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ABSTRACT__ Scheduling independents tasks on 

heterogeneous processors under resource constraints is 

classified as a hard combinatorial optimization problem 

for which several solving heuristics are known in the 

literature. We address here a particular instance of this 

problem where the constraint corresponds to a fixed 

unfeasible makespan i.e. a makespan that does not allow to 

schedule all the input tasks with the available processors. 

Our objective is to schedule an optimal task subset 

extracted from the input task set where optimality may be 

defined according to diverse criteria. For this purpose, we 

propose two constructive approaches leading to 2-phase 

heuristics. An experimental study is achieved in order to 

evaluate the performances of the designed heuristics and 

validate our contribution. 

Keywords—Heterogeneous environment, heuristic, 

independent tasks, makespan, parallel system, POC, 

processor, RCPSP, resource constraint, scheduling. 

I. INTRODUCTION 

A. The RCPSP Problem  

The resource constraint scheduling problem, known 

as RCPSP, consists in minimizing the completion time 

(makespan) for scheduling a set of tasks when the resources 

are not continuously available to perform all the processing. 

The RCPSP is classified as NP-hard [1] and has many variants 

[12] depending particularly on (i) inter-task precedence 

constraints (GPRCP and PRCP-GPR variants ), (ii) task 

preemption/non preemption (PRCPSP), (iii) resource 

availability pattern (constant, variable) … This problem has 

been extensively studied because of its many real world 

applications e.g. in chemical industry where it is known as 

Labor Constrained Scheduling Problem [3], in timetable 

managing for university classrooms and teachers [2], in 

industrial sectors such as textile workshops [7] or hybrid flow-

shop [10]. It has to be underlined that there exist exact 

algorithms providing optimal solutions but requiring 

exponential time [11]. An alternative consists in designing 

polynomial time approximation algorithms or heuristics. In 

this paper, we address a specific variant of the RCPSP where 

the available resources, a set of heterogeneous processors i.e. 

of different speeds, cannot handle all the tasks during a limited 

prefixed makespan. Our aim is to schedule an optimal subset 

of the input tasks. The optimality may be either a maximal 

number of tasks or a maximal weight, the weight being the 

sum of the costs of the subset tasks. 

B.  Brief overview  

In a recent study [12] we find an updated and 

exhaustive overview of the RCPSP with nine extensions and 

solving methods for each. For the RCPSP with independent 

tasks in which we are interested, fifteen approaches are cited 

such as hybrid genetic algorithms, integer/constraint 

programming, 0-1 linear programming, branch and bound 

technique, hybrid neural network approach, local search 

techniques, swarm optimization... 

Other methods are also known in the literature such 

as hybridization of two classic methods i.e. particle swarm 

optimization and genetic algorithm [5]. A hyperheuristic based 

on a tabu search is proposed in [9].   

It has to be underlined that the majority of the solving 

techniques which are of polynomial complexity determine 

only approximate solutions. However, techniques such as 0-1 

linear programming and branch and bound determine exact 

solutions but are of exponential complexity, thus cannot be 

used for large size RCPSP’s. For this important reason, we 

preferred designing polynomial time approximation 

algorithms that are able to determine good quality solutions in 

an acceptable time.     

The remainder of the paper is organized as follows. 

In section 2, we propose our theore-tical contribution 

consisting in two approaches i.e. Limited Makespan 

Constraint Relaxation (LMCR) and Progressive Task 

Allocation (PTA). Section 3 is devoted to an experimental 
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study. Finally, we present some concluding remarks and 

perspectives in section 4. 

II. SCHEDULING UNDER LIMITED RESOURCES 

A.  Problem formulation 

The problem we address can be formulated as 

follows. Consider n independent tasks      T1 ... Tn with 

respective costs c1 ... cn and p heterogeneous processors P1 ... 

Pp whose respective speeds are s1 ... sp where si ≥ si+1 (i=1…p-

1). Let sc be the sum of task costs and ss the sum of processor 

speeds. We have to schedule the n tasks under the constraint of 

limited duration (makespan) M. The makespan M is assumed 

to be unfeasible i.e. M < sc/ss. In other words, the n tasks 

cannot be scheduled in such a makespan. Only a subset could 

be. Indeed, the makespan of any scheduling of the n tasks with 

the p processors, denoted M(p), obviously satisfies the 

following inequality, provided that no processor is useless 

[13]:  

                  M(p) ≥ sc/ss          (1)  

Therefore, we have to determine a maximal (or 

optimal) task subset extracted from the set of n tasks that can 

be scheduled with the p available processors. Here, the task 

subset to be determined may be defined in various ways. It 

may be a maximum number of tasks. It may also correspond to 

a maximal subset weight, the weight being the sum of the 

costs of the subset tasks. 

