order to increase the parallelism degree of
the final OCP.

Remark. As previously precised AFIA combines matrices
couple by couple. Let m be the length of the processed chain.
When m=2q, there is only one chain parenthesization (CP). For
instance, for m=8, we get the following CP:
 ((((A1A2)(A3A4))((A5A6)(A7A8)))).

But, when m is not a power of 2, we may define several CP’s.
For instance for m=7, we have the following CP’s:

((A1A2)(A3A4))((A5A6)A7) ; ((A1A2)(A3A4))(A5(A6A7))
((A1A2)A3)((A4A5)(A6A7)) ; (A1(A2A3))((A4A5)(A6A7)) …

Therefore, when applying AFIA several times on successive
subchains whose lengths are not powers of 2, we must choose
judicious CP’s. It could be done by defining in this case a

completed chain whose length is m*=2q where q = log2n, the
m*- m created matrices being of size 0.

We can now describe algorithms GA1’ and GA2’ as follows
(Fig. 1) by adopting the same notations as in [5]:

GA1’ GA2’

Phase1

Compression phase: compute the product of every subchain involving matrices of same structure by using AFIA. Let CC be the
obtained compressed chain.

Phase2

Case 1. CC involves no D matrix: compute CC according to either LRP (→) or RLP (←)

Case 2. CC involves at least one D matrix.
CC may be written as follows: CC=C1DC2
where C1 involves no D-matrix but
C2 may involve.
� C1=Ø: compute DC2 according to
LRP.
� C2=Ø: compute C1D according to
RLP.
� C1≠Ø, C2≠Ø: Compute C1D ac-
cording to RLP. Then, the result being a
D-matrix, compute DC2 according to
LRP. An alternative consists in computing
DC2 according to LRP. Then, the result
being a D-matrix, compute C1D according
to RLP.

Case 2. CC involves at least one D-matrix. CC may be written as follows:
CC=C1DC2D…CiD…Cr-1DCr where each subchain Ci, i=1…r, involves no D matrix.

� C1=Cr=Ø i.e. CC=DC2DC3…CiD…Cr-1D : compute DCi, i=2…r-1, according to
LRP. Then compute the resulting chain involving r-1 D-matrices according to AFIA

� C1=Ø, Cr≠Ø i.e. Cc=DC2DC3…CiD…Cr-1DCr : compute DCi, i=2…r, according to
LRP. Then, compute the resulting chain involving r-1 D-matrices according to AFIA.
� C1≠Ø, Cr=Ø i.e. Cc=C1DC2DC3…CiD…Cr-1D: compute CiD, i=1…r-1, according
to RLP. Then, compute the resulting chain involving r-1 D-matrices according to
AFIA.
� C1≠Ø, Cr≠Ø i.e. Cc=C1DC2DC3…CiD…Cr-1DCr : compute CiD, i=1…r-1, ac-
cording to RLP. Then, (i) compute the resulting chain involving r-1 D-matrices
according to AFIA; (ii) compute DCr according to LRP. Or symmetrically compute
DCi, i=2…r, according to LRP. Then (i) compute the resulting chain involving r-1 D-
matrices according to AFIA; (ii) compute (C1D) according to RLP.

Fig. 1 Greedy Algorithms GA1’ & GA2’

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.19-27

ISSN 2356-5608

As for GA1 and GA2, GA1’ and GA2’ are obviously of
linear complexity i.e. O(n).

We reconsider the previous example:

n=15, C = DDDDDUDDLUUDLDL, MNO= (21+1/3) p3

• GA1’: final result : (h,w,ccp) = (11,4,17)
- Phase 1: C = (((DD)(DD))D)U(DD)L(UU)DLDL
 � CC = DUDLUDLDL
- Phase 2: CC = (((((((DU)D)L)U)D)L)D)L

• GA2’: final result : (h,w,ccp) = (6,6,11)
- Phase 1: CC = DUDLUDLDL (same as in GA1’)
- Phase 2: CC = ((DU)((DL)U))((DL)(DL))

This leads to the following RBT’s (Fig. 2). We can see that
GA1’ improves GA1 (lower ccp) and GA2’ improves GA2
(lower ccp).

