
International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

Heuristics for Scheduling Independent Tasks on

Heterogeneous Processors under Limited

Makespan Constraint
Rim Somai & Zaher Mahjoub

Department of Computer Science

University of Tunis El Manar, Faculty of Sciences of Tunis

University Campus, 2092 El Manar II, Tunis Tunisia

ABSTRACT__ Scheduling independents tasks on

heterogeneous processors under resource constraints is

classified as a hard combinatorial optimization problem

for which several solving heuristics are known in the

literature. We address here a particular instance of this

problem where the constraint corresponds to a fixed

unfeasible makespan i.e. a makespan that does not allow to

schedule all the input tasks with the available processors.

Our objective is to schedule an optimal task subset

extracted from the input task set where optimality may be

defined according to diverse criteria. For this purpose, we

propose two constructive approaches leading to 2-phase

heuristics. An experimental study is achieved in order to

evaluate the performances of the designed heuristics and

validate our contribution.

Keywords—Heterogeneous environment, heuristic,

independent tasks, makespan, parallel system, POC,

processor, RCPSP, resource constraint, scheduling.

I. INTRODUCTION

A. The RCPSP Problem

The resource constraint scheduling problem, known

as RCPSP, consists in minimizing the completion time

(makespan) for scheduling a set of tasks when the resources

are not continuously available to perform all the processing.

The RCPSP is classified as NP-hard [1] and has many variants

[12] depending particularly on (i) inter-task precedence

constraints (GPRCP and PRCP-GPR variants), (ii) task

preemption/non preemption (PRCPSP), (iii) resource

availability pattern (constant, variable) … This problem has

been extensively studied because of its many real world

applications e.g. in chemical industry where it is known as

Labor Constrained Scheduling Problem [3], in timetable

managing for university classrooms and teachers [2], in

industrial sectors such as textile workshops [7] or hybrid flow-

shop [10]. It has to be underlined that there exist exact

algorithms providing optimal solutions but requiring

exponential time [11]. An alternative consists in designing

polynomial time approximation algorithms or heuristics. In

this paper, we address a specific variant of the RCPSP where

the available resources, a set of heterogeneous processors i.e.

of different speeds, cannot handle all the tasks during a limited

prefixed makespan. Our aim is to schedule an optimal subset

of the input tasks. The optimality may be either a maximal

number of tasks or a maximal weight, the weight being the

sum of the costs of the subset tasks.

B. Brief overview

In a recent study [12] we find an updated and

exhaustive overview of the RCPSP with nine extensions and

solving methods for each. For the RCPSP with independent

tasks in which we are interested, fifteen approaches are cited

such as hybrid genetic algorithms, integer/constraint

programming, 0-1 linear programming, branch and bound

technique, hybrid neural network approach, local search

techniques, swarm optimization...

Other methods are also known in the literature such

as hybridization of two classic methods i.e. particle swarm

optimization and genetic algorithm [5]. A hyperheuristic based

on a tabu search is proposed in [9].

It has to be underlined that the majority of the solving

techniques which are of polynomial complexity determine

only approximate solutions. However, techniques such as 0-1

linear programming and branch and bound determine exact

solutions but are of exponential complexity, thus cannot be

used for large size RCPSP’s. For this important reason, we

preferred designing polynomial time approximation

algorithms that are able to determine good quality solutions in

an acceptable time.

The remainder of the paper is organized as follows.

In section 2, we propose our theore-tical contribution

consisting in two approaches i.e. Limited Makespan

Constraint Relaxation (LMCR) and Progressive Task

Allocation (PTA). Section 3 is devoted to an experimental

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

study. Finally, we present some concluding remarks and

perspectives in section 4.

II. SCHEDULING UNDER LIMITED RESOURCES

A. Problem formulation

The problem we address can be formulated as

follows. Consider n independent tasks T1 ... Tn with

respective costs c1 ... cn and p heterogeneous processors P1 ...