From inequality (1) we directly get :   

                 sc ≤ M(p)×ss           (2) 

Hence, we deduce that the total cost (weight) of tasks 

that can be processed in a period M, denoted sc(M), and the 

overall speed, denoted ss(M),  required to schedule the n tasks 

in a period M satisfy the following relationships: 

      sc(M) ≤ M×ss = scmax          (3)    

   ss(M) ≥ sc/M = ss
+
(M)          (4) 

We can then proceed in several ways as detailed 

below. First, it should be noted that a processor load, denoted 

λ, is defined as the sum of the costs of the tasks assigned to it 

divided by its speed. We detail below our two approaches by 

considering three cases that may occur in practice: (i) unsorted 

(or random) tasks, (ii) tasks with decreasing costs (c1 ≥ c2 ≥ ... 

≥ cn) and (iii) tasks with increasing costs (c1 ≤ c2 ≤ ... ≤ cn). 

Indeed, each case has its own peculiarities. 

B.  First Approach: Limited Makespan Constraint 

Relaxation (LMCR)  

The LMCR approach is a direct consequence of 

inequality (3). It consists in relaxing, i.e. not considering, the 

limited makespan constraint. Thus we begin by scheduling all 

the n tasks regardless of the resulting makespan. Let M(p) be 

the makespan obtained by using a scheduling algorithm, say 

Sch. Obviously, we have M(p) > M. It suffices now to first 

identify the processors whose loads do not exceed M. Such 

processors will be called feasible. As to the remaining 

processors, called unfeasible, we eliminate for each of them as 

many tasks as necessary so that the new load does not exceed 

M. The eliminated tasks will be called redundant. Remark that 

the elimination procedure may be done in various ways as 

follows. Let us first denote by     Ti,1…Ti,ki the ki tasks whose 

costs are ci,1…ci,ki  that are assigned to the unfeasible 

processor Pi. Let λi be its load i.e. (ci,1+ ci,2 + … + ci,ki )/si .   

A first straightforward procedure consists in 

formulating, for each unfeasible processor, say Pi, the 

elimination of its redundant tasks as a problem of extracting 

from its ki tasks a subset of ki* (<ki) tasks such that the sum of 

their costs divided by si, denoted λi*, is the closest to M 

without exceeding it. We may proceed here in several ways as 

follows. 

(a) A trivial way consists in choosing the first 

feasible ki* tasks. Obviously, this procedure can be achieved in 

an O(ki) time in the worst case. We easily deduce that the 

overall complexity (i.e. to treat all the unfeasible processors) is 

O(np) in the worst case since ki≤ n, i=1…p.  

(b) A variant of the above alternative is to first sort 

the ki tasks Ti,1…Ti,ki  in increasing (resp. decreasing) cost, 

then extract the first ki* tasks i.e. such that the corresponding 

load λi* is the closest to M without exceeding it. Clearly, the 

increasing (resp. decreasing) sort would maximize (resp. 

minimize) ki* thus the total number of tasks scheduled by Pi. 

This variant is obviously of complexity O(kilogki) at most. 

The overall complexity (i.e. to treat all the unfeasible 

processors) will then be O(nplogn) in the worst case. 

(c) Another alternative consists in extracting, with no 

presorting, an optimal sublist of non necessarily consecutive 

tasks. Unfortunately, this extraction is a hard combinatorial 

optimization problem (POC) thus an exponential time is 

required to determine an optimal solution. However, 

polynomial approximation algorithms for solving this problem 

are known in the literature [4].  We have to add that an 

approximate solution may be easily determined when the task 

costs are initially in decreasing (resp. increasing) order. In 

such case, the deleted tasks will be those with smaller (resp. 

larger) costs. Thus, as previously seen in (b), this procedure 

would minimize (resp. maximize) the number of scheduled 

tasks and would maximize (resp. minimize) the total sum of 

scheduled task costs. Remark that as will be seen in section 3 

when describing the experiments we achieved, the decreasing 

order maximizes, in most cases, the total weight i.e. the sum of 

the costs of the task subset. 