Fig. 2 RBT’s for GA1, GA1’, GA2 and GA2’

C. New Greedy Algorithms GA3 and GA4

1) GA3: It involves 3 phases. The first is, as for GA1’ and
GA2’, a compressing phase. Remark here that combining D-
matrices is not necessary and is postponed in GA3. Let CC be
the compressed chain. In the second phase, two cases have to be
considered. The first occurs when CC involves no D-matrix.
Here we can use either LRP or a RLP. We may also mix the
two. The second case occurs when CC involves at least one D-
matrix. The idea consists here in successively combining lowest
cost couples as much as possible i.e. we begin by couples LD,
DL, UD, DU until only D-matrices remain. Then we use AFIA
to combine the remaining D-matrices.

GA3 is detailed below.

• Phase1 : LU Compressing phase

Compute every subchain involving matrices of same structure
for only L and U (D’s are not considered) according to AFIA.
The compressed chain may be written as follows:

CC = C1D
*C2D

*…CiD
*…Cr-1D

*Cr, where each subchain Ci,
i=1…r involves no D-matrix and D* is a subchain of D-matrices.

• Phase 2 : Two cases have to be considered :

(i) Case 1. CC involves no D-matrix: compute CC according
to either LRP or RLP. The two may also be combined.
(ii) Case 2. CC involves at least one D-matrix. Proceed as
follows.

- Step1. C1≠Ø : compute C1D according to RLP.
- Step2. Cr≠Ø : compute DCr according to LRP.
CC may now be written a follows :
CC = D*C2D

*…CiD
*…Cr-1D

* . Each subchain Ci may be
split into two subchains Ci1 and Ci2 of nearly same
lengths.
- Step3. For each subchain D*Ci1Ci2D

*, compute DCi1
according to LRP and Ci2D according to RLP.

• Phase 3: Compute the resulting chain involving only D-
matrices according to AFIA.

We reconsider the previous example:

n=15, C = DDDDDUDDLUUDLDL, MNO= (21+1/3) p3 (MNO
and ccp are given in terms of p3 for sake of simplicity).

Final result : (h,w,ccp) = (6,6,9+1/3)

• Phase 1: C = DDDDDUDDL(UU)DLDL
 � CC = DDDDDUDDLUDLDL

• Phase 2:
- Step1 : CC = DDDDDUDDLUDLDL (no modification)
- Step2 : CC = DDDDDUDDLUDL(DL)
 � CC = DDDDDUDDLUDLD
- Step3 : CC = DDDD(DU)D(DL)(UD)(LD)

• Phase 3: CC = (((DD)(DD))((DD)(DD)))D

The OCP is C = (((DD)(DD))(((DU)D)((DL)((UU)D))))(L(DL))

Notice that GA3 improves GA2’ (lower ccp).

Remarks.

• Complexity. Phase 1 may be done in linear time by scanning
the initial chain and saving the cutting indices that will used by
AFIA. Phase 2 requires scanning the compressed chain in order
to detect the subchains involving only D-matrices and process
the CiD, DCi subchains. A linear time is also required here.
Phase 3 requires scanning the obtained chain in order to find the
cutting indices that will be used by AFIA. Thus, an overall
linear time is required.

• Optimality. The proof is based on the two lemmas presented
in [5]. According to the latter, in an OCP, matrices of same type
(L or U) are necessarily combined together (Phase 1 in GA3).
Moreover, if the compressed chain CC involves no D-matrix,
both LRP and RLP are optimal (Phase 2-Case 1). When CC

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.19-27

ISSN 2356-5608

involves at least one D-matrix, an OCP consists in never
combining an L-matrix with a U-matrix (Phase 2-Case 2).

• When the input chain involves no D-matrix, it is computed,
after been compressed, according to either LRP or RLP. The
two ways lead in general to different OCP’s.

2) GA4: It involves like GA3 three phases. The first and third
are the same as in GA3. In fact, only Step 3 of Case 2 in Phase 2
is different.

 We detail GA4 below.

• Phase1 : LU Compressing phase same as in GA3

• Phase 2 : Two cases have to be considered :
(i) Case 1. Same as in GA3.
(ii) Case 2. CC involves at least one D-matrix. Proceed as
follows.

