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Abstract—A model to predict the heat transfer in a differen-
tially heated cavity which one of it’s vertical plane wall is covered
with a thin layer of phase change material (PCM) is proposed
and discussed . The mathematical and numerical modeling will
be first presented, then the boundary associated with the PCM
wall is formulated in term of “Signorini problem”. The numerical
method proposed to solve this formulation is first validated by
two test cases and a differentially heated cavity is studied.

Index Terms—Natural convection, Differentially heated cavity,
Heat transfer, Phase-change material, Signorini Problem.

I. INTRODUCTION

In the last decades the use of PCM is extensive in various
fileds such as : buldings to improve their thermal inertia,
thermal protection of electronic devices in order to limit the
peak of temperature and increase battery life time, solar power
plants, etc. The common goal of all these applications is the
heat energy storage. Heat energy storage not only reduces
the mismatch between the supply and the demand, but also
improves the performance and reliability of energy systems,
hence plays a crucial role in the future energy needs [1,2].
Phase change materials (PCMs) usually provide a large amount
of heat, due to phase change during charging and discharging
at a constant phase changing temperature [3-5]. Due to the
rise of computer-aided modeling, several numerical methods
for solving phase change problems have been developed. A
phase change problem is more generally characterized by a
moving melting front which splits the domain into a liquid
and a solid phase. The overall phenomena is described by
heat transfer equations and involves latent heat terms. The
well known “Stefan problem” [6-8] which is well-studied
since more than 100 years, illustrates this kind of phase
change phenomena. Two types of numerical method have been
developed to these problems. Firstly, the interface tracking
of the melting front is based on a Lagrangian description of
the interface. On the other hand, a derived formulation of the
heat equation, namely enthalpy method [9-10], is based on an
Eulerian description thanks to the introduction of the liquid

fraction. In our work, we consider a PCM thin layer on the
boundary of the fluid domain; we formulate this by means
of “Signorini formulation” and we propose a new numerical
method . The mathematical and numerical modeling is first
presented and numerical results dealing with a differentially
heated cavity which one of it’s vertical plane wall is covered
with a thin layer of PCM is next investigated to hilight the
potential of this method.

II. MATHEMATICAL AND NUMERICAL MODELING

A. Geometry and governing equations

Let us consider a closed cavity containing an incompressible
fluid (Fig-1). The right wall of this cavity is covered with
a thin layer of PCM and is subjected to a pulsating heat
flux. A constant temperature is imposed on the left wall of
the cavity and the horizontal walls are adiabatics (See Fig-
1). The boundary conditions prescribed to the cavity generate
a natural convection flow and a heat transfer by conduction
in the PCM layer. The equations that govern transfer by
natural convection and conduction are linked at the vertical
wall by conditions of temperature and heat flux continuities.
The Obereck-Bousssinesq approximation is used to relate
density to temperature variation, and to link in this way the
temperature field “θ” to the flow field [11,12]. The flow inside
the cavity is governed by the Navier-Stokes equations which
are given in their non-dimensional following form :
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In writing Equations (1-4) the dimensionless parameters are
based on : the length scale Lref = H; the reference velocity
uref = 2gβH

αLq” , and ∆Tref = q”H/k. The dimensionless
temperature being defined with θ = T−Tc

∆Tref
, in this context

Raileygh number is defined as Ra = gβmH3

αν∆Tref
and Prandtl

number as Pr = ν
α .

For the heat transfer by conduction in the PCM we assumed
that its thickness is small in comparaison with Lref . Its
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Figure 1. Two-dimensional enclosure heated with pulsating heat flux from
the right side.

thermal inertia is neglected and the heat transfer occurs only
in the normal direction. A thermal balance describes the heat
transfer between the PCM and the fluid at the interface fluid-
PCM as follow as :

(qc − j).n = ρLmλ
′ on ΓPCM (5)

with qc the diffusive flux, j is the imposed heat flux, n is
the outward normal, Lm is the latent heat, ρ is the density,
and λ′ is the temporal derivative of the liquid fraction. So, the
melting-solidifying model in the PCM is given by a system of
inequalities : 

