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Abstract— Ensuring humanitarian demining operations 

required high level of reliability and accurate constraints. In 

order to enhance efficiency of demining operations, these 

constraints included more criteria in terms of time, cost, and 

safety enhancement of person and operation. In this article, we 

chose an automated approach for demining operations based on 

meta-heuristic algorithm. The demining system was represented 

by a multi-robotics system which operated in unknown 

landmines. The choice of meta-heuristic algorithms as 

coordinating strategy would improve temporal performances of 

the overall mine detection process. We studied temporal 

performances system through effects of minefields configuration 

variation and choice of coordinating algorithms. We presented a 

comparative study about use of ACO algorithm (as coordinating 

algorithm) for mine detection purpose. Especially we presented 

effect of evaporation pheromone rate variation on timing system 

performance. Multi-robotic demining systems were simulated for 

different mine land distributions and for three types of 

coordination algorithms. 

Keywords— multi-robotic, ACO algorithms, minefields 

distributions, evaporation pheromone rate, temporal performances. 

I.  INTRODUCTION  

At least, Standard demining clearance model operations 
(UNDHA standard)  must ensure 99.6% rate of successful 
mine detection, and a 100% of the same rate according to 
International Mine Action Standards (IMAS)[1-3]. Timing 
demining process performances are less important than 
personal safety, reliability and accuracy of the demining 
process. Replacing manual methods as primary procedure for 
humanitarian demining by robotized solutions should increase 
productivity by speeding up demining process reliably and 
safely.  Various demining treatments exit. This is due to use of 
different types of sensors and equipments to detect and 
neutralize landmines. In addition to this difficulty, the nature 
of landmines and the characterizations of any demining 
instrument, which should be 100% reliable, must be taken in 

consideration. the Application of Robotics research to 
demining operations purposes requires integration of various 
technologies including demining oriented functions like the 
adaptability to field mines distributions, type of control 
architecture, integration of heterogeneous sensors, 
autonomous navigation , coordination in the case of multi 
robots system, communication implementation, Machine 
intelligence and signal processing algorithms[1]. 

The exited robotic systems designed for demining 
operations have limited performances if we consider that these 
systems should explore unknown configuration field [4]. In 
addition, demining robots are equipped with high 
sophisticated technology instruments for mine detection and 
processing [5] rise mine clearance cost. Time optimization of 
demining operations becomes an important humanitarian 
objective if we consider the number of abandoned mines fields 
[6]. This optimization must respect security constraints 
attached to demining operator and enhance efficiency of 
demining tasks in time proceeding and energy consummation. 
According to [5, 6],various assistant tools were designed and 
tested to help automation demining process, limit risk of 
human error, and rise estimation of risk zone. Substitution of 
human operators by robotic agent participates with appropriate 
strategy in the realization of this goal [7]. However, the 
sophisticated robots agents and the distributions variety of 
mines field enhance the demining operations cost. This cost 
includes time demining operation, energy management, 
equipment, and security considerations. In this article, we 
explore the possible applications of multi-robot systems in 
time detection optimization of Mx% (maximum mine portion 
detected.) mines in particular case of field mine configuration. 
Adaptation of multi-robot systems for demining operations, 
induce the choice of an adaptable coordination algorithm. 
Demining operations are complex problems and they need 
meta-heuristic algorithms as coordination algorithms. Search 
and optimization algorithms have risen their exploration 
capabilities by including basic heuristic [8]. Many 
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evolutionary algorithms like ant colony optimization, genetic 
algorithms etc. solve difficult optimization problems in a 
reduced amount of time with approximate solution. At this 
stage, ACO algorithms represent a coordination algorithm 
used to optimize demining operations time with adaptable 
considerations as an example for solving foraging robots 
problem. 

This paper is organized as follows. In Sect. 2, we present 
works related to multi-robots application on demining 
operations. In particular these works include configuration 
constraints in the case of mine distribution, type of meta-
heuristics used for collaboration algorithms and performances 
metrics. Sect. 3 presents field mine distribution and 
collaboration models used in demining operations. Sect. 4 
describes simulation considerations for performed 
experiences. Sect. 5 lists and analyzes the simulations results.  