- Step1. C1≠Ø : compute C1D according to RLP.
- Step2. Cr≠Ø : compute DCr according to LRP.
CC may now be written a follows:
CC = D*C2D

*…CiD
*…Cr-1D

*. Each subchain Ci may be
split into two subchains Ci1 and Ci2 of nearly same
lengths.
- Step3. For each subchain D*Ci1Ci2D

*, compute DCi1
according to LRP and Ci2D according to RLP. If the
subchains D* involve more than 3 D-matrices (i.e.
D*=DD#D), then compute its inner subchain (D#)
according to AFIA.

• Phase 3 : Same as in GA3.

Remark that GA4 is clearly of linear complexity.

We use the previous example to illustrate the approach:
n=15, C = DDDDDUDDLUUDLDL, MNO= (21+1/3) p3 (MNO
and ccp are given in terms of p3 for sake of simplicity).

Final result : (h,w,ccp) = (5,6,8)

• Phase 1: CC = DDDDDUDDLUDLDL

• Phase 2:
- Step1 : CC = DDDDDUDDLUDLDL (no modification)
- Step2 : CC = DDDDDUDDLUDL(DL)
 � CC = DDDDDUDDLUDLD
- Step3 : CC = (DD)(DD)(DU)D(DL)(UD)(LD)

• Phase 3: CC = ((DD)(DD))((DD)D)

The OCP is C = (((DD)(DD))((DU)D))((((DL)(UU)D))(L(DL)))

The induced RBT’s for GA2’, GA3 and GA4 are as follows.

We can see from Fig. 3 that GA3 improves GA2’ and GA4
improves GA3 (lower ccp).

Fig. 3 RBT’s for GA2’, GA3 and GA4

A comparative table including the 6 GA’s, LRP, RLP and AFIA
is given below.

TABLE I
CHARACTERISTICS OF OCP’S AND NON OCP’S

Algorithm MNO h w ccp

GA1 21+1/3 12 3 19

GA2 21+1/3 8 5 15

GA1’ 21+1/3 11 4 17

GA2’ 21+1/3 6 6 11

GA3 21+1/3 6 6 9+1/3

GA4 21+1/3 5 6 8

LRP NOP=22 14 1 22

RLP NOP=22 14 1 22

AFIA NOP=22+2/3 4 7 8

We can see that GA4 as well as AFIA gave the best ccp.
However, AFIA is not optimal since it does not correspond to an
OCP and requires 4p3/3 more operations than GA4.

III. COMPARATIVE EXPERIMENTAL STUDY

We achieved a series of experimentations in order to
establish an accurate performance evaluation of the four
designed algorithms. Intra and inter-algorithm comparative
studies were also done. For this purpose we used the following
parameters:

• MNO, h, w, ccp (previously defined)

• Intra-algorithm speed-ups :
- S1=MNO/ccp_GA1 ; S1’=MNO/ccp_GA1’
- S2=MNO/ccp_GA2 ; S2’=MNO/ccp_GA2’
- S3=MNO/ccp_GA3 ; S4

 =MNO/ccp_GA4

• Inter-algorithm versions speed-ups :
- S11’= ccp_GA1/ccp_GA1’ ; S22’= ccp_GA2/ccp_GA2’

• Inter-algorithm speed-ups :
- S1’2’= ccp_GA1’/ccp_GA2’; S1’3=ccp_GA1’/ccp_GA3
- S1’4 = ccp_GA1’/ccp_GA4 ; S2’3= ccp_GA2’/ccp_GA3
- S2’4 = ccp_GA2’/ccp_GA4 ; S3 4 = ccp_GA3 /ccp_GA4

• Speed-ups with regard to AFIA :
- S3A= ccp_AFIA/ccp_GA3 ; S4A= ccp_AFIA/ccp_GA4

