
Further Analysis of the Period-Three Route to Chaos
in Passive Dynamic Walking of a Compass-Gait

Biped Robot

Hassène Gritli
Direction Générale des Etudes Technologiques

Institut Supérieur des Etudes
Technologiques de Kélibia
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Abstract—This paper continues our investigations into the
period-three route to chaos exhibited in the passive dynamic
walking of a compass-gait biped robot [8]. The further analysis
on the resulting chaos is made by Lyapunov exponents and fractal
dimension. The chaotic attractor, its first return and its basin of
attraction are presented. In addition, the study of the period-3
passive gait is also performed. The balance between potential and
kinetic energies has been illustrated. Furthermore, the limit cycle
in phase space, the temporal evolution and the basin of attraction
of this period-three gait were also presented in the paper.

I. INTRODUCTION

One of the most interesting applications of robotics is
the analysis of human walking through various prototypes
bipeds. Studies were found to solve some problems related
to the stability of human walking and also in relation to
the design of active and passive prostheses of lower human
members. However, despite its simplicity, human walking is
considered as a very complex dynamic system and it is not
well understood. Dynamic walking biped robots is modeled
by an impulsive hybrid nonlinear dynamics. In order to obtain
a synergy between human walking gaits and study of biped
robots , a two-link biped mechanism will be a good experi-
mental/theoretical base model.

In the concept of bipedal robotics, passive dynamic walking
has attracted the attention of many researchers and has been
considered as the starting point for the control of biped robots.
Passive dynamic walking is a form of bipedal locomotion for
which a biped robot requires no exogenous source of energy,
but it uses gravity to walk on an inclined plane. This walking
mode solves the problem of energy consumption of bipedal
robots and achieve maximum energy efficiency. In addition, the
use of passive dynamics should also get additional insights into
the design principles of pedestrian locomotion in nature. The
best-known biped robot using the passive dynamic walking
is the compass- gait biped robot. This biped is a two link
mechanism that was originally designed in 1996 by Goswami
et al. [1], [2]. These researchers have shown that this type
of bipedal walking can generate chaos and period doubling
bifurcations. Until today, many researchers are working on
passive dynamic walking of the compass biped robot and other
simple biped robots to find other properties that can help in the

understanding of human walking. Thus, chaos on the passive
dynamic walking of biped robots has been studied and several
properties of the chaotic gaits are noticed. Authors in [10], [11]
investigated chaos in the passive walking model of a point-foot
walker.

We have recently shown that a cyclic-fold bifurcation is
generated in the passive dynamic walking of the compass-
gait biped. This bifurcation gives rise to a cascade of period-
doubling bifurcations and a resulting route to chaos [8]. This
bifurcation creates a pair of a period-3 stable gait and a period-
3 unstable gait. In addition, we have shown that the passive
gait of a biped robot with unequal leg length displays also the
cyclic-fold bifurcation with a hysteresis [4]. In addition, we
have shown in in [6] that this walking locomotion has two
additional routes to chaos namely the intermittency route and
the interior-crisis route. We also showed in in [5], [7] that
the compass-gait biped robot falls because of the emergence
of a global bifurcation known as the boundary crisis. This
type of global bifurcation is generated mainly through the
unstable period-3 limit cycle. In [3], we used an energy-
tracking controller to stabilize and follow the period-3 passive
dynamic walking of the compass biped robot. In [9], we
controlled chaos exhibited in passive dynamic walking of the
compass-gait biped robot to obtain a period-1 stable gait.