II. RELATED WORKS 

Multi-robots application in demining operations for 
humanitarian purposes represents an evaluation example of 
coordination strategy performance. Many researches such as 
[9-11]use specific coordination strategy in order to evaluate 
some criteria performances. General research organization 
starts with definition of collaboration Algorithms used in order 
to perform specific task. In our case we choose demining 
operations. Demining process includes many constraints 
related to the nature of minefield distribution and performance 
evaluation criteria. Some researches as in [9, 11, 12]give 
statistical studies on variety of spatial mine distribution in 
minefield. In fact, mines field spatial distributions in conflict 
zones are highly complex and varied. Landmine descriptions 
can’t be defined easily with deterministic clustering 
approaches. Landmine variety induces different mine 
distribution patterns. Different mines distribution can be used 
to test hypotheses for demining operations. However, other 
assumptions have influence on performances evaluation 
systems. Combining the different parameters (incidents, 
populations, roads, agriculture field, etc.) for defining mine 
field map, would allow the consideration of environmental and 
social conditions [6]. 

Simulation example given in [4] tests real case minefield 
distributions in order to realize an automatic estimator to 
mines localization. Mines distribution configuration represents 
limitation if we work in unknown environment. But in several 
cases, mines distribution can be modeled by stochastic model 
like in [5, 6, 12]. In other part efficiency of demining 
operations depend of scenario followed for each robotic agent. 

In other part, the choice of collaboration strategy 
represents other constraint. In fact, demining operations with 
multi-robots systems rises complexity of collaboration 
interactions [9, 13]. In this case application of suitable meta-
heuristic algorithms for multi-robot demining operations was 
performed in research such as [14-17]. Research studies focus 
on combined and modified heuristic (as is the case for Genetic 
algorithms, ACO algorithms, etc.) to enhance general 

performances of multi-robots systems. As a result, studies as 
[18] define evaluation metrics to quantify collaboration 
performance cost. Localization and distribution robotic agents’ 
configuration was taken as evaluation criteria. These criteria 
depend on applications constraints like possible robot agents 
interference [19]. A set of generic performance metrics was 
employed to evaluate each aspect of robotic demining 
systems. These performance metrics include demining 
processing speed to measure time elapsed until demining 
operations can be totally or partially achieved. In the rest of 
experimentations we will focus on temporal performance 
optimization using modified meta-heuristic algorithms. In 
particular, configuration parameters for minefield and 
coordination algorithm heuristic, as type of mine distributions 
and effects of evaporation pheromone rate, were treated in 
experimentations. Other performance metrics like: robotic 
agents displacements which represents aggregation of the 
distances inter-agent position during demining operations 
(consumed energy), robotic Agents proportion of agents which 
ensure demining operations, robotic group size effect and 
communication flow exchanged between agents during robots 
interactions; represent other optimization objectives and they 
will be treated in further works. 

III. METHODS AND HYPOTHESIS 

This part represents general configuration parameters for 
tested environment. These parameters include minefield 
distribution and adaptation of ACO algorithms for 
collaborative demining robotic foraging. 

A. Field mine configuration 

Measurement of demining operations time was performed 
at different values of configuration parameters. In 
concordance with[20], we consider evaporation pheromone 
model as influential parameter. In fact, we fix robots/mines 
ratio and we vary evaporation pheromone rate and note 
detection mines time for different minefield proportion (Mx 
%). Tested mines proportion was been fixed to 60%, 70%, 
80% and 90% for a total number of 50 mines [5]. 

In other part, mine spatial distribution has possible effect 
in mine detection time [5, 6]. We try different spatial 
distributions which include: 

1
st
 case: (random distribution) mines are placed randomly 

with uniform density of probability.  