Pp whose respective speeds are s1 ... sp where si ≥ si+1 (i=1…p-

1). Let sc be the sum of task costs and ss the sum of processor

speeds. We have to schedule the n tasks under the constraint of

limited duration (makespan) M. The makespan M is assumed

to be unfeasible i.e. M < sc/ss. In other words, the n tasks

cannot be scheduled in such a makespan. Only a subset could

be. Indeed, the makespan of any scheduling of the n tasks with

the p processors, denoted M(p), obviously satisfies the

following inequality, provided that no processor is useless

[13]:

 M(p) ≥ sc/ss (1)

Therefore, we have to determine a maximal (or

optimal) task subset extracted from the set of n tasks that can

be scheduled with the p available processors. Here, the task

subset to be determined may be defined in various ways. It

may be a maximum number of tasks. It may also correspond to

a maximal subset weight, the weight being the sum of the

costs of the subset tasks.

From inequality (1) we directly get :

 sc ≤ M(p)×ss (2)

Hence, we deduce that the total cost (weight) of tasks

that can be processed in a period M, denoted sc(M), and the

overall speed, denoted ss(M), required to schedule the n tasks

in a period M satisfy the following relationships:

 sc(M) ≤ M×ss = scmax (3)

 ss(M) ≥ sc/M = ss
+
(M) (4)

We can then proceed in several ways as detailed

below. First, it should be noted that a processor load, denoted

λ, is defined as the sum of the costs of the tasks assigned to it

divided by its speed. We detail below our two approaches by

considering three cases that may occur in practice: (i) unsorted

(or random) tasks, (ii) tasks with decreasing costs (c1 ≥ c2 ≥ ...

≥ cn) and (iii) tasks with increasing costs (c1 ≤ c2 ≤ ... ≤ cn).

Indeed, each case has its own peculiarities.

B. First Approach: Limited Makespan Constraint

Relaxation (LMCR)

The LMCR approach is a direct consequence of

inequality (3). It consists in relaxing, i.e. not considering, the

limited makespan constraint. Thus we begin by scheduling all

the n tasks regardless of the resulting makespan. Let M(p) be

the makespan obtained by using a scheduling algorithm, say

Sch. Obviously, we have M(p) > M. It suffices now to first

identify the processors whose loads do not exceed M. Such

processors will be called feasible. As to the remaining

processors, called unfeasible, we eliminate for each of them as

many tasks as necessary so that the new load does not exceed

M. The eliminated tasks will be called redundant. Remark that

the elimination procedure may be done in various ways as

follows. Let us first denote by Ti,1…Ti,ki the ki tasks whose

costs are ci,1…ci,ki that are assigned to the unfeasible

processor Pi. Let λi be its load i.e. (ci,1+ ci,2 + … + ci,ki)/si .

A first straightforward procedure consists in

formulating, for each unfeasible processor, say Pi, the

elimination of its redundant tasks as a problem of extracting

from its ki tasks a subset of ki* (<ki) tasks such that the sum of

their costs divided by si, denoted λi*, is the closest to M

without exceeding it. We may proceed here in several ways as

follows.

(a) A trivial way consists in choosing the first

feasible ki* tasks. Obviously, this procedure can be achieved in

an O(ki) time in the worst case. We easily deduce that the

overall complexity (i.e. to treat all the unfeasible processors) is

O(np) in the worst case since ki≤ n, i=1…p.

(b) A variant of the above alternative is to first sort

the ki tasks Ti,1…Ti,ki in increasing (resp. decreasing) cost,

then extract the first ki* tasks i.e. such that the corresponding

load λi* is the closest to M without exceeding it. Clearly, the

increasing (resp. decreasing) sort would maximize (resp.

minimize) ki* thus the total number of tasks scheduled by Pi.

This variant is obviously of complexity O(kilogki) at most.

The overall complexity (i.e. to treat all the unfeasible

processors) will then be O(nplogn) in the worst case.

