Modeling and Control of the Wind Energy Conversion Systems Based on DFIG Under Sub- and Super-Synchronous Operation Modes

K. Bedoud1,2, M. Ali-rachedi3, R. Lakel1, T. Bahi4.

1 Automatic Laboratory and Signals, Badji Mokhtar University, Annaba, Algeria.
2 Welding and NDT Research Centre (CSC), BP 64 Cheraga, Algeria.
3 Preparatory School in Sciences and Technics, Annaba, Algeria.
4 Electrical department, Badji Mokhtar University, Annaba, Algeria.

Abstract—In this work, the modeling and control of the Wind Energy Conversion Systems (WECS) based on doubly fed induction generator (DFIG) are presented. Firstly, we developed the models of the different elements of the conversion chain. After, we consider the vector control strategy of the active and reactive powers in order to ensure an optimum operation. Finally, the dynamic model of a DFIG and wind turbine grid connected system is determined in the dq-synchronous reference frame. The numerical simulation results obtained with Matlab/Simulink software present the behaviors of the sub-synchronous and super-synchronous operation modes.

Keywords—wind power generation, doubly fed induction generator, renewable energy, modeling, control.

I. INTRODUCTION

Today, there is a growing demand for energy. However, to satisfy this demand, the world is heading toward the renewable resources for their several advantages, such as the reduction in dependence on fossil fuel resources and the reduction in carbon emissions to the atmosphere. Furthermore, by using renewable energy we avoid the safety problems caused by atomic power [1], [2]. Among these resources, wind energy has recently become the world’s fastest growing source of renewable energy [3]. It has a more important energizing potential and it is the first source of extendable energy, takes priority over all other renewable sources of energy worldwide after the hydraulics [4], [5]. Wind energy is a clean renewable energy source. It has been estimated that roughly 10 million MW of energy is continuously available in the earth’s wind [6]. Therefore, their facilities increased considerably in the world because while producing electricity, they do not propagate any gas greenhouse effect [7]. Development of wind electricity conversion system not only saves the energy resources, but also is one of most efficient means of improving the makeup of the energy resources and decreasing the environment pollution [8].

Currently, wind variable speed system based on a doubly fed induction generator (DFIG) is most commonly used in wind farms fat has its many advantages: a very good energy efficiency, robustness, as well as ease exploitation and control. In addition, it enables operation to a variable speed ± 30% around the synchronous speed, thus guaranteeing a reduced dimensioning of the static converters [9], [10]. Due to these advantages, the DFIG has generated a lot of curiosity on the part of researchers who have tried to develop strategies to best exploit its strong points [11].

In this work, we present the modeling of the mechanical and electrical parts of the conversion chain in order to control the active and reactive powers, independently; in hypo and hyper synchronous modes. For this, three control strategy are considered: MPP control, control of Rotor Side Converter (RSC) and the control of Grid Side Converter (GSC).

The paper is organized as follows. Section 2, presents the description and the modeling of different elements of the conversion chain. The various control algorithms for an optimal turbine operation and control of active and reactive power will be presented in section 3. The results of simulations obtained for the two modes sub-synchronous and super-synchronous modes will be presented and discussed in Section 4. Finally, the conclusions are established.

II. DESCRIPTION OF THE SYSTEM STUDY

The wind system studied is illustrated in Fig.1. It is constituted by the turbine, the gearbox and the DFIG. The wind captures the kinetic energy of wind and converts it in a torque that makes turn the blades of the rotor. After that, the DFIG transforms the mechanical power in electric power. The DFIG is connected directly to the grid via its stator but also via its rotor through the intermediaries of the static converters to allow an exchange of energy between the network and the DFIG at the speed of synchronism. The two converters, network side and DFIG side are controlled by Pulse Width Modulation (PWM) [12]. Through the bidirectional static converters, the DFIG can work in sub-synchronous and super-synchronous modes. Since the converters are designed for a power of 25-30% of the nominal power of the DFIG [13].
Therefore the losses in the converter are little important, their
cost is reduced compared to a variable speed wind turbine
stator fueled by power converters. Furthermore, the ability to
control the reactive power impose the power factor to the
connection point of the DFIG to the grid, are the two major
reasons for which this machine is found to produce in high
power [14]. The different under models of the two parts:
mechanical and electric are described below.