2
nd

 case: (fixed spatial distribution) second distributions 
are destined for fixed mine position. We try two different 
dispositions with limited mined zone. These two tests are 
indicated in Fig 1 and Fig 2.In Fig 1 we divide mine field into 
two parts relatively to a vertical symmetry axe. P1 represents 
mined area zone. In figure 2 we divide mine field into four 
parts relatively to a vertical and horizontal symmetry axes and 
P3 represents mined area zone. Other parts are mine free. As 
presented in [21], in the case of environment symmetry, 
localization represents a complicated task. This complexity is 
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due to correctness of robot position and orientation estimation 
(unknown mine land without specific information). 
Collaborative algorithms as for ACO algorithms can reduce 
elapsed time in mines research operations. 

3
rd

 case :( random line distribution: Fig 3) Mine lines are 
randomly placed along the line or dropped with a constant 
spacing. The random lines are given a very broad margin of 
placement error. The random spacing lines are assumed to 
represent positioning errors mainly due to navigation and drop 
timing errors. Random lines are assumed to have random 
orientation and mine spacing. But in this experimentations 
random mine lines are parallel[4]. 

 

Fig. 1. Fixed spatial distribution 1. 

 

Fig. 2. Fixed spatial distribution 2. 

 

Fig. 3. Random line distribution (s=1,µ=3 and areas dimensions=16x16). 

B. Navigation and research methods 

In this part, we will present mine research methods 
adopted by different robot agents. The evaluation of this 
methods effect is based on the time detection mines quality. In 
this experimentation, three main collaborative navigation 
algorithms were performed: 

1) Method1: (model BASE)  
In this model, robot agents do not adopt a particular logic 

for mine research. So robot agents are not restricted with any 
constraints except some particular rule listed in fallow: 

� R1: when robot agent finds a mine. It must return to the 
base for deactivation mine operation 

� R2: used base is fixed 

� R3: all robot agents are placed in the base at the 
demining operations beginning.  

2) Method2: (model ACO)  
In this part, robot agents adopt a mine research strategy 

based on ACO (Ant Colony Optimization) algorithm to find 
optimum demining operation. We save the same rules adopted 
in model BASE (R1 R2 R3). Used robot agents path is fixed 
by pheromone rate τ deposed by other searching agents. We 
adopt three main methods for pheromone rate calculation: 

a) 1st
 case (static evaporation pheromone rate) 

In this test we fixe evaporation pheromone rate ρ  and we 
calculate pheromone rate as fallow [22]: 

τ(κ)=τ(κ−1)(1−ρ)  (1) 

b) 2nd
 case(dynamic evaporation pheromone rate )  

This ACO algorithm configuration adopts a programmable 
evaporation pheromone rate to calculate pheromone rate as 
fallow: 

 

τ(κ)=τ(κ−1)(1 − ρ)+ (1 −(1+Q)−1)τ(κ−1) (2) 

ρ=(1+ (τ−α)4(2α)−0.5)−1 , α=0.5  (3) 

Q= TP ( TP + FN )
-1

 TN ( FP + TN )
-1  (4) 

 

This equation is introduced as heuristic a Q factor, which 

represents an algorithm quality factor [20].α factor used in 
programmable evaporation pheromone rate was fixed to 0.3 
and Q factor represents an algorithm appreciation for method 
research rule [9].In our case we define two main rules for 
demining research operations: 
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� Dynamic rule 1 = mine research operation (TP, FP) 

o TP=find mine when trying to research mine 

o FP = robot do not find mine when trying to 
research mine 

� Dynamic rule 2 = base return (TN, FN) 

o TN = robot already charging mine in return 
when trying to return to base   

o FN = mine discharged into the base  

c) 3rd
 case (timed evaporation pheromone rate)  

This case adopts also a programmable evaporation 
pheromone rate. But, evaporation pheromone rate is defined 
by determination of lost time elapsed between two succeeded 
mine detections as fallow: 

τ(κ)=τ(κ−1)(1 − ρ)+ (1 −(1+Q)−1)τ(κ−1) (4) 

ρ=∆t(1+tM1)  (5) 

