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Abstract — Motors are by far the most important type of 

electric charges, and so constitute the main targets to 

achieve energy saving. Every effort to save energy in mo-

tor application can be made by always attempting to use 

energy only as much as what needed during its operation. 

It can be achieved by optimizing the induction motor de-

sign. This paper presents a firefly algorithm for optimizing 

the IM design considering different formulations in order 

to show how we can handle the design process for certain 

characteristics. The proposed method has been applied to 

optimize the design of squirrel cage induction motor hav-

ing specifications 37kW, 380V, 60Hz. The validity of the 

design results is clarified by comparison between calculat-

ed results and existing ones. 
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1. Introduction :  

 

Squirrel cage induction motors (SCIM) are the most energy 

consuming electric machines in the world, intelligent use of 

energy means higher productivity with lower active energy 

and lower losses at moderate costs. The induction motor (IM) 

has been, intensively, studied and described in the literature 

during several decades. They are employed in great quantity 

in different applications and have a significant impact on the 

consumption of electricity. Consequently, their design takes a 

great importance [1], [2], [3]-[13]. As induction machines are 

now a mature technology, there is a wealth of practical 

knowledge, validated in industry, on the relationship between 

performance constraints and the physical aspects of the induc-

tion machine itself. 
 

In the literature numerous stochastic searching algorithms 

have been used to solve the IM design problems. Such as GA 

(Genetic Algorithm) [5], [10], [12], PSO (Particle Swarm 

Optimization) [2], [4]-[5], EA (Evolutionary Algorithm) [7] 

and Hooke Jeeves Method [1]. Such optimization approaches 

tend to find the global optimum but for a larger computation 

time (slower convergence). They do not need the computation 

of the gradients of the fitness function and constraints. Nor do 

they require an already good initial design variable set as most 

nongradient deterministic methods do. 
 

Though heuristic algorithms such as GA have been em-

ployed to solve IM design problems, recent research has iden-

tified some deficiencies in GA performance and also for PSO 

often suffers from the problem of being trapped in local opti-

ma [4].  
 

In this paper, the optimum design method is introduced to 

minimize the total losses of the high efficiency induction 

motor by using firefly algorithm optimization. 
 

2. Conventional method and model validation: 

 

   Results simulation of the model are calculated by equivalent 

circuit method [14] and the characteristics of SCIM are com-

pared with simulation and experimental results obtained in 

[10]. Table 2 shows the results of equivalent parameters and 

efficiency, power factor and rated phase current results. Their 

values are closer to analysis and optimum model test results 

presented in [10]. 
 

   Note that the leakage reactance of stator and rotor (Xs and 

Xr) is calculated considering leakage flux lines which cross the 

stator and, respectively, the rotor slots, end-turn flux, zig-zag 

flux, and air-gap flux. The rotor resistance (Rr) is equivalent 

value using bar and end-ring resistance. 
 

Table 1. Specification of 37 kW three phase SCIM 
 

Item Value 

Phase number 3 

Input voltage [V] 380 

Frequency [Hz] 60 

Output power [kW] 37 

Pole number 4 

Stator Out Diameter [mm] 343 

Shaft Diameter [mm] 70 
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Table 2. Model validation 
 

Items Unit Conventional 

method 

 Ref model [10] 

Efficiency % 93.23 93.6 

Power factor % 86.44 86.1 

Rated phase current  A 69.7555 69.9 

Stator resistance (Rs) 
at 25℃ 

Ω 0.0594 0.0483 

Rotor resistance (Rr) at 

25℃  
Ω 0.0333 0.0266 

Stator leakage reactance 

(Xs) 
Ω 0.3125 0.232 

Rotor leakage reactance 

(Xr) 
Ω 0.2812 0.278 

Magnetizing reactance 

(Xm) 
Ω 7.9196 7.68 

 

 
3. Definition of the optimization problem 

 

   The goal of the optimization is to minimize losses in SCIM 

in order to reduce energy consumption. The optimal design 

parameters of the motor can be obtained by solving a con-

strained nonlinear optimization problem. The problem consists 

of an objective function which is optimized (minimized) sub-

ject to a set of constraints. A typical form for the addressed 

optimization problem can be expressed in the form:   
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   A good solution of an optimization problem is obtained by 

means of both an appropriate model (also called formulation) 

and an efficient algorithm to solve it. The aim of this paper is 

to investigate the efficiency and reliability of stochastic opti-

mization solvers when handling different mathematical formu-

lations. We present the impact of such different formulations 

on solver performance with the aim of providing guidelines 

for designers in practical engineering applications.   
 

