Proceedings of Engineering & Technology (PET)

Copyright IPCO-2016

A novel method for the determination of cadmium ions based on the

quenching of the fluorescence of CdSe quantum dots

Nassim Ben Brahim^{a,b,*}, Naim Bel Haj Mohamed^a, Rafik Ben Chaâbane^a, Mohamed

Haouari^a, Michel Negrerie^b, Hafedh Ben Ouada^a

^aLaboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Bd. de

l'Environnement, 5019 Monastir, Tunisia.

^bLaboratoire d'Optique et Biosciences, INSERM U1182, CNRS UMR7645, Ecole

Polytechnique, 91128 Palaiseau, France.

*Corresponding authors.

E-mail: nassim.benbrahim.fsm@gmail.com. Phone: +216 96 400 499

Abstract

A novel method for the determination of Cd²⁺ has been developed based on quenching of the

fluorescence of thioglycerol-capped CdSe quantum dots (QDs) by Cd²⁺ in aqueous solutions.

Under optimum conditions, the relative fluorescence intensity was linearly proportional to the

concentration of Cd^{2+} between 1.0 and 22 μM with a detection limit of 0.32 μM . The

detection mechanism between the thioglycerol capped CdSe QDs and Cd2+ ions was

discussed using various experimental techniques such as TEM, fluorescence lifetime, UV-vis

and fluorescence spectroscopy. Based on these optical properties, the TG-CdSe QDs could be

used as a highly selective probe for the detection of Cd²⁺ ions in aqueous solutions, a species

highly toxic for cells.

Keywords: CdSe quantum dots synthesis, Quenching of the fluorescence, Electronic

microscopy, Cadmium detection, Cation binding selectivity

ISSN: 2356-5608