Concerning the above mentioned scheduling 

algorithm, denoted Sch, it may be one among the standard 

algorithms known in the literature i.e. List Scheduling (LS), 
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Shortest Processing Time (SPT), Longest Processing Time 

(LPT) with their two versions.  Their complexities are as 

follows. For LS, it is O(np) (may be reduced to O(nlogp)) and 

for both SPT and LPT, it is O (n(logn+logp)) [6]. 

We have to add that, once the task elimination 

procedure is done, a second and improving phase may be 

considered. It consists in reallocating the eliminated tasks by 

first identifying the non saturated processors i.e. whose loads 

do not exceed the fixed makespan M. Let n* (< n) be the 

number of scheduled tasks. The reallocation procedure of the 

n-n* remaining tasks may be done in several ways as follows.  

(d) The current task is allocated to the first non 

saturated processor that fits it i.e. whose new load does not 

exceed M. The procedure is iterated until no processor can 

receive a new task. Its complexity is clearly O((n-n*)p) in the 

worst case i.e. at most O(np).  

(e) The current task is allocated to the best non 

saturated processor that fits it i.e. whose new load will be the 

closest to M without exceeding it. The procedure is iterated 

until no processor can receive a new task. Here the complexity 

is the same as above.  

(f) The n-n* tasks are first sorted in increasing or 

decreasing costs and one of the two previous procedures is 

used. The complexity is here O((n-n*)(log(n-n*)+p) in the 

worst case i.e. at most O(n(logn+p)).   

It is easy to remark that the three proposed ways (d), 

(e) and (f) are in fact based on standard heuristics known for 

solving a variant of the 1D Bin Packing problem where the 

number of bins is fixed and their capacities are different [7].    

The LMCR approach is illustrated with the following 

example where n=10 ; p=3 ; costs: 7,4,5,1,10,6,3,2,8,9 (hence 

sc=55) ; speeds : 1,0.5,0.25 (hence ss=1.75) ; 

M=23<sc/ss=55/1.75= =31.43.  

Thus sc(M)≤scmax=M×ss=23×1.75=40.25 and 

ss(M)≥ss
+
(M)=sc/M=55/23=2.39. We apply our approach by 

using algorithms LS, SPT and LPT. The different results are 

then compared.   

  

Fig 1. LMCR approach using LS-version 1 

 
Fig 2. LMCR approach using SPT-version 1 
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Fig 3. LMCR Approach using LPT-version 1 

The next table gives, for each algorithm, n* the 

number of scheduled tasks, their weight sc* (sum of their 

costs) and the final makespan M* (≤ M=23). We also give the 

corresponding ratios n*/n, sc*/sc, M*/M and sc*/scmax (%). 

TABLE I.  RESULTS COMPARISON - LMCR 

Sch LS SPT LPT 

n* 8 7 6 

sc* 38 28 39 

M* 23 18 23 

n*/n 80 70 60 

sc*/sc 69.1 50.9 70.9 

M*/M 100 78.3 100 

sc*/ scmax 94.40 69.13 96.89 

We remark that LS gave the maximum number of 

tasks (8 out of 10) but neither the maximum nor the minimum 

weight. LPT gave the minimum number of tasks (6 out of 10) 

and the maximum weight (39 out of 55). Both LS and LPT 

reached the fixed makespan. As to SPT, it gave the worst 

results.  

On the other hand, we may define the efficiency E of 

each algorithm by the ratio sc*/ scmax. We remark that it is 

equal to 94.40% for LS, 69.13 % for SPT and 96.89 for LPT 

(the best).   

C.  Second Approach: Progressive Task allocation 

(PTA) 

This approach consists first in applying a scheduling 

algorithm Sch (LS, SPT or LPT) to schedule the whole n tasks 

such that the (transient) load of each processor does not 

exceed M.   

Assigning a task Ti to a processor Pj considered by 

Sch as the first feasible candidate is done under the 

assumption that its new load does not exceed M i.e. λj_new ≤ 

M with           λj_new = λj_old + ci/sj.  If this condition is not 

satisfied, this task will be assigned to the second feasible 

processor (according to Sch) with the same previous 

assumption. If there is no feasible processor at all, the task in 

question will be definitively removed (eliminated).  

Once this phase is terminated, an improvement phase 

may be considered as in the previous LMCR approach.  It 

consists in reallocating the eliminated tasks according to one 

among the alternatives (d), (e) or (f) seen in the LMCR 

approach.  

As to the overall complexity of PTA, in addition to 

that of Sch (either O(nlogp) or O(n(logn+logp)), we have to 

add either O(np) or O(n(logn+p)) in the worst case. This gives 

a worst case complexity of O(np) to O(n(logn+p).  
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The PTA approach is illustrated with the previous example. 