4- Formulation of the optimization problem 
 

   The problem consists of an objective function which is op-

timized (minimized) with a set of constraints. Choosing the 

objective function is very intricate in real applications which 

have to observe many contradictory requirements such as: 

improving the motor efficiency and power factor, reducing the 

motor size and weight, improving the locked torque, reducing 

the locked current and limit the components temperature to a 

feasible level. It is known that the same optimization problem 

can be often formulated in different ways, using different 

objective function, different constraints and variables. Fur-

thermore, the formal description of optimization problems has 

an impact on the applicability and efficiency of the corre-

sponding solution methods. Indeed, the study of reformula-

tions is an active research area in the optimization community 

[13], [15]-[16]. The optimization problem of SCIM can be 

formulated as follow: 
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   Where ∑ losses (W) is the total losses of the induction mo-

tor including stator (Pc0) and rotor loss (PAl), iron loss (Piron), 

friction and windage loss (Pmv) and stray load loss (Pstray). Dis 

(m) the stator bore diameter, d1 (m) the rotor higher slot diam-

eter, d2 the rotor lower slot diameter (m), hr the rotor slot use-

ful height, bts the rotor tooth width (m) the stator tooth width, 

hs (m) the stator slot useful height, bs1 (m) the slot lower 

width, bs2 (m) the slot higher width, ɳ the efficiency, Tc0 the 

winding temperature, iLR the per unit locked current, tLR the 

per unit locked torque. 
 

   In this work we discuss four different formulations but 

mathematically equivalent because the only difference is the 

choice of number of variables and constraint, also the quality 

of used constraints. We discuss about the four following for-

mulations:  
 

i. Formulation 1: 
 

 Dis, hs, hr, bs1, bs2, bts, btr, d1, d2 9 variables 
 Losses is a function depending on Dis, hs, hr ...  
 Equations in (2) yield 6 inequalities constraints and 2 

equality ones: Dout, Dshaft 
  Add constraints to the bounds of the variables 
 

ii. Formulation 2 
 

 Dis, hs, hr, bs1, bs2, bts, btr, d1, d2 9 variables 
 Losses is a function depending on Dis, hs, hr ...  
 Equations in (2) yield 2 inequalities constraints and 2 

equality ones: Dout, Dshaft 
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 Add constraints to the bounds of the variables 

 
iii. Formulation 3 

 

 Dis, hs, hr, bts, btr, d1, d2 7 variables 
 Losses is a function depending on Dis, hs, hr ...  
 Equations in (2) yield 6 inequalities constraints and 2 

equality ones: Dout, Dshaft 
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 Add constraints to the bounds of the variables 

 

iv. Formulation 4 

 

 Dis, hs, hr, bts, btr, d1, d2 7 variables 
 Losses is a function depending on Dis, hs, hr ...  
 Equations in (2) yield 2 inequalities constraints and 2 

equality ones: Dout, Dshaft 
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 Add constraints to the bounds of the variables 

 

4. Firefly algorithm: 
 

   The firefly algorithm (FA) is a novel metaheuristic 

algorithm. It was first developed by Xin-She Yang in late 

2007 and 2008. Its idea is based on the behavior of fireflies. 

The algorithm uses the difference in light intensity that is 

proportional to the value of the objective function. Each 

individual has a certain attractiveness which determines the 

direction of movement. All fireflies are characterized by light 

intensity associated with the objective function [17], [19]. 

Yang was used three rules for the FA [18], [20]: 
 

 All fireflies are unisexual and every firefly attracts/gets 

attracted to every other firefly. 

 The attractiveness of a firefly is directly proportional to 

the brightness of the firefly. (The brightness decreases as 

the distance increases.) 

 They move randomly if they do not find a more attractive 

firefly in adjacent regions  
 

   The movement of a firefly i is attracted to another more 

attractive (brighter) firefly j is determined by 
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   Where 

2

0
ijr

e






 attractiveness between the i-th and j-th 

firefly ri j is Cartesian distance between i-th and j-th firefly The 

FA implementation steps are listed below [19]: 
 

Table. 3 Pseudo code of the firefly algorithm (FA)  
 

Firefly algorithm 

Objective function f(x),              x=(x1,…,xd)
T 

Generate initial population of fireflies xi=(i=1,2,…,n) 
Light intensity Ii  at xi is determined by f(xi) 
Define light absorption coefficient γ 
While (t<MaxGenerqation) 
for i=1:n all n fireflies 
for j=1:n all n fireflies (inner loop) 
if (Ii<Ij), Move firefly I towards j: end if 
Vary attractiveness with distance r via exp (-γr) 

Evaluate new solutions and update light intensity 

end for i 

end for j 

rank the fireflies and find the current global best 

end while 

Postprocess results and visualization 

 
 

 

5.  Simulation and results 
 

   In order to compare FA performance and compare it be-

tween optimum model and optimization approach used in 

[14], numerical simulation have been conducted in which 

formulation 1, formulation 2, formulation 3 and formulation 4 

shown in section 4 are better. Each formulations were execut-

ed with the same population size m = 10, iteration number N = 

50. The algorithm stop after 500 function evolution.  The 

obtained results are presented in Tab. 4, Tab. 5 and Tab. 6. 
 



Table. 4 Comparison between optimized design for formulation 1 and 2. 
 