In this paper, we will analysis the passive dynamic walking
of the compass-gait biped robot. We will give more results
on the period-three passive limit cycle and the corresponding
route to chaos. Our analysis focuses first on the calculation of
Lyapunov exponents and fractal dimension to quantify order
and chaos. We will present different attractive structures of the
chaotic attractor. The Poincaré first return map of the chaotic
attractor and its basin of attraction are also presented. More-
over, we study the period-three passive limit cycle in the bi-
dimensional phase space, the time evolution of different state
variables, and the balance of kinetic and potential energies. We
also study the basin of attraction of the period-three passive
gait compared to the basin of attraction of the period- one
passive gait.
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II. PASSIVE DYNAMIC WALKING OF THE COMPASS-GAIT
BIPED ROBOT

A. The Compass-Gait Biped Robot

Fig. 1 provides an illustrative representation of the
compass- gait biped robot where the important parameters
in the dynamics description are given in Table I [2], [8].
Such biped robot is a subclass of rigid mechanical systems
subject to unilateral constraints. The compass- gait biped
robot is composed of a stance leg and a swing leg. The two
legs are modeled as rigid bars without knees and feet, and
with a frictionless hip. For adequate initial conditions and a
corresponding slope angle φ, the compass-gait biped robot
performs a passive walk without any external intervention.
However, it is powered only by gravity. The passive walking
dynamics of the compass-gait biped robot robot is limited in
the sagittal plane and is mainly composed of two phases: an
oscillation (swing) phase and an impact phase. In the first case,
the biped is modeled as a double pendulum. The latter case
occurs when the swing leg strikes the ground and the stance leg
leaves the ground. In Fig. 1, θs is the support angle, whereas
θns is the nonsupport (swing) angle.

B. Impulsive Hybrid Non-Linear Dynamics

It is well known up to now that the dynamic model of
the passive walking of the compass-gait biped robot consists
of nonlinear differential equations for the swing phase and
algebraic equations for the impact phase [8].

1) Continuous Dynamics of the Swing Phase: Let θ =
[ θns θs ]

T be the vector of generalized coordinates of the
compass-gait biped robot. The motion of the compass-gait

Fig. 1. The compass-gait biped robot down a walking surface of slope φ.

TABLE I. PARAMETERS SPECIFICATION OF THE COMPASS-GAIT BIPED
MODEL

Symbol Description Value

a Lower leg segment 0.5 m
b Upper leg segment 0.5 m
m Mass of leg 5 kg
mH Mass of hip 10 kg
g Gravitational constant 9.8 m/s2

biped robot is described by the following Lagrangian system :

J (θ)θ̈ +H(θ, θ̇) + G(θ) = 0 (1)

This continuous dynamics is indeed subject to the follow-
ing natural unilateral constraints:

Ω =
{
θ ∈ ℜ2 : Φ(θ) = l (cos(θs + φ)− cos(θns + φ)) > 0

}
(2)

with l = a+ b.

Matrices in (1) are defined by:

J (θ) =

[
mb2 −mlbcos(θs − θns)

−mlbcos(θs − θns) mH l2 +m(l2 + a2)

]
,

H(θ, θ̇) =

[
mlbθ̇2ssin(θs − θns)

−mlbθ̇2nssin(θs − θns)

]
,

G(θ) = g

[
mbsin(θns)

−(mH l +m(a+ l))sin(θs)

]
.

2) Algebraic Equations of the Impact Phase: Algebraic
equations of the impact phase are given by:{

θ+ = Reθ
−

θ̇+ = Seθ̇
− (3)

where subscribes + and − denotes just after and just before
the impact phase, respectively.

Matrices in (3) are defined by: Re =

[
0 1
1 0

]
,

Se = Q−1
p (θ)Qm(θ), with

Qm(θ) =

[
−mab −mab+ (mH l2 + 2mal)cos(2α)

0 −mab

]
,

and
Qp(θ) =

[
mb2 − µ l2 (mH +m) +ma2 − µ

mb2 −µ

]
, where

µ = mblcos(2α) and α = 1
2 (θs − θns) is the half-interleg

angle (see Fig. 1).