The results are recapitulated in the following table. We can 

remark that quite similar results to LMCR are obtained.  

 

 

 

TABLE II.  RESULTS COMPARISON - PTA 

 LS SPT LPT 

n* 8 7 7 

sc* 38 28 39 

M* 23 18 23 

To conclude this section, we recapitulate the two 

approaches with their alternatives and complexities below.  

TABLE III.  RECAPITULATIVE TABLE OF APPROACHES 

Approach Phases Alternatives Complexity 

LMCR 

1 

 

Apply a scheduling algorithm Sch  
Complexity of 

Sch 

Identify unfeasible processors  O(p) 

Elimination of non assigned tasks 

 

(a) O(np) 

(b) O(nplogn) 

(c) exponential 

2 Improvement reallocation 

(d) 
O(np) 

(e) 

(f) O(n(logn+p)) 

PTA 
1 

Apply Sch without exceeding M by choosing an adequate processor and 

eliminate unfeasible tasks 
 

Complexity of 

Sch 

2 Improvement reallocation as in LMCR   

III. EXPERIMENTATIONS AND COMPARISONS 

A. Introduction  

In order to validate our theoretical contribution, we 

present in this section an experimental study achieved on a 

series of random data. Our algorithms were coded in Python 

2.6 under Windows XP SP3. The target machine is an Intel 

Toshiba with 1.60 GHz clock and     1 GB RAM. 

We precise that we choosed 9 values for n in the 

range [10 500]. For each n, we generated two sets of task costs 

: identical costs and different costs with three cases i.e. 

random costs (rac), increasing costs (ic) and decreasing costs 

(dc). On the other hand, for each value of n, we choosed three 

values for p (varying with n). For each value of p, we choosed 

two values for m=max(si)/min(si) i.e. 5 and 10 then randomly 

generated the speeds. We mention that the processors were 

sorted by decreasing speeds. Concerning the choice of the 

values of both p and M, we have to precise that is was done as 

follows. We first experimentally determine M(p
+
) i.e. the 

makespan required to schedule the n tasks with p
+ 

processors 

by using algorithm LPT-version 2 (LPTb). We then choose p 

< p
+
 and M < M(p). In the experiments presented below, we 

used the LS algorithm with its two versions LS1 and LSb i.e. 

LS with back filling.  

B. Numerical results 

In addition to the previously defined parameters n, sc, 

p, ss, M and m, we denote by ss+(M)=sc/M (> ss) the minimal 

global processor speed sum required to process the n tasks in 

M time, scmax=M*ss the maximal weight (sum of costs of the 

scheduled tasks) that can be reached, n* (<n) the number of 

scheduled tasks, sc* the sum of scheduled tasks costs, the 

efficiency E=100(sc*/ scmax), the n-ratio nr=100(n*/n) and  the 

cost-ratio cr=100(sc*/sc). 

We give below excerpts of the numerous results 

restricted to n = 200 and sc = 9718. Twelve tests are 

presented. 

(a) LMCR 

We precise that we used alternative (a) in phase 1 and 

alternative (d) in phase 2.  
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TABLE IV.  LMCR WITH LS FOR N = 200 AND SC=9718 

p ss M ss+(M) 
scmax rac ic dc 

n* nr sc* cr E n* nr sc* cr E n* nr sc* cr E 

16 64 66.08 150.3 4229.56 103 51.5 4156 42.76 98.26 126 63 3710 38.17 87.71 72 36 4218 43.40 99.72 

37 250.4 33.55 295.3 8402.31 176 88 7778 80.03 92.56 172 86 7080 72.85 84.26 158 79 8320 85.61 99.02 

42 163.5 42.08 236.9 6880.62 158 79 6548 67.38 95.16 152 76 5454 56.12 79.26 130 65 6679 68.72 97.06 

55 380.1 22.78 444 8657.83 175 87.5 7653 78.75 88.39 166 83 6562 67.52 75.79 167 83.5 8483 87.29 97.98 

177 541.3 21.25 557.7 11502.62 69 34.5 2128 21.89 18.50 148 74 5156 53.05 44.82 200 100 9718 100 84.48 

122 881 10.21 1062 9001.52 69 34.5 2122 21.83 23.57 144 72 4874 50.15 54.14 27 13.5 1755 18.05 19.49 