∆t=tM1-tM2+1  (6) 

tM1=detection time for mine i 

tM2= detection time for mine i-1 

3) Method3: (model modified ACO)  
The method adopted in this part is based on an ACO 

algorithm but with considering a mobile base in order to 
minimize base-mine displacement. Base coordinates are 
defined by Px and Py: 

Px(k)= 0.5 [ Px(k-1)+Rix(k) ]  (7) 

Py(k)= 0.5 [ Py(k-1)+Riy(k) ]   (8) 

The (Rix(k), Riy(k)) couple represent coordinates of recent 
detected minei. The idea presented was inspired from 
intensification and diversification [8, 23]. Diversification for 
robotic agent represents ability to demining many and 
different mine land regions. Intensification summarized in the 
ability of base guides demining operation in specific zones 
with high mine concentration. At this stage we can reserve 
robot agents for mine research and the base as a new agent for 
deactivating operations. 

IV. SIMULATION PROTOCOL 

In this section, we introduce general simulations protocols 
followed in collaborative algorithms efficiency validation. All 
simulations are performed with NetLogo [24, 25]. NetLogo is 

used as software platform to simulate robotic agents and 
landmine map. In fact, NetLogo supports advanced modeling 
of complex systems using a library of java programming 
primitives. In NetLogo simulation environment, robotic agents 
were modeled in simple design without consideration of 
collision avoidance. As given in Table 1 experience design 
was performed by variation of the evaporation pheromone rate 
and kind of landmine distributions. Each experience is 
repeated ten times using NetLogo API control. Mine detection 
time values was reported to MATLAB software platform in 
order to compare different configuration results.  

A simplified foraging scenario was taken to describe 
demining operations. Robots states include the searching and 
homing state. When a robot detects a mine, it picks up and 
come back toward neutralizing base. Execution demining time 
is accounted while a robot is either in searching mode or 
homing. Time of other robots avoidance is not considered in 
demining scenario. Fig 4 shows the behavior diagram for 
demining operations scenario. Robotic agents detect, collect 
mines and bring them to a mine neutralizing base. 

TABLE I.  TABLE 1.SIMULATION PARAMETERS 

Model  Evaporation 

pheromone rate % 

Distributions  

ACO 0%-100% Random, fixed 1, fixed 2 and 

random line 

Modified ACO 0%-100% Random, fixed 1, fixed 2 and 

random line 

 

 

Fig. 4. behavior diagram of a multi-robot demining system. 

V. RESULTS AND INTERPRETATION 

Experimental studies in this article were performed for 
fixed mines/robots ratio. According to [19],rising robots/mines 
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ratio beyond some limits don’t affect time detection due to 
robotic agents interference and this time was stabilized. In 
order to test evaporation pheromone rate influence on time 
demining optimization; we start by testing available 
robots/mines ratio limits which don’t modify temporal 
performances. Application of various mines/robots rate on 
presented mines distributions and collaboration models based 
on ACO algorithms, attest that rising robotic agents number 
(in order to minimize mine detection time) haven’t influence 
on system timing performances. Figure 5 gives an example of 
time detection mine stabilization for base demining model 
with random distribution (robots/mines ratio = 50%, mean 
time values=129.17). Table 2 summarized means and 
deviation values of other stabilized time detection mine for 
different demining models (base, ACO and Modified ACO 
models) and detected mines proportion (60%-90%) ranges. 
Variation effects of distributions study cases are considered 
with mean values. 

TABLE II.  MEANS AND DEVIATIONS LIST OF MINE DETECTION TIME 

VALUES (RM% = 50%) 

Model Base ACO Modified 

ACO 

Mean time for 

all models 

Time for 

Mx%=90% 

mean 129.13 149.92 118.67 132.57 

deviation 9.31 10.68 22.37 

Time for 

Mx%=80% 

mean 100.88 117.25 93.04 103.72 

deviation 9.63 12.25 14.94 

Time for 

Mx%=70% 

mean 83.42 97.25 76.71 85.79 

deviation 9.85 11.81 9.78 

Time for 

Mx%=60% 

mean 70.17 80.54 64.79 71.83 

deviation 9.19 10.84 6.33 

 

 

Fig. 5. Time detection mine using model BASE and random distribution. 