\[
C_p = \left(0.45 - (0.0167(\beta - 2)) \left(\sin\left(\frac{\pi(\lambda + 0.1)}{15.5 - (0.3(\beta - 2))} \right) \right) \right) - 0.00184(\lambda - 3)(\beta - 2) \tag{4}
\]

The aerodynamic torque expression is given by:

\[
T_{tur} = \frac{P_{tur}}{\Omega_{tur}} = C_p \frac{\rho S V^3}{2} \frac{1}{\Omega_{tur}} \tag{5}
\]

Fig.3 shows the power rotor speed curves under different
wind speeds. We notice that each has a given maximum
power point (MPP).

\[
P_v = \frac{1}{2} \rho S V^3 \tag{1}
\]

The mechanical power of the wind turbine is:

\[
P_{tur} = C_p \frac{\rho S V^3}{2} \tag{2}
\]

The evolution of the power coefficient \((C_p)\) depends on
the blade pitch angle \((\beta)\) and the tip-speed ratio \((\lambda)\) which is
defined as follows:

\[
\lambda = \frac{R \Omega_{tur}}{V} \tag{3}
\]

From summaries achieved on a wind of 1.5 MW, the
expression of the power coefficient has been approached, for
this type of turbine, by the following equation [16]-[18]:

\[
\Omega_{mec} = G, \Omega_{tur} \tag{6}
\]

\[
G = \frac{T_{turan}}{T_{mecc}} \tag{7}
\]

The dynamic equation is presented by the following
relation:

\[
f \frac{d\Omega_{mec}}{dt} + f\Omega_{mec} = T_{mec} - T_{em} \tag{8}
\]

\[
J \frac{d\omega}{dt} + J\omega = J_{tur} + J_{gen} \tag{9}
\]

Fig. 4. Shows the crucial advantage of variable speed wind
turbines compared to fixed speed. If the wind speed varies \(V_{w1}\)
and \(V_{w2}\) to the speed \(\omega_1\) of the DFIG is unchanged, the power
varies from \(P_1\) to \(P_2\). In addition, the maximum power is equal
to \(P_3\), In case we want to extract the maximum power should
be changed by \(\omega_1\) and \(\omega_2\) thus make the variable speed
depending on the wind speed. The extraction of maximum
power control is to adjust the torque of the DFIG to extract maximum power. The red dotted line indicates the optimal power points for respectively $v_0 = 8$ m/s and 12 m/s, where the C_p coefficient is kept at its maximum value.

\[\begin{align*}
\{ P_r &= V_{rd}i_{rd} + V_{rq}i_{rq} \\
Q_r &= V_{rq}i_{rd} - V_{rd}i_{rq} \}
\]

Consequently, the d-q orientation has to be synchronized with the stator flux see Fig. 5.

\[\begin{align*}
\{ \theta_s &= \omega_s \\
\dot{\theta}_r &= \omega_r \\
\dot{\theta}_e &= \omega_e - \omega_r = p\omega_m \}
\]

Defining the slip by: $g = \frac{\omega_e - \omega_s}{\omega_s}$

The Park frame is oriented so that the stator flux will be in quadrature with the q axis ($\varphi_{qs} = 0$, $\varphi_{ds} = \varphi_s$), the equation (12) can be written as follows:

\[\begin{align*}
\varphi_{sd} &= \varphi_s = L_s i_{sd} + L_m i_{rd} \\
\varphi_{sq} &= 0 = L_s i_{sq} + L_m i_{rq} \}
\]

Considering that the resistance of the stator winding (R_s) is neglected [21], [22], the voltage and the flux equations of the stator windings can be simplified in steady state as:

\[\begin{align*}
V_{sd} &= \frac{d\varphi_{sd}}{dt} \\
V_{sq} &= \omega_s \varphi_{sd} \}
\]

The grid is supposed stable with voltage v_s and synchronous angular frequency (ω_s) constant what implies $\varphi_{ds} = c\omega$.

\[\begin{align*}
\{ V_{sd} &= 0 \\
v_{sq} &= V_s = \omega_s \varphi_{sd} \}
\]

II. 2 Modeling the DFIG with Stator Field Orientation

For the DFIG modeling, the following assumptions are considered [19], [20]:

- the notching effect is negligible;
- the magnetic saturation is neglected;
- the resistance of the windings is constant;
- the flux distribution is sinusoidal.