The impact phase occurs when:{
Φ1(θ) = l (cos(θs + φ)− cos(θns + φ)) = 0

Φ2(θ, θ̇) = ∂Φ1(θ)
∂θ θ̇ < 0

(4)

C. Passive Walking Patterns of the Compass Biped

The bifurcation diagram of Fig. 2a offers all passive gaits
of the compass biped robot [7], [8], [9]. Here, the bifurcation
parameter is the angle of the slope φ . In this bifurcation
diagram, the blue attractor A1 is the classic behavior exhibited
by the compass-gait biped robot: a cascade of period-doubling
bifurcations leading to chaos. However, the pink attractor A2

is that recently found by us in [8]. This attractor reveals a
scenario of period-3 route to chaos. Fig. 2b shows clearly this
route. The attractor A2 was born by the cyclic-fold bifurcation
(marked as CFB). This bifurcation occurs at φ = 3.8734 deg.
At this bifurcation, a period-three stable periodic orbit (p3-
SPO) collides with a period-3 unstable periodic orbit (p3-
UPO). This p-3 UPO is responsible for generating a double
boundary crisis (marked as BC), which is the main cause of the
fall of the compass-gait biped robot [7]. For the conventional
attractor A1, the route of period-doubling to chaos is born
from a period-1 stable gait (p1-SPO). Chaos is terminated by
the boundary crisis at φ = 5.201 deg. However, in Fig. 2b,
the period-three stable gait exhibits a period-doubling leading



(a)

(b)

Fig. 2. Bifurcation diagrams: step period as a function of the slope angle φ.
(b) is an enlargement of (a).

to the formation of chaos. Chaos is found to be dead at
φ = 4.0036 deg. Some periodicity windows (PW) appeared.
The window that is marked by p9-PW in Fig. 2b reveals a
scenario of period-doubling route to chaos from a period-9
passive gait [8].

III. ANALYSIS OF THE PERIOD-THREE ROUTE TO CHAOS

A. Investigation of Order/Chaos via Lyapunov Exponents and
Fractal Dimension

Since the passive dynamics of the compass-gait biped robot
is four-dimensional, then we have four Lyapunov exponents.
Variation of the spectrum of the Lyapunov exponents and the
fractal Lyapunov dimension with respect to the slope angle φ
are given by Fig. 3a and Fig. 3b, respectively. Fig. 4 presents
the two largest Lyapunov exponents λ1 and λ2. These diagrams
are depicted for slopes between 3.85 deg and 4.02 deg. Recall
that the cyclic-fold bifurcation is born at φ = 3.8734 deg, and
chaos of the attractor A2 is terminated at φ = 4.0036 deg. The
phenomenon of period-three route to chaos occurs between

3.8734 deg and 4.0035 deg. Outside of this range, the passive
walking pattern is of period-1 (marked as p1-SPO). Obviously,
in this range, the first (largest) Lyapunov exponent λ1 is zero
while the three remaining Lyapunov exponents are negative for
slopes between 3.8734 deg and 3.9708 deg. In this interval of
slopes, the passive gait of the compass biped robot is peri-
odic and it exhibits a cascade of period-doubling bifurcations
when the slope angle increases. The period-doubling (PD)
phenomenon is expressed in each diagram with a cascade of
parabolic curves. Furthermore, the attractor dimension remains
almost constant at an integer value 1 when the gait is periodic
except at the period-doubling bifurcations where the Lyapunov
dimension is equal to 2.

However, for slopes higher than 3.9708, the largest Lya-
punov exponent, λ1 (λ2), oscillates between positive (zero) and
zero (negative) values corresponding to chaotic and periodic
gaits. The two other Lyapunov exponents, λ3 and λ4, remain
always negative. The periodic gaits bring in fact about the
existence of periodicity windows in the chaotic regime. In
addition, we emphasize that λ1 reaches its highest value which
is equal to 0.3 at φ = 4.0035 deg. Moreover, when the passive
walking pattern is chaotic, the Lyapunov dimension is found
to be higher than 2 and increases to reach its maximum fractal
value 2.15 at φ = 4.0035 deg.