(c) Another alternative consists in extracting, with no

presorting, an optimal sublist of non necessarily consecutive

tasks. Unfortunately, this extraction is a hard combinatorial

optimization problem (POC) thus an exponential time is

required to determine an optimal solution. However,

polynomial approximation algorithms for solving this problem

are known in the literature [4]. We have to add that an

approximate solution may be easily determined when the task

costs are initially in decreasing (resp. increasing) order. In

such case, the deleted tasks will be those with smaller (resp.

larger) costs. Thus, as previously seen in (b), this procedure

would minimize (resp. maximize) the number of scheduled

tasks and would maximize (resp. minimize) the total sum of

scheduled task costs. Remark that as will be seen in section 3

when describing the experiments we achieved, the decreasing

order maximizes, in most cases, the total weight i.e. the sum of

the costs of the task subset.

Concerning the above mentioned scheduling

algorithm, denoted Sch, it may be one among the standard

algorithms known in the literature i.e. List Scheduling (LS),

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

Shortest Processing Time (SPT), Longest Processing Time

(LPT) with their two versions. Their complexities are as

follows. For LS, it is O(np) (may be reduced to O(nlogp)) and

for both SPT and LPT, it is O (n(logn+logp)) [6].

We have to add that, once the task elimination

procedure is done, a second and improving phase may be

considered. It consists in reallocating the eliminated tasks by

first identifying the non saturated processors i.e. whose loads

do not exceed the fixed makespan M. Let n* (< n) be the

number of scheduled tasks. The reallocation procedure of the

n-n* remaining tasks may be done in several ways as follows.

(d) The current task is allocated to the first non

saturated processor that fits it i.e. whose new load does not

exceed M. The procedure is iterated until no processor can

receive a new task. Its complexity is clearly O((n-n*)p) in the

worst case i.e. at most O(np).

(e) The current task is allocated to the best non

saturated processor that fits it i.e. whose new load will be the

closest to M without exceeding it. The procedure is iterated

until no processor can receive a new task. Here the complexity

is the same as above.

(f) The n-n* tasks are first sorted in increasing or

decreasing costs and one of the two previous procedures is

used. The complexity is here O((n-n*)(log(n-n*)+p) in the

worst case i.e. at most O(n(logn+p)).

It is easy to remark that the three proposed ways (d),

(e) and (f) are in fact based on standard heuristics known for

solving a variant of the 1D Bin Packing problem where the

number of bins is fixed and their capacities are different [7].

The LMCR approach is illustrated with the following

example where n=10 ; p=3 ; costs: 7,4,5,1,10,6,3,2,8,9 (hence

sc=55) ; speeds : 1,0.5,0.25 (hence ss=1.75) ;

M=23<sc/ss=55/1.75= =31.43.

Thus sc(M)≤scmax=M×ss=23×1.75=40.25 and

ss(M)≥ss
+
(M)=sc/M=55/23=2.39. We apply our approach by

using algorithms LS, SPT and LPT. The different results are

then compared.

Fig 1. LMCR approach using LS-version 1

Fig 2. LMCR approach using SPT-version 1

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

Fig 3. LMCR Approach using LPT-version 1

The next table gives, for each algorithm, n* the

number of scheduled tasks, their weight sc* (sum of their

costs) and the final makespan M* (≤ M=23). We also give the

corresponding ratios n*/n, sc*/sc, M*/M and sc*/scmax (%).

TABLE I. RESULTS COMPARISON - LMCR

Sch LS SPT LPT

n* 8 7 6

sc* 38 28 39

M* 23 18 23

n*/n 80 70 60

sc*/sc 69.1 50.9 70.9

M*/M 100 78.3 100

sc*/ scmax 94.40 69.13 96.89

We remark that LS gave the maximum number of

tasks (8 out of 10) but neither the maximum nor the minimum

weight. LPT gave the minimum number of tasks (6 out of 10)

and the maximum weight (39 out of 55). Both LS and LPT

reached the fixed makespan. As to SPT, it gave the worst

results.

On the other hand, we may define the efficiency E of

each algorithm by the ratio sc*/ scmax. We remark that it is

equal to 94.40% for LS, 69.13 % for SPT and 96.89 for LPT

(the best).

C. Second Approach: Progressive Task allocation

(PTA)

This approach consists first in applying a scheduling

algorithm Sch (LS, SPT or LPT) to schedule the whole n tasks

such that the (transient) load of each processor does not

exceed M.