TABLE V.  LMCR WITH LSB FOR N = 200 AND SC=9718 

p ss M ss+(M) 
scmax rac ic dc 

n* nr sc* cr E n* nr sc* cr E n* nr sc* cr E 

16 64 66.08 150.3 4229.56 101 50.5 4209 43.31 99.51 126 63 3710 38.17 87.71 73 36.5 4209 43.31 99.51 

37 250.4 33.55 295.3 8402.31 180 90 8242 84.81 98.09 167 83.5 6642 68.34 79.04 151 75.5 8320 85.61 99.02 

42 163.5 42.08 236.9 6880.62 153 76.5 6703 68.97 97.41 150 75 5300 54.5 77.02 130 65 6724 69.19 97.72 

55 380.1 22.78 444 8657.83 183 91.5 8175 84.12 94.42 162 81 6223 64.03 71.87 161 80.5 8542 87.89 98.66 

177 541.3 21.25 557.7 11502.62 172 86 7165 73.72 62.29 137 68.5 4399 45.26 38.24 200 100 9718 100 84.48 

122 881 10.21 1062 9001.52 171 85.5 7083 72.88 78.68 134 67 4205 43.27 46.71 170 85 8575 88.23 95.26 

 
By comparing the obtained values for nr and cr ratios 

with the two versions LS and LSb, we remark that, in most 

cases, LSb is better. This is due to the fact that LSb tries to fill 

holes i.e. saturate the processors. Thus LSb will be more likely 

to handle a larger number of tasks. 

Concerning nr, we notice that for the case where the 

tasks are sorted by decreasing cost (dc), we obtained the worst 

results. This can be explained by the fact that the allocation of 

tasks with larger costs is done first. This leads to reach more 

quickly the threshold M i.e. the processors are (nearly) 

saturated with a small number of tasks. The results obtained 

with LMCR and its different versions are generally enough 

satisfactory because we could schedule in most cases 

practically all the tasks. 

(b) PTA 

Here alternative (d) was used in phase 2. 
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TABLE VI.  PTA WITH LS1 FOR N = 200 AND SC=9718. 

p ss M ss+(M) 
scmax rac ic dc 

n* nr sc* cr E n* nr sc* cr E n* nr sc* cr E 

16 64 66.08 150.3 4229.56 105 52.5 4161 42.81 98.37 126 63 3710 38.17 87.71 55 27.5 4222 43.44 99.82 

37 250.4 33.55 295.3 8402.31 174 87 7782 80.07 92.61 170 85 6901 71.01 82.13 138 69 8378 86.21 99.71 

42 163.5 42.08 236.9 6880.62 152 76 6293 64.75 91.45 151 75.5 5373 55.28 78.08 116 58 6849 70.47 99.54 

55 380.1 22.77 444 8657.83 176 88 7860 80.88 90.78 165 82.5 6471 66.58 74.74 155 77.5 8608 88.57 99.42 

177 541.3 21.25 557.7 11502.62 163 81.5 6415 66.01 55.76 148 74 5156 53.05 44.82 200 100 9718 100 84.48 

122 881 10.21 1062 9001.52 162 81 6333 65.16 70.35 144 72 4874 50.1 5 54.14 145 72.5 8425 86.69 93.59 

TABLE VII.  PTA WITH LSB FOR N = 200 AND SC=9718 

p ss M ss+(M) 
scmax rac ic dc 

n* nr sc* cr E n* nr sc* cr E n* nr sc* cr E 

16 64 66.08 150.3 4229.56 108 54 4121 42.40 97.43 126 63 3710 38.17 87.71 55 27.5 4222 43.44 99.82 

37 250.4 33.55 295.3 8402.31 171 85.5 7556 77.75 89.92 167 83.5 6642 68.34 79.04 144 72 8383 86.26 99.77 

42 163.5 42.08 236.9 6880.62 153 76.5 6214 63.94 90.31 150 75 5300 54.53 77.02 116 58 6849 70.47 99.54 

55 380.1 22.77 444 8657.83 171 85.5 7365 75.78 85.06 162 81 6223 64.03 71.87 154 77 8606 88.55 99.40 

177 541.3 21.25 557.7 11502.62 153 76.5 5690 58.55 49.46 137 68.5 4399 45.26 38.24 200 100 9718 100 84.48 

122 881 10.21 1062 9001.52 148 74 5336 54.90 59.27 134 67 4205 43.27 46.71 80 40 5348 55.03 96.44 

 

We can remark that, regardless of task costs 

configuration (rac, ic, dc), LSb gives better results than LS. On 

the other hand, LS in the rac and dc cases always gives a 

minimum number of scheduled tasks.  