B. Investigation of the Chaotic Attractor

1) The Chaotic Attractor and its First Return Map: Fig. 5
shows different forms of the chaotic attractor in different
phase-spaces for the slope angle φ = 4.0035 deg. The passive
dynamic walking is described by a complete disappearance
of order and is an extreme case of an asymmetric gait and
affirming thus that the attractor is chaotic.

Obviously, in Fig. 5b and Fig. 5c, the form of the chaotic at-
tractor is quite attractive. Fig. 5b shows the chaotic attractor in
2D plotted with respect to the angular velocities of the two legs
of the compass-gait biped robot. The chaotic attractor seems
like a butterfly. In addition, Fig. 5c manifests another structure
of the chaotic attractor plotted in the three-dimensional state-
space. The chaotic attractor has the shape of a heart. The
largest Lyapunov exponent and the fractal dimension were
computed to be about 0.3 and 2.15, respectively.

Fig. 6 shows the Poincaré first return map in 2D. Fig. 6b
is an enlargement of Fig. 6a. The first return map is composed
of an infinite number of points irregularly distributed in three
curved arcs. By expanding the right part (Fig. 6b), we note that
the Poincaré first return map consists of several closed lines
separated by empty spaces. This confirms that the attractor is
chaotic and it has a fractal dimension.

2) Basin of Attraction of the Chaotic Attractor: Fig. 7
shows the basin of attraction of the chaotic gait and that of
the period-one gait. The pink set is the basin of attraction of
the chaotic attractor. However, the blue set reveals the basin of
attraction of the period-one gait. Here, the basin of attraction
is plotted for a fixed initial position of the two legs. We have
chosen θns = −21 deg, and θs such that θs+θns+2φ = 0. It
is obvious that the basin of attraction of the chaotic attractor is
smaller than that of the period-one passive gait. Thus, a small
perturbation on the initial conditions of the compass biped
robot can bring the behavior of the period-one passive walk



(a)

(b)

Fig. 3. Variation of Lyapunov exponents (a) and Lyapunov dimension (b) as
φ.

Fig. 4. Variation of the two largest Lyapunov exponents λ1 and λ2. This is
an enlargement of Fig. 3a.

(a)

(b)

(c)

Fig. 5. Chaotic attractor for φ = 4.0035 deg in different state-spaces.

to another completely different form of locomotion, i.e. the
chaotic gait.
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Fig. 6. First return map for φ = 4.0035 deg. (b) is an enlargement of (a).

Fig. 7. Basin of attraction of the chaotic attractor compared with that of the
period-one limit cycle for the same slope φ = 4.0035 deg.

C. Analyze of the Period-Three Gait

In this subsection, we focus on the analyze of the period-
three passive gait of the compass biped robot. Then, we choose
the slope angle φ = 3.92 deg.

1) Period-Three Gait in the Phase-Plane: Fig. 8 shows
the angular velocity of each leg as a function of its angular
position. In this state-space, small dark circles represent impact
points of each leg with the ground. Whereas, small dark
squares reveal states just after impact. Arrows are signs of
behavior transition of each leg. The cycle of the passive gait
consists of three steps in order that the compass robot returns
to its initial state which is marked by solid squares. From an
initial condition lying on the first cycle (marked by 1), the
compass biped follows the cycles from 1 to 3 before it returns
again to the first cycle.

Table II summarizes some characteristics of the period-
three gait. It is clear that, from the first step (cycle) to the
third step, the three quantities (namely the step length, the
average velocity and the mechanical energy) of the biped robot
increases. We showed in [3] that the increase in the average
velocity and in the step length could have a fundamental rule
for the control of the bipedal walking of the compass-gait biped
robot to the period-three passive gait.