λ = 0 if T ≤ Tm
λ = 1 if T > Tm

0 ≤ λ ≤ 1 if T = Tm

(6)

This model can be divided into the two following models
(Tm − T )λ = 0

Tm − T ≥ 0

λ ≥ 0

(7)


(T − Tm)(1− λ) = 0

T − Tm ≥ 0

1− λ ≥ 0

(8)

Equations (7) describe the mushy-solid phase change and the
equations (8) the mushy-liquid phase change. This boundary
condition is similar to one of Signorini mechanical contact
problem [13]. The literature, revealed a recent numerical
method of the Signorini problem developed by Zhang and Zhu
[13]. They derive an iterative method to solve the Signorini
boundary condition over the Laplace equation. This method is
retained in this work.

B. Numerical methodology

Our formulation is different from that of the Signorini
boundary condition, developed by Zhang and Zhu, by the lake
of normal derivative term in our formulation. So first, we try
to get closer to their formulation in order to use their iterative
algorithm. Then, the temporal discretization of equation (5)
expressed on equations (7) and (8) at each time step leads to
the Signorini boundary condition on ΓPCM that is the PCM
boundary of the solid part as follow as :

(Tm − Tn+1)(a− b∇Tn+1.n) = 0

Tm − Tn+1 ≥ 0

a ≥ b∇Tn+1.n

onΓMCP (9)

and the liquid part as follow as :
(Tm − Tn+1)(b∇Tn+1.n− (a− 1)) = 0

Tn+1 − Tm ≥ 0

b∇Tn+1.n ≥ a− 1

onΓMCP

(10)
where a = λn − ∆t

ρLm
jn+1.n and b = ∆t

ρLm
k.

These two parts are indeed complementary. The special
feature of this formulation is that the two parts are valid in
the mushy zone, which allows us to exchange between the two
parts. In the next section, we present the iterative algorithm
of resolution for the implicit scheme proposed.

C. Algorithm

The method of solving the transfer equations is based on
the projection method presented by Zhang and Zhu [13]. They
propose to introduce a fixed point equation to solve nonlinear
boundaries. We present the resolution to the solid part. For a
constant c> 0, the equation of the solid phase is equivalent to
the following fixed point equation:

Tm − T − [Tm − T − c(a− b∇T.n)]+ = 0 (11)

with [x]+ = max(x, 0). According to Zhang and Zhu, an
iterative scheme is proposed as follows:

T (k+1) = Tm − [Tm − T (k) − c(a− b∇T (k+1).n)]+ (12)

Zhang et Zhu shown that for any initial value T 0 > Tm and
for any positive constant c > 0,

{
T k
}

converges to a unique
solution.The iterative steps are :

• Step-1 : compute Sd ={
x ∈ ΓMCP , Tm − T k − c(a− b∇T k.n) ≤ 0

}
.

• Step-2 : Solve the heat equation with T k+1 = Tm in
Sdand T k+1 + cb∇T k+1.n = T k + ca in ΓMCP§d .

• Step-3 : If
∥∥T k+1 − T k

∥∥ > ε, return to step 1, otherwise
updates the liquid fraction λn+1 and advance a new time.

Regarding the liquid part of the boundary condition the
calculation algorithm is the same, replacing a par a − 1 in
the algorithm.
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Figure 2. Average temperature profile at the interface rod-PCM