The Park model of DFIG is given by the equations below:

\[\begin{align*}
\{ V_{sd} &= R_s i_{sd} + \frac{d\varphi_{sd}}{dt} - \omega_s \varphi_{sq} \\
V_{sq} &= R_s i_{sq} + \frac{d\varphi_{sq}}{dt} + \omega_s \varphi_{sd} \\
V_{rd} &= R_r i_{rd} + \frac{d\varphi_{rd}}{dt} - \omega_r \varphi_{rq} \\
V_{rq} &= R_r i_{rq} + \frac{d\varphi_{rq}}{dt} + \omega_r \varphi_{rd} \}
\]

As the d and q axis are magnetically decoupled, the stator and rotor flux are given as:

\[\begin{align*}
\{ \varphi_{sd} &= L_s i_{sd} + L_m i_{rd} \\
\varphi_{sq} &= L_s i_{sq} + L_m i_{rq} \\
\varphi_{rd} &= L_r i_{rd} + L_m i_{sd} \\
\varphi_{rq} &= L_r i_{rq} + L_m i_{sq} \}
\]

The active and reactive powers are defined as:

\[\begin{align*}
\{ P_s &= V_{sd}i_{sd} + V_{sq}i_{sq} \\
Q_s &= V_{sq}i_{sd} - V_{sd}i_{sq} \}
\]
Hence, the relationship between the stator and rotor currents can be written as follows:

\[
\begin{align*}
 i_{sd} &= \frac{v_s}{l_s} - \frac{v_m}{l_s} \cdot i_{rd} \\
 i_{sq} &= -\frac{v_m}{l_s} \cdot i_{rq}
\end{align*}
\]

\(i_{rd}\) and \(i_{rq}\) are the rotor voltages. We then come to the following:

\[
\begin{align*}
 \varphi_{rd} &= \left(L_r - \frac{M^2}{l_s} \right) i_{rd} + \frac{M v_s}{\omega_0 l_s} \\
 \varphi_{rq} &= \left(L_r - \frac{M^2}{l_s} \right) i_{rq}
\end{align*}
\]

(20)

From the equations (13) and (20), we can write:

\[
\begin{align*}
 \varphi_{rd} &= \left(L_r - \frac{M^2}{l_s} \right) i_{rd} + \frac{M v_s}{\omega_0 l_s} \\
 \varphi_{rq} &= \left(L_r - \frac{M^2}{l_s} \right) i_{rq}
\end{align*}
\]

(21)

Replacing the equations (19, 21) in (10, 11) the stator and rotor voltages are then simplified to:

\[
\begin{align*}
 V_{sd} &= \frac{R_s}{l_s} \varphi_{sd} - \frac{R_s}{l_s} L_m i_{rd} \\
 V_{sq} &= -\frac{R_s}{l_s} L_m i_{rq} + \omega_s \varphi_{sd} \\
 V_{rd} &= R_t i_{rd} + \sigma L_s \frac{di_{rd}}{dt} + \varphi_{rd} \\
 V_{rq} &= R_t i_{rq} + \sigma L_s \frac{di_{rq}}{dt} + \varphi_{rq} + \varphi
\end{align*}
\]

(22)

(23)

Where:

\[
\begin{align*}
 \varphi_{rd} &= -\sigma L_r \omega_r i_{rd} \\
 \varphi_{rq} &= \sigma L_r \omega_r i_{rq} \\
 \varphi &= \omega_0 \frac{M}{l_s} \varphi_{sd} \\
 \sigma &= 1 - \left(\frac{M}{l_s} \right)^2
\end{align*}
\]

(24)

\(L_r - \frac{M^2}{l_s}\): coupling term between the two axes compensable in the control loop [14] and \(\varphi\): electromotive force.