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.19-27

ISSN 2356-5608

TABLE II
 MNO (GA’S), NOP (AFIA) AND RBT STRUCTURE

n MNO
GA1 GA1’ GA2 GA2’ GA3 GA4 AFIA

h w h w h w h w h w h w NOP h w

50 188 35 11 35 12 19 17 12 18 9 17 8 18 240 6 25

75 251 50 18 50 19 15 27 10 28 9 29 10 31 337 7 37

100 361 71 24 71 25 27 37 11 38 10 38 9 39 459 7 50

125 430 83 26 83 30 27 37 20 41 14 45 12 45 552 7 62

150 551 95 37 95 43 36 51 12 57 11 52 11 56 707 8 75

175 637 130 36 130 38 50 62 14 64 11 65 10 66 817 8 87

200 638 136 47 136 51 42 66 13 70 11 72 11 72 845 8 100

225 800 151 47 151 56 60 72 14 81 15 81 12 81 1010 8 112

250 890 171 54 171 58 55 79 19 83 13 86 11 87 1132 8 125

275 960 184 61 181 69 65 88 16 96 13 101 11 101 1247 9 137

300 1099 202 68 202 76 65 89 14 97 13 109 12 111 1427 9 150

325 1159 216 70 214 83 76 102 18 115 13 116 11 116 1470 9 162

350 1308 239 79 239 86 86 110 14 117 13 124 11 126 1630 9 175

375 1310 253 88 253 98 88 125 14 135 13 143 12 143 1673 9 187

400 1412 260 85 257 103 89 123 16 141 13 146 13 148 1826 9 200

TABLE III
MNO , NOP AND CCP

n MNO
ccp AFIA

GA1 GA1’ GA2 GA2’ GA3 GA4 NOP ccp

50 188 135 134 96 54 40 36 240 36

75 251 192 192 87 39 39 48 337 42

100 361 288 288 156 48 46 42 459 42

125 430 324 324 156 72 57 59 552 42

150 551 381 381 207 57 48 48 707 48

175 637 528 528 282 60 48 48 817 48

200 638 525 525 243 57 49 53 845 48

225 800 607 607 334 58 64 54 1010 48

250 890 672 672 327 81 60 54 1132 48

275 960 744 726 387 64 58 54 1247 54

300 1099 792 792 381 66 58 54 1427 54

325 1159 870 858 450 81 60 54 1470 54

350 1308 963 963 504 66 61 54 1630 54

375 1310 1014 1014 516 63 56 54 1673 54

400 1412 1014 1014 504 72 63 60 1826 54

We precise that we choosed 90 values for n in the range [5
450] and 3 input chains for each n. The input chains were
randomly generated. The above tables depict excerpts of the
results we obtained. MNO (for the GA’s) and NOP (number of
operations for AFIA) are given in terms of p3/3 for sake of
simplicity.

The analysis of the above results leads to the following
remarks:

• The height of the RBT in GA1’ (resp.GA2’) is always
lower or equal than the height in GA1 (resp. GA2).

• The width of the RBT in GA1’ (resp.GA2’) is always
larger than the width in GA1 (resp. GA2).

• The width of the RBT in GA3 and GA4 is always larger
than the width in GA2’.

• The largest width is given by AFIA.

The series of tests we achieved (excerpts are depicted in
Tables II and III) permit to rank the different algorithms
according to the induced ccp’s (see Fig. 4). We have the
following:

• GA4 (resp. GA3) gave the lowest ccp in 75% (resp. 39%)
of the cases and was exclusively the best in 59% (resp. 23%)
of the cases.

• GA2’ gave the lowest ccp in 2% of the cases and was
exclusively the best in 1% of the cases.

We have to add that AFIA gave the lowest ccp in 86% of the
cases and was exclusively the best in 36% of the cases.
However, it never induced an OCP.

Intra-algorithm speed-ups (based on Tables II and III and
depicted in Fig. 5 and Table IV below) illustrate the previous
remarks.