Items Formulation 1 Formulation 2 Conventional 

design 

Dis [mm] 115 188.8083 221 

d1 [mm] 6.1333 6.6190 7.3477 

d2 [mm] 2.0039 2.2284 2.8419 

hr [mm] 29.6675 29.5218 28.6257 

btr [mm] 8.3090 8.4635 9.2754 

bts [mm] 7.7836 7.6326 8.2721 

hs [mm] 28.2564 28.7046 29.4923 

bs1 [mm] 6.2258 5.8526 6.5195 

bs2 [mm] 10.0353 10.1813 10.3856 

Power factor [%] 85.49 86.1 86.44 

Efficiency [%] 94.27 93.6 93.23 

Temperature of 

winding [°C] 

102.4672 109.3804 112.2971 

 

   As is observed in table 4 the optimization with more con-

straints has high efficiency and the power factor constraint is 

not satisfied, we can note that formulation 2 gives the best 

solution. From results in table 5, we remark that formulation 4 

with fewer variables and fewer constraints gives the best result 

in terms of the best found solution.  
 

   The performance of the FA algorithm is emphasized by 

comparing its results with those of the conventional design 

method and the optimum model test [10] in table 6. 
 

 

Table. 5 Comparison between optimized design for formulation 3 and 4. 
 

Items Formulation 3 Formulation 4 Conventional 

design 

Dis [mm] 115 178.5319 221 

d1 [mm] 6.2028 6.5318 7.3477 

d2 [mm] 2.0958 2.3480 2.8419 

hr [mm] 29.0283 29.4876 28.6257 

btr [mm] 9.0523 8.7098 9.2754 

bts [mm] 7.8289 7.9924 8.2721 

hs [mm] 28.5358 28.8196 29.4923 

Power factor [%] 85.51 86.02 86.44 

Efficiency [%] 94.25 93.68 93.23 

Temperature of 

winding [°C] 

103.3586 109.3715 112.2971 

 

 

   From these tables, it is most clear that, using the formulation 

with fewer variables and fewer constraints allows to obtain the 

best solution. 

 

   The plot in fig. 1 represents the variation of the objective 

function during optimization process for four different formu-

lations. It can be seen from the function evolution that using 

more constraints lead to important decreasing of function 

value. We found that formulation 1 and 3 provide a solution 

which is far from the best one. However we remark that for-

mulation 2 and 4 give the best results. The efficiency is little 

higher for formulation 4 (93.68%) than for formulation 2 

(93.6%). 

 

  

 
 
Fig.1 Evaluation of objective function during optimization process for differ-

ent formulations 

 
 

   In an optimization program there should be the flexibility to 

declare any of the problem functions an objective function or 

others of them as constraints. The reason for such an option is 

that we may not always be interested in maximizing efficiency 

or reducing cost. Depending on the need, the choice must be 

left to the designer. 

 

 
Fig.2 Loss and efficiency .vs. formulation 

 

   In figure 2 we compare four formulations in terms of the 

best solution found, considering different choices of design 

variables and constraints. It is seen that efficiency for each 

formulation satisfies high efficiency level (> 93.0%). However  
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Table 6. Change of performance parameters with formulations 
 

Items Formulation 1 Formulation 2 Formulation 3 Formulation 4 Optimum  model [10] Conventional design 

Stator copper loss 
[W] 

617.9047 788.1237 617.9047   777.0595   906 867.5804 

Rotor Alimunium 

loss [W] 

327.1347 365.9811 327.3180 363.1499 488 383.8568 

Iron loss [W] 491.5146 559.5209 493.7658 554.0259 497 622.7908 

Power factor [%] 85.49 86.1 85.51 86.02 87.1 86.44 

Efficiency [%] 94.27 93.6 94.25 93.68 93.6 93.23 

 

other performances are not achieved to the goal such as power 

factor as discussed above for formulation 1 and 3. This proves  
the non-equivalence of the four formulations in a numerical 

sense. Moreover we note that formulation 2 and 4 give closer 

results. We remark that formulation 4 is more efficient provid-

ing satisfactory constraints. Therefore, this seems to show that 

it is beneficial to reduce the zone of research in order to im-

prove the chances to find the global minimum. 
 

5. Conclusions 
 

   The proposed paper has presented a bird’s eye view of the 

research work under progress. We have discussed the solu-

tions found using four reformulations of SCIM design prob-

lem showing that the formulation of optimization design has 

significant impact on final optimal structure and performanc-

es. If properly utilized, the optimization will lead to the design 

that satisfies all imposed requirements. The results of the FA 

algorithm are compared those of the Analysis, test and con-

ventional design method, which show the effectiveness of the 

proposed method in terms of solution quality, convergence 

and computational efficiency. 
 

   The design process proposed in this paper will be useful for 

minimizing total losses in SCIM design with fewer design 

variables and fewer constraints. It seems to be more efficient 

to use this formulation.  
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