Assigning a task Ti to a processor Pj considered by

Sch as the first feasible candidate is done under the

assumption that its new load does not exceed M i.e. λj_new ≤

M with λj_new = λj_old + ci/sj. If this condition is not

satisfied, this task will be assigned to the second feasible

processor (according to Sch) with the same previous

assumption. If there is no feasible processor at all, the task in

question will be definitively removed (eliminated).

Once this phase is terminated, an improvement phase

may be considered as in the previous LMCR approach. It

consists in reallocating the eliminated tasks according to one

among the alternatives (d), (e) or (f) seen in the LMCR

approach.

As to the overall complexity of PTA, in addition to

that of Sch (either O(nlogp) or O(n(logn+logp)), we have to

add either O(np) or O(n(logn+p)) in the worst case. This gives

a worst case complexity of O(np) to O(n(logn+p).

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

The PTA approach is illustrated with the previous example.

The results are recapitulated in the following table. We can

remark that quite similar results to LMCR are obtained.

TABLE II. RESULTS COMPARISON - PTA

 LS SPT LPT

n* 8 7 7

sc* 38 28 39

M* 23 18 23

To conclude this section, we recapitulate the two

approaches with their alternatives and complexities below.

TABLE III. RECAPITULATIVE TABLE OF APPROACHES

Approach Phases Alternatives Complexity

LMCR

1

Apply a scheduling algorithm Sch
Complexity of

Sch

Identify unfeasible processors O(p)

Elimination of non assigned tasks

(a) O(np)

(b) O(nplogn)

(c) exponential

2 Improvement reallocation

(d)
O(np)

(e)

(f) O(n(logn+p))

PTA
1

Apply Sch without exceeding M by choosing an adequate processor and

eliminate unfeasible tasks

Complexity of

Sch

2 Improvement reallocation as in LMCR

III. EXPERIMENTATIONS AND COMPARISONS

A. Introduction

In order to validate our theoretical contribution, we

present in this section an experimental study achieved on a

series of random data. Our algorithms were coded in Python

2.6 under Windows XP SP3. The target machine is an Intel

Toshiba with 1.60 GHz clock and 1 GB RAM.

We precise that we choosed 9 values for n in the

range [10 500]. For each n, we generated two sets of task costs

: identical costs and different costs with three cases i.e.

random costs (rac), increasing costs (ic) and decreasing costs

(dc). On the other hand, for each value of n, we choosed three

values for p (varying with n). For each value of p, we choosed

two values for m=max(si)/min(si) i.e. 5 and 10 then randomly

generated the speeds. We mention that the processors were

sorted by decreasing speeds. Concerning the choice of the

values of both p and M, we have to precise that is was done as

follows. We first experimentally determine M(p
+
) i.e. the

makespan required to schedule the n tasks with p
+

processors

by using algorithm LPT-version 2 (LPTb). We then choose p

< p
+
 and M < M(p). In the experiments presented below, we

used the LS algorithm with its two versions LS1 and LSb i.e.

LS with back filling.

B. Numerical results

In addition to the previously defined parameters n, sc,

p, ss, M and m, we denote by ss+(M)=sc/M (> ss) the minimal

global processor speed sum required to process the n tasks in

M time, scmax=M*ss the maximal weight (sum of costs of the

scheduled tasks) that can be reached, n* (<n) the number of

scheduled tasks, sc* the sum of scheduled tasks costs, the

efficiency E=100(sc*/ scmax), the n-ratio nr=100(n*/n) and the

cost-ratio cr=100(sc*/sc).

We give below excerpts of the numerous results

restricted to n = 200 and sc = 9718. Twelve tests are

presented.

(a) LMCR

We precise that we used alternative (a) in phase 1 and

alternative (d) in phase 2.