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.19-27

ISSN 2356-5608

Fig. 4 Ranking of the GA’s according to ccp

Fig. 5 Intra-algorithm speed-ups

TABLE IV
 INTRA-ALGORITHM SPEED-UP VARIATION INTERVAL

Speed-up

Variation Interval S1 S1’ S2 S2’ S3 S4

Lower bound 1.21 1.21 1.96 3.48 5.22 6.44

Upper bound 1.39 1.4 2.89 20.79 23.39 24.26

Fig. 6 Inter-algorithm versions speed-ups

Fig. 7 Inter-algorithm speed-ups

TABLE V
 INTER-ALGORITHM SPEED-UP VARIATION INTERVAL

Speed-up

Variation Interval S1’2’ S1’3 S2’3 S1’4 S2’4 S34

Lower bound 2.48 3.35 0.91 3.72 0.81 0.81

Upper bound 16.1 18.11 1.35 18.78 1.5 1.19

From Fig. 6, we can remark that parallel GA2’ is always
faster (until 8 times) than parallel GA2. We hence deduce the
improvement introduced relatively to both GA1 and GA2.

As to intra-algorithms speed-ups, we particularly notice that
parallel GA3 and parallel GA4 are always better than the others
(see Fig. 7 and Table V). To be more exhaustive, we have:

• Parallel GA2’ is always better than parallel GA1’ since
S1’2’ belongs to the interval [2.48 16.1].

• Parallel GA4 is almost always better than parallel GA2’
since S2’4 is larger than 1 in 99% of the cases (see Fig. 7).

• Parallel GA3 is closely behind parallel GA4 i.e. S34
belongs to [0.81 1.19].

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.19-27

ISSN 2356-5608

If we compare GA3 and GA4 with AFIA which corresponds
to the more intuitive parallel algorithm for computing the matrix
chain, we can see that the two former gave ccp’s very close to
AFIA ccp (see Fig. 8). However, AFIA never gave an OCP and
required 29% to 70% more (sequential) operations than the
others. For this reason, AFIA is to be rejected.

Fig. 8 Speed-ups GA3 and GA4 vs AFIA

We can therefore conclude that the experimental study
confirmed the interest of GA3 and GA4 vs GA1 and GA2.
Needless to say that none is always the best.

IV. CONCLUSION

In this paper, we studied a particular variant of the matrix
chain product problem, namely a chain involving square dense
and triangular matrices. We proposed new linear complexity
greedy algorithms suited for an efficient parallel computation of
the chain matrix according to an optimal chain parenthesization.

The results we obtained enable us to precise the following
interesting points that deserve to be studied:

• Given an OCP and the corresponding RBT and its tuple
(h,w,ccp), determine the least number of processors pmin
(≤w) permitting the parallel computation of the chain matrix
in optimal time i.e. equal to ccp.

• Define and study the impact of other discriminating criteria
when comparing OCP’s inducing the same ccp.

• Achieve a series of experimentations on a target parallel
computer (e.g. multicore machine) in order to evaluate the
practical performances of the designed algorithms.

REFERENCES

[1] S. Ezouaoui, F. Ben Charrada, and Z. Mahjoub, “On instances of the
matrix chain product problem solved in linear time”, in Proc. ROADEF

09, Nancy, France, 2009.
[2] H. Lee, J. Kim, and S. Lee, “Evaluation of matrix chain products on

parallel systems”, in Proc. PDCS’97, Louisiana, U.S.A, 1997.
[3] S. S. Godbole, “An efficient computation of matrix chain products”, IEEE

Trans. Computers, vol. 22(9), pp. 864-866, 1973.
[4] H. Lee, J. Kim, S. Je Hong, and S. Lee, “Processor allocation and task

scheduling of matrix chain products on parallel systems, IEEE Trans. on

Parallel and Distributed Systems, vol. 14, pp. 394-407, 2003.
[5] F. Ben Charrada, S. Ezouaoui, and Z. Mahjoub, “Greedy algorithms for

optimal computing of matrix chain products involving square dense and
triangular matrices, RAIRO-OP, vol. 45, pp. 1-15, 2011.

[6] M. Cosnard, and D. Trystram, Algorithmes et Architectures Parallèles,
InterEditions, 1993.

[7] F. Karoui-Sahtout, “Contribution à la conception d’un analyseur statique
de programmes parallèles”, M. Eng. thesis, Faculty of Science of Tunis,
Tunis, Tunisia, 1996.

[8] Z. Mahjoub, and F. Karoui-Sahtout (1994). “Maximal and optimal
degrees of parallelism for a parallel algorithm”, in Proc. Transputers'94,
Arc et Senans, France, 1994.