2) Temporal Evolution: Fig. 9 shows the temporal evolu-
tion of both angular positions and angular velocities of the
two legs of the compass robot for φ = 3.92 deg. In fact, each
leg can be either a stance leg or a swing leg. It is evident
that the gait of the stance leg or the swing leg is of period-3.
Actually, there is some kind of alternation between the left
leg and the right one. Indeed, in spite of two successive steps
are different, the left leg recaptures after three steps the same
gait characteristic of the right leg. After exactly six steps,

Fig. 8. A typical period-three passive limit cycle of the compass-gait biped
for φ = 3.92 deg.

TABLE II. CHARACTERISTICS OF THE PERIOD-THREE PASSIVE GAIT.

Cycle number Step length (m) Average velocity (m/s) Mechanical energy (J)

1 0.5125 0.6355 153.9906
2 0.5824 0.8982 154.3163
3 0.6350 0.8937 154.8982



(a) (b)

(c) (d)

Fig. 9. Temporal evolution of the angular position (a and c) and the angular velocity (b and d) of the two legs of the compass biped for the period-three
passive gait. In (a) and (b), continuous curve is for the swing leg whereas dashed curve is for the stance leg. In (c) and (d), continuous curve is for the right
leg whereas dashed one is for the left leg.

the right leg picks up again its periodic gait. This alternation
phenomenon between the two legs is very special and reveals
some cooperation and coordination between the two legs of the
compass robot in order to obtain a period-three stable periodic
gait. Compared with the period-1 stable gait which is defined
as symmetric and two consecutive steps are indistinguishable,
the period-3 stable gait can have also some kind of symmetry.
This symmetry is reached by coordination between the two
legs of the compass robot to reach in consequence a successful
typical stable passive walk.

3) Energy Balance: Fig. 10 shows variation of the kinetic
energy of the compass-gait biped robot with respect to its
potential energy during a walking cycle (which consists of
three steps). This energy balance plot consists of constant
potential energies (dashed lines) reflecting the impact on the
ground, and parallel inclined lines indicating the swing phase.
In addition, each energy path (line BC, or EF, or HI) is a
straight line at an angle of 135 deg with the axis of the kinetic

energy. This confirms that the mechanical energy is evidently
constant during each step. The trajectory of the compass-gait
biped robot starts from the point A and follows the path
ABCDEFGHI. Points C, F and I are the touchdown points of
the swing leg with the ground. Horizontal lines CD, FG and
IA the instantaneous loss of the kinetic energy produced by
the impact with the walking surface. The mechanical energy
of the compass-gait biped robot for the three steps is indicated
in Table II. Obviously, the mechanical energies increases from
the first step to the third one.

4) Basin of Attraction of the Period-Three Gait: The basin
of attraction of the period-three gait and that of the period-one
gait are shown in Fig. 11. The blue set is the basin of attraction
of the period-one gait, whereas the pink set reveals the basin
of attraction of the period-three gait. The remaining white set
refers to the initial conditions from which the compass robot
falls down. The basin of attraction of the period-one gait is
depicted for the same slope angle φ = 3.92 deg. Each basin



Fig. 10. Potential energy as a function of kinetic energy of the compass-gait
biped robot for the period-three passive gait.

of attraction in Fig. 11 is plotted for a two state variables
of the compass-gait model. Fig. 11a is depicted for a fixed
initial position of the two legs of the compass biped robot. We
have chosen θns = −17 deg and θs = −2φ − θns, and we
have varied the angular velocities of the two legs. However,
Fig. 11b is plotted for a defined initial angular velocity of the
compass robot: θ̇ns = 20 deg/s and θ̇s = −50 deg/s.

IV. CONCLUSIONS

This work is a further study on passive dynamic walking
of the compass-gait biped robot on steep slopes. We have in-
vestigated the period-three route to chaos generated in passive
bipedal locomotion. We analyzed some characteristics of the
period-three passive gait. This analysis was conducted with
the state space, the time evolution, the energy balance and the
basin of attraction. In addition, our investigation on order/chaos
was carried out using the Lyapunov exponents and the fractal
Lyapunov dimension. Different and attractive forms of the
chaotic attractor have been illustrated. Its basin of attraction
was also shown.
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