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

TABLE IV. LMCR WITH LS FOR N = 200 AND SC=9718

p ss M ss+(M)
scmax rac ic dc

n* nr sc* cr E n* nr sc* cr E n* nr sc* cr E

16 64 66.08 150.3 4229.56 103 51.5 4156 42.76 98.26 126 63 3710 38.17 87.71 72 36 4218 43.40 99.72

37 250.4 33.55 295.3 8402.31 176 88 7778 80.03 92.56 172 86 7080 72.85 84.26 158 79 8320 85.61 99.02

42 163.5 42.08 236.9 6880.62 158 79 6548 67.38 95.16 152 76 5454 56.12 79.26 130 65 6679 68.72 97.06

55 380.1 22.78 444 8657.83 175 87.5 7653 78.75 88.39 166 83 6562 67.52 75.79 167 83.5 8483 87.29 97.98

177 541.3 21.25 557.7 11502.62 69 34.5 2128 21.89 18.50 148 74 5156 53.05 44.82 200 100 9718 100 84.48

122 881 10.21 1062 9001.52 69 34.5 2122 21.83 23.57 144 72 4874 50.15 54.14 27 13.5 1755 18.05 19.49

TABLE V. LMCR WITH LSB FOR N = 200 AND SC=9718

p ss M ss+(M)
scmax rac ic dc

n* nr sc* cr E n* nr sc* cr E n* nr sc* cr E

16 64 66.08 150.3 4229.56 101 50.5 4209 43.31 99.51 126 63 3710 38.17 87.71 73 36.5 4209 43.31 99.51

37 250.4 33.55 295.3 8402.31 180 90 8242 84.81 98.09 167 83.5 6642 68.34 79.04 151 75.5 8320 85.61 99.02

42 163.5 42.08 236.9 6880.62 153 76.5 6703 68.97 97.41 150 75 5300 54.5 77.02 130 65 6724 69.19 97.72

55 380.1 22.78 444 8657.83 183 91.5 8175 84.12 94.42 162 81 6223 64.03 71.87 161 80.5 8542 87.89 98.66

177 541.3 21.25 557.7 11502.62 172 86 7165 73.72 62.29 137 68.5 4399 45.26 38.24 200 100 9718 100 84.48

122 881 10.21 1062 9001.52 171 85.5 7083 72.88 78.68 134 67 4205 43.27 46.71 170 85 8575 88.23 95.26

By comparing the obtained values for nr and cr ratios

with the two versions LS and LSb, we remark that, in most

cases, LSb is better. This is due to the fact that LSb tries to fill

holes i.e. saturate the processors. Thus LSb will be more likely

to handle a larger number of tasks.

Concerning nr, we notice that for the case where the

tasks are sorted by decreasing cost (dc), we obtained the worst

results. This can be explained by the fact that the allocation of

tasks with larger costs is done first. This leads to reach more

quickly the threshold M i.e. the processors are (nearly)

saturated with a small number of tasks. The results obtained

with LMCR and its different versions are generally enough

satisfactory because we could schedule in most cases

practically all the tasks.

(b) PTA

Here alternative (d) was used in phase 2.

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

TABLE VI. PTA WITH LS1 FOR N = 200 AND SC=9718.

p ss M ss+(M)
scmax rac ic dc

n* nr sc* cr E n* nr sc* cr E n* nr sc* cr E

16 64 66.08 150.3 4229.56 105 52.5 4161 42.81 98.37 126 63 3710 38.17 87.71 55 27.5 4222 43.44 99.82

37 250.4 33.55 295.3 8402.31 174 87 7782 80.07 92.61 170 85 6901 71.01 82.13 138 69 8378 86.21 99.71

42 163.5 42.08 236.9 6880.62 152 76 6293 64.75 91.45 151 75.5 5373 55.28 78.08 116 58 6849 70.47 99.54

55 380.1 22.77 444 8657.83 176 88 7860 80.88 90.78 165 82.5 6471 66.58 74.74 155 77.5 8608 88.57 99.42

177 541.3 21.25 557.7 11502.62 163 81.5 6415 66.01 55.76 148 74 5156 53.05 44.82 200 100 9718 100 84.48

122 881 10.21 1062 9001.52 162 81 6333 65.16 70.35 144 72 4874 50.1 5 54.14 145 72.5 8425 86.69 93.59

TABLE VII. PTA WITH LSB FOR N = 200 AND SC=9718

p ss M ss+(M)
scmax rac ic dc

n* nr sc* cr E n* nr sc* cr E n* nr sc* cr E

16 64 66.08 150.3 4229.56 108 54 4121 42.40 97.43 126 63 3710 38.17 87.71 55 27.5 4222 43.44 99.82