In this part, we present possible effect of evaporation 
pheromone rate variation on demining time performances for 
both ACO and modified ACO algorithms (Mx%=90%). In 
each experimentation, we increase pheromone evaporation 
rate with 10%. Figures 6 and 7 represent detection time 
variation with consideration of mine field distribution type for 
both ACO and Modified ACO model. For lower pheromone 

evaporation rate, higher values of detection time results were 
taken with random distribution. Rising pheromone evaporation 
rate ameliorates temporal performances. But this mine 
detection time decrease was stabilized for high evaporation. In 
fact, detection time results were limited to a range of 200 s.t 
for evaporation pheromone rate > 60% in the case of ACO 
model and for evaporation pheromone rate > 30% in the case 
of modified ACO model. 

 

Fig. 6. Time detection results ACO model 

 

Fig. 7. Time detection results for modified ACO model 



International Conference on Automation, Control, Engineering and Computer Science (ACECS'14) 

 

Proceedings - Copyright IPCO-2014 

 

ISSN 2356-5608 

 

Fig. 8. Time detection comparison between ACO and modified ACO model 

Figure 8 indicates time variation between ACO and 
modified ACO model. Modified ACO model presents better 
timing results than ACO model with lower pheromone 
evaporation rate (if we consider separately effect of mine field 
distribution type). ACO model presents better timing results 
than modified ACO model only in the case of fixed spatial 
distributions with high pheromone evaporation rate (>80%). 

Pheromone evaporation rate impact on time system 
performances is noted in the beginning of solutions 
construction. Adopting a programmable pheromone 
evaporation rate which induces new solutions exploration 
should reduce time demining. Researches in [20, 26, 27], use 
different models of programmable evaporation rate based on 
mathematical formulation. We take the evaporation 
pheromone example given in [20], as reference to evaluate our 
evaporation pheromone rate model. Simplifying evaporation 
pheromone model was the principal motivation of selection of 
timed algorithm model. 

 

Fig. 9. Evaporation pheromone rate model comparison 

In figure 9, we reported the temporal results difference 
between different evaporation pheromone models for ACO 
and Modified ACO collaborative algorithms. Mathematical 
evaporation pheromone rate model [20] is represented by Q1 
model. Our evaporation pheromone rate model is represented 
by Q2 model. In the case of ACO model (m2d1, m2d2, m2d3 
and m2d4), temporal results obtained with Q1 model are better 
than Q2 model except the result in fixed 2 distribution (m2d1). 
In fact system equipped by Q2 evaporation pheromone model 
takes double time to detect 90% of mines than Q1 model. This 
different change in the case of Modified ACO model and 
better temporal performances was detected with Q2 model in 
the case of fixed distributions. Multi-robots system 
experimentations were performed on software simulation 
platform. In real implementation, application of mathematical 
complex model for evaporation pheromone rate should require 
more hardware resources and reduce temporal performances. 

VI. CONCLUSION 

This paper presents pheromone evaporation rate 
experimentations. Effects of pheromone evaporation rate were 
noted for particular rates and we have better results with 
modified ACO algorithms. Temporal performance enhance of 
demining multi-robots systems was obtained by modification 
of ACO algorithms. But results still depend on environment 
configurations and other modifications can be performed on 
ACO algorithms especially with pheromone evaporation rate 
studies. Application of programmable evaporation pheromone 
rate helps to improve temporal performances. This improve 
use of evaporation pheromone rate pulse instead of high 
evaporation pheromone rate maintain. The Choice of 
evaporation pheromone rate model modifies temporal 
performances system. In our case, the additional 
experimentations on real implementation of multi-robot 
controller must be performed to evaluate algorithmic model of 
evaporation pheromone rate. 
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