III. RESULTS

A. Heat conduction in a rod with a PCM side

In order to validate the proposed numerical method, we
consider a one dimensional case which allows us comparisons
with standard methods. So, we consider the heat conduction
problem in a solid bar which the left end is covered by a
thin layer of PCM. The temperature at the left end of this
bar is imposed. The heat transfer of the considered problem is
composed of a common heat conduction in the bar and a phase
change phenomena in the right part. These transfer equations
are coupled by temperature and flux conditions at the interface
rod-PCM. In the solid bar, heat transfer is governed by the
unsteady heat conduction equation and in the PCM domain
an enthalpy method is used (Voller method) [15]. To validate
our model, the average interface temperature calculated with
our numerical method and the multi-domain method [14] are
compared. Indeed, the testing physical model is a rod of
length 10 cm with a thermal diffusivity α = 2.61 10−4 m2/s.
Computations are carried out with four PCM thickness (e= 2
cm, 1 cm, 0.5 cm and 0.1 cm). It should be noted that the
heat energy stored that is the product Lv×e = 55000Jm/kg,
is constant. It should be highlighted that our scheme is able
to reproduce the time evolution of the average temperature
at the interface rod-PCM. The average interface rod-PCM
temperatures obtained by multidomain method and by our
method are very close as the PCM thickness decreases (Fig-
2). This results validate our method for a thin PCM layer
thickness. We can also observe that the phase change occurs
at melting temperature of the selected PCM whatever the phase
change as melting or solidifying. In the next section, this
new boundary condition is applied in a computational fluid
dynamics case.

B. Case of differentially heated cavity with a PCM layer on
a vertical wall

The differentially heated cavity detailed in section (2.A)
is considered. Regardless the PCM boundary conditions, the
Navier-Stokes equations are discretized by means of second
order finite difference defined on a straggered grid. Then, the
semi-implicit scheme of Adams Bashforth Crank Nicholson is
considered as temporal discretization. The velocity/pressure
coupling is overcame by the projection method [16]. The
method of solution for the linear systems resulting of these
discretizations is based on Multigrid solver. Our code devel-
opped to solve Navier-Stokes equations is validated with Lage
& Bejan results [17]. Computations have been performed for
Rayleigh number Ra = 108, and Prandtl number Pr = 0.7
as well as a rectangular heat flux function q”(t) which is
applied on the right side with a dimensionless frequency
f = 0.025. The figure 3 represents the evolution versus time
of the average hot side temperature, the cold side Nusselt
number and the Nusselt number at the vertical midplane at
the established regime. It can be observed, that the evolution
of these three physical parameters is periodic in time. The
average hot side temperature and the Nusselt number at the
vertical midplane are in phase, and they are in antiphase
with the cold side Nusselt number. The amplitude for Nusselt
number at the midplane exceeds the imposed rectangular flux.
We can confirm that we obtain results similar to those of Lage
and Bejan [17].

Now, we consider the numerical method dealing with the
PCM heat transfer equation, which is coupled with Navier-
Stokes equations. Then, we consider a thin PCM layer on the
right wall of the square enclosure. The figure 4 presents the
average hot side temperature on the left and Nusselt number
at the midplane on the right for four non-dimensional melt-
ing temperature values (0.04, 0.05, 0.06, 0.08). The product
Lv × e which correspond to the heat energy storage is set
to 55000 Jm/kg. It can be see that a periodic behaviour is
retrieved even if a PCM layer is added on the right side wall.
The main difference between the wall with and without PCM
layer is the observation of sinusoidale temperature variations
versus time. For a melting temperature Tm = 0.04, the
amplitude of the Nusselt number at the midplane is varying
between 0.8 and 1.2 and for Tm = 0.08 this amplitude is
in the range 0.75 to 1.3. The same behaviour is observed
for the average hot side temperature. Indeed, the Nusselt
number and the average hot side temperature depend on the
melting temperature. As it decreases the difference between
maximum and minimum values of the average temperature
and the Nusselt number decreases. The melting temperature
has no influence on the difference phase of the average hot
side temperature and the Nusselt number. It can be concluded
that the melting temperature has an impact on the amplitude
of the average Nusselt number and the hot side temperature
but does not affect the phase time.

IV. CONCLUSION

In this work, a one dimensional heat conduction problem
has been investigated in order to validate the thin PCM
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Figure 3. Our simulation : “Red” the average hot side temperature; “Green”
the average Nusselt number; “Black” the cold side Nusselt number (a); Lage
and Bejan Simulation (b)

Figure 4. The average Nusselt number (a) and the average hot side
temperature (b)

boundary model proposed. This formulation has been applied
to a differentially heated cavity with a vertical wall covered by
a thin PCM layer thickness on the right side. It has been shown
that the melting temperature reduces the difference between
the maximum and minimum values of the average hot side
temperature and the one of the Nusselt number.
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