37 250.4 33.55 295.3 8402.31 171 85.5 7556 77.75 89.92 167 83.5 6642 68.34 79.04 144 72 8383 86.26 99.77

42 163.5 42.08 236.9 6880.62 153 76.5 6214 63.94 90.31 150 75 5300 54.53 77.02 116 58 6849 70.47 99.54

55 380.1 22.77 444 8657.83 171 85.5 7365 75.78 85.06 162 81 6223 64.03 71.87 154 77 8606 88.55 99.40

177 541.3 21.25 557.7 11502.62 153 76.5 5690 58.55 49.46 137 68.5 4399 45.26 38.24 200 100 9718 100 84.48

122 881 10.21 1062 9001.52 148 74 5336 54.90 59.27 134 67 4205 43.27 46.71 80 40 5348 55.03 96.44

We can remark that, regardless of task costs

configuration (rac, ic, dc), LSb gives better results than LS. On

the other hand, LS in the rac and dc cases always gives a

minimum number of scheduled tasks.

We can explain this bad performance in the dc case,

as seen for LMCR, by the fact that here tasks with larger costs

are firstly scheduled i.e. the processors are (nearly) saturated

with a small number of tasks.

If we examinate the results for cr ratio, we notice that

the best and worst results are not always obtained with the

same versions as it is the case for the nr ratio. The two

versions (LS and LSb) with tasks in the ic case often provide

the smallest weights (sc*). Indeed, these versions allocate

lower cost tasks to the least loaded processors. Therefore, it is

less likely to increase the weight of scheduled tasks. This

behavior leads to increase the nr ratio (so n*) at the expense of

the cr ratio (so sc*). In the rac case (random costs), the best

results for n* and sc* seem to depend more on the task costs

than on the algorithm itself.

C. Inter-approaches comparative study

For a total of 114 tests and each task cost case (rac,

ic, dc), we specify in table 8 the number of times (%) where an

algorithm gave the best result in the two approaches. We

precise that a result obtained by a given algorithm is

considered the best when it corresponds to the highest values

for n* or sc*. For instance, in Table 8, LS1-rac giving 14.91

(%) for n* means that it was the best in 14.91 % of the 114

cases (i.e. 17/114).

We also give the efficiency variation interval (E

interval) reached by an algorithm in the 114 tests and the

number of times (%) where the efficiency exceeded 70%

(E>70%).

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

TABLE VIII. RATIOS (%) OF THE BEST ALGORITHMS

Version
LMCR PTA

n* sc* E interval E >70% n* sc* E interval E >70%

LS1-rac 14.91 6.14 [7.08 99.84] 73.01 49.12 5.26 [55.76 99.73] 98.47

LS1-ic 32.45 0.87 [43.97 97.75] 59.52 29.82 0.87 [43.97 97.20] 53.50

LS1-dc 14.03 36.84 [0. 99.94] 92.06 28.94 90.35 [82.02 99.93] 100

LSb-rac 37.71 21.05 [60.65 99.86] 93.65 14.91 6.14 [49.46 99.86] 82.45

LSb- ic 26.31 0.87 [35.87 97.75] 50.79 25.43 0.87 [35.87 97.20] 50.87

LSb-dc 23.68 63.15 [81.51 99.94] 100 24.56 72.80 [82.02 99.93] 100

We remark that the two approaches give enough

similar results for n* and sc*. LS1-ic gives good values for n*

but bad ones for sc*. We also notice that in order to maximize

n*, we have better using LS1-ic version in the two approaches.

But, to maximize sc*, LSb-dc in LMCR as well as LS1-dc in

PTA are the best. Concerning the efficiency, it was larger than

70% in more than half of the cases and the LSb-dc is the best.

In order to better appreciate the performances of the

different algorithms used in the two approaches, we present in

the following figures the cost ratio cr and efficiency E profiles

where cr and E sorted in increasing order (notice that sorting E

and cr does not lead to the same permutations).