We can explain this bad performance in the dc case, 

as seen for LMCR, by the fact that here tasks with larger costs 

are firstly scheduled i.e. the processors are (nearly) saturated 

with a small number of tasks.  

If we examinate the results for cr ratio, we notice that 

the best and worst results are not always obtained with the 

same versions as it is the case for the nr ratio. The two 

versions (LS and LSb) with tasks in the ic case often provide 

the smallest weights (sc*). Indeed, these versions allocate 

lower cost tasks to the least loaded processors. Therefore, it is 

less likely to increase the weight of scheduled tasks. This 

behavior leads to increase the nr ratio (so n*) at the expense of 

the cr ratio (so sc*). In the rac case (random costs), the best 

results for n* and sc* seem to depend more on the task costs 

than on the algorithm itself. 

C.  Inter-approaches comparative study  

For a total of 114 tests and each task cost case (rac, 

ic, dc), we specify in table 8 the number of times (%) where an 

algorithm gave the best result in the two approaches. We 

precise that a result obtained by a given algorithm is 

considered the best when it corresponds to the highest values 

for n* or sc*. For instance, in Table 8, LS1-rac giving 14.91 

(%) for n* means that it was the best in 14.91 % of the 114 

cases (i.e. 17/114).  

We also give the efficiency variation interval (E 

interval) reached by an algorithm in the 114 tests and the 

number of times (%) where the efficiency exceeded 70% 

(E>70%). 
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TABLE VIII.  RATIOS (%) OF THE BEST ALGORITHMS 

Version 
LMCR PTA 

n* sc* E interval  E >70% n* sc* E interval E >70% 

LS1-rac 14.91 6.14 [7.08  99.84] 73.01 49.12 5.26 [55.76 99.73] 98.47 

LS1-ic 32.45 0.87 [43.97 97.75] 59.52 29.82 0.87 [43.97  97.20] 53.50 

LS1-dc 14.03 36.84 [0.       99.94] 92.06 28.94 90.35 [82.02  99.93] 100 

LSb-rac 37.71 21.05 [60.65  99.86] 93.65 14.91 6.14 [49.46  99.86] 82.45 

LSb- ic 26.31 0.87 [35.87  97.75] 50.79 25.43 0.87 [35.87  97.20] 50.87 

LSb-dc 23.68 63.15 [81.51  99.94] 100 24.56 72.80 [82.02  99.93] 100 

We remark that the two approaches give enough 

similar results for n* and sc*. LS1-ic gives good values for n* 

but bad ones for sc*. We also notice that in order to maximize 

n*, we have better using LS1-ic version in the two approaches. 

But, to maximize sc*, LSb-dc in LMCR as well as LS1-dc in 

PTA are the best. Concerning the efficiency, it was larger than 

70% in more than half of the cases and the LSb-dc is the best.   

In order to better appreciate the performances of the 

different algorithms used in the two approaches, we present in 

the following figures the cost ratio cr and efficiency E profiles 

where cr and E sorted in increasing order (notice that sorting E 

and cr does not lead to the same permutations).  

  

Fig 4. Efficiency (E) and cr profiles for algorithm versions in LMCR approach 
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Fig 5. Efficiency (E) and cr profiles for algorithm versions in PTA approach 

We can remark that in LMCR as well as in PTA, we have the 

following :  

• For both LS-ic and LSb-ic, the efficiency and cr 

profiles follow enough similar features i.e. the curves 

are translatable.  

• For both LS-rac and LSb-rac, the efficiency and cr 

profiles follow somewhat dissimilar features.  

• For both LS-dc and LSb-dc, the efficiency and cr 

profiles follow quite dissimilar features since the 

difference between cr and E is large (resp. small) 

when their values are small (resp. large).   

IV. CONCLUSION 

We proposed in this paper two approaches for the 

determination of approximate solutions for the COP of 

scheduling independent tasks on heterogeneous processors 

under limited makespan constraint. Each approach involved 

several alternatives. The objective was to schedule a subset of 

tasks optimizing a specific criterion which is either the size 

(number of tasks) or maximum weight (sum of task costs). A 

series of experiments could validate our contribution and 

establish accurate comparisons between the two approaches.   

This work leads us to precise some interesting 

perspectives we intend to study in the future. We may 

particularly cite the following: 

- Design and experiment other alternative 

approaches for solving the addressed problem  

- Generalize our study to the case of preemptive 

scheduling  

- Parallelize the designed algorithms in order to 

process problems of larger sizes in reduced time 
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