Fig 4. Efficiency (E) and cr profiles for algorithm versions in LMCR approach

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

Fig 5. Efficiency (E) and cr profiles for algorithm versions in PTA approach

We can remark that in LMCR as well as in PTA, we have the

following :

• For both LS-ic and LSb-ic, the efficiency and cr

profiles follow enough similar features i.e. the curves

are translatable.

• For both LS-rac and LSb-rac, the efficiency and cr

profiles follow somewhat dissimilar features.

• For both LS-dc and LSb-dc, the efficiency and cr

profiles follow quite dissimilar features since the

difference between cr and E is large (resp. small)

when their values are small (resp. large).

IV. CONCLUSION

We proposed in this paper two approaches for the

determination of approximate solutions for the COP of

scheduling independent tasks on heterogeneous processors

under limited makespan constraint. Each approach involved

several alternatives. The objective was to schedule a subset of

tasks optimizing a specific criterion which is either the size

(number of tasks) or maximum weight (sum of task costs). A

series of experiments could validate our contribution and

establish accurate comparisons between the two approaches.

This work leads us to precise some interesting

perspectives we intend to study in the future. We may

particularly cite the following:

- Design and experiment other alternative

approaches for solving the addressed problem

- Generalize our study to the case of preemptive

scheduling

- Parallelize the designed algorithms in order to

process problems of larger sizes in reduced time

REFERENCES

[1] Blazewicz, J., Lenstra, J. K., & Kan, A.H.G.R. (1983),

Scheduling projects to resource constraints:

Classification and complexity. Discrete Applied

Mathematics, 5(1), 11-24.

[2] Brucker, Peter & Knust, S. (2001). Resource-

constrained project scheduling and timetabling,

Practice and Theory of Automated Timetabling 3, 277-

293.

[3] Cavalcante, C., Cristina, C.B., Cavalcante, Victor, F.,

Ribeiro, Celso, C., De Souza & Cid, C. (2002), Parallel

Cooperative Approaches for the Labor Constrained

Scheduling Problem, Essays and Surveys in

Metaheuristics, 15, 201-225.

[4] Daniel, S. (1977), Hirschberg Algorithms for the

Longest Common Subsequence Problem, Journal of

the ACM, 24(4), 664-675.

[5] Eunice, L.A., (2009), Ordonnancement de projet sous

contraintes de ressources à l'aide d'un algorithme

génétique à croisement hybride de type OER, Tech.

Rpt, Quebec University at Chicoutimi, Canada.

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

[6] Eyraud, L. (2006), Théorie et pratique de

l’ordonnancement d’applications sur les systèmes

distribués, Doctoral thesis, INP Grenoble, France.

[7] Kone O. (2009), Nouvelles approches pour la

résolution du problème d’ordonnancement de projet à

moyens limités, Doctoral thesis, University of

Toulouse, France.

[8] Korf, R.E. (2002), A New algorithm for optimal bin

packing, American Association for Artificial

Intelligence Proceedings, AAAI-02, 731-736.

[9] Koulinas, G.K., Anagnostopoulos, K.P. (2013), A new

tabu search-based hyper-heuristic algorithm for solving

construction leveling problems with limited resource

availabilities, Automation in Construction, 31, 169–

175.

[10] Lahimer, A., Lopez, P., & Haouari, M. (2011),

Ordonnancement d'atelier de type flow shop hybride

avec tâches multiprocesseurs, Proc. Congrès

International de Génie Industriel (CIGI), Saint

Sauveur, Canada.

[11] Malapert, A. (2011), Techniques d’ordonnancement

d’atelier et de fournées basées sur la programmation

par contraintes, Doctoral thesis, ENSTIM, Nantes,

France.

[12] Orji, I.M.J., & Wei, S. (2013), Project Scheduling

Under Resource Constraints: A Recent Survey

Ifeyinwa, International Journal of Engineering

Research & Technology (IJERT), 2(2).

[13] Somai, R. (2013), Optimisation des ressources dans les

ordonnancements de tâches indépendantes en milieu

hétérogène, Master thesis, University of Tunis El

Manar, Faculty of Sciences of Tunis, Tunis, Tunisia

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.102-115

ISSN 2356-5608