Taking into consideration the chosen reference frame, the electrical active and reactive powers delivered by the stator and the rotor are given by:

\[
\begin{align*}
 P_s &= -\frac{v_s M}{l_s} \cdot i_{rq} \\
 Q_s &= \frac{v_s^2}{l_s \omega_0} - \frac{M v_s}{l_s} \cdot i_{rd} \\
 P_r &= g \cdot \frac{v_s M}{l_s} \cdot i_{rq} \\
 Q_r &= g \cdot \frac{v_s M}{l_s} \cdot i_{rd}
\end{align*}
\]

(25)

In equation (25), \(Q_s\) divided into two parts: the magnetizing part \(\frac{v_s^2}{l_s \omega_0}\) and the reactive power exchanged with the grid \(\frac{M v_s}{l_s} \cdot i_{rd}\).

The electromagnetic torque is as follows:

\[
T_{em} = -P_s \cdot \frac{M}{l_s} \varphi_{sd} \cdot i_{rq}
\]

(26)

(27)

III. WIND TURBINE CONTROL SYSTEM

In this work, the three controls studied are:

- extraction of the maximum wind power control “MPP” (Maximum Power Point) from the wind for a wide range of wind speeds,
- control of CNV2,
- control of CNV1.

These controls will be considered separately.

III. 1 Maximum Power Point Control

Fig. 6 illustrates the principle of MPP control without speed control of the rotation speed:

The control system of DFIG wind turbine assures the variable speed operation that maximizes the output power for a wide range of wind speeds. The power extracted from the wind is maximized when the rotor speed is such that the power coefficient is optimal \(C_{p_{opt}}\). Therefore, we must set the tip speed ratio on its optimal value \(\lambda_{opt}\). The electromagnetic torque reference determined by MPP control is thus expressed by the following equation [20]:

\[
T_{em}^* = \frac{C_{p_{opt}} \cdot \rho \cdot \pi \cdot R^5}{2 \cdot G^2 \cdot \lambda_{opt}^2} \cdot \Omega_m^2
\]

Fig. 7 illustrate \(C_p\) the power coefficient characteristic in function of \(\lambda\) with \(\beta=2^\circ\). This figure indicates that there is one specific point at which the turbine is most efficient.
Where Um is the amplitude of phase voltage.

The objective of the control of the grid side converter “CNV2” is to maintain the tension of the bus “DC” constant regardless of the amplitude and the flow direction of the DFIG rotor power and the regulating of the grid side power factor by controlling the currents flowing in the RL filter. The current $i_{fq,ref}, i_{fd,ref}$ are respectively resulting from DC bus control and reactive power at the connection point of CNV2 with the network.

$$i_{fd,ref} = \frac{q_{ref}}{v_{sq}} \quad (33)$$

$$i_{fq,ref} = \frac{p_{ref}}{v_{sq}} \quad (34)$$

The block diagram of current control in Park reference frame is illustrated in Fig. 8.

![Fig. 7 Power coefficient versus tip speed ratio](image)

III.2 Modeling and Control of the Grid Side Converter CNV2

The mathematic model of grid-side converter can be described in matrix form [23]:

$$
\begin{align*}
\frac{di_{fd}}{dt} &= \left[\begin{array}{c} -R_f \\ \frac{S_d}{L_f} \end{array} \right] + \frac{1}{L_f} \left[\begin{array}{c} 0 \\ \frac{1}{L_f} \end{array} \right] \left(V_{sd} \right) \left[\begin{array}{c} i_{fd} \\ \frac{V_{dc}}{L_f} \end{array} \right] \\
\frac{di_{fq}}{dt} &= \left[\begin{array}{c} -\omega_s \\ \frac{S_q}{L_f} \end{array} \right] i_{fd} + \left(\frac{S_q}{L_f} \frac{V_{dc}}{L_f} \right) i_{fq} + \left(\frac{S_q}{L_f} \frac{V_{dc}}{L_f} \right) i_{dc} \\
&\quad - R_f i_{fd} + e_{fd} - S_d V_{dc} \\
\frac{di_{fd}}{dt} &= \left[\begin{array}{c} -R_f \\ \frac{S_d}{L_f} \end{array} \right] i_{fd} + \left(\frac{S_d}{L_f} \frac{V_{dc}}{L_f} \right) i_{fd} + \left(\frac{S_d}{L_f} \frac{V_{dc}}{L_f} \right) i_{dc} \\
&\quad - R_f i_{fd} + e_{fd} - S_d V_{dc} \\
&\quad = L_f \left(\frac{S_d}{L_f} \frac{V_{dc}}{L_f} \right) i_{fd} + \left(\frac{S_d}{L_f} \frac{V_{dc}}{L_f} \right) i_{dc} \\
&\quad - R_f i_{fd} + e_{fd} - S_d V_{dc}
\end{align*}
$$

Where S_q, S_d are the switches functions and C is the capacitance. From the above equation, we can conclude:

$$
\begin{align*}
L_f \frac{di_{fd}}{dt} &= -R_f i_{fd} + e_{fd} - S_d V_{dc} \\
L_f \frac{di_{fq}}{dt} &= -R_f i_{fq} + e_{fq} - S_q V_{dc}
\end{align*}
$$

Because, the output voltage of the grid-side converter can be set:

$$
\begin{align*}
V_{fd} &= S_d V_{dc} \\
V_{fq} &= S_q V_{dc}
\end{align*}
$$

Where:

$$
\begin{align*}
e_{fd} &= \omega_s L_f i_{fq} + V_{sd} \\
e_{fq} &= -\omega_s L_f i_{fd} + V_{sq}
\end{align*}
$$

The equations indicate that the current feedback $\omega_s L_f i_{fq}, -\omega_s L_f i_{fd}$ can realize decoupling, meantime the grid disturb voltage can carry out forward feed compensation. So the independent control of i_{fq}, i_{fd} can be acquired. The active power and the reactive power of grid-side converter are written as follows [23], [24]:

$$
\begin{align*}
P &= \frac{3}{2} U_m i_{fd} \\
Q &= \frac{3}{2} U_m i_{fq}
\end{align*}
$$

III.3 Control of the DC Bus

The control of the DC bus voltage allows not only for the reference active power $P_{e,ref}$ which is necessary to charge the capacitor to the desired value. But also, the power factor side network can be set through the power reactive. Fig. 9 shows the bloc diagram of DC bus control.

![Fig. 9 Bloc diagram of DC bus control](image)

III.4 Control of the Rotor Side Converter CNV1

The rotor side converter “CNV1” permits to control active and reactive powers produced by the machine. It’s controlled by acting on the direct and quadrature components of the rotor voltage. This allows the decoupled control of active and reactive powers. Furthermore, the control is obtained by controlling the rotor currents of the DFIG. The model of DFIG in d-q reference frame with stator field orientation shows that the rotor currents can be controlled independently. Fig. 10 shows the bloc diagram of rotor currents control with $i_{rd,ref}, i_{rq,ref}$ are given by:

$$
\begin{align*}
i_{rd,ref} &= \frac{q_{ref}}{v_{sq}} \\
i_{rq,ref} &= \frac{p_{ref}}{v_{sq}}
\end{align*}
$$
\[
\begin{align*}
i_{rd,\text{ref}} &= \frac{\varphi_{rd}}{M} - \frac{L_s}{M V_{eq}} Q_s, \quad Q_{s,\text{ref}} \\
i_{rq,\text{ref}} &= -\frac{L_s}{M V_{eq}} P_{s,\text{ref}} \\
i_{rd,\text{mes}} &= \frac{e_{rd}}{M} \\
i_{rd,\text{ref}} &= \frac{e_{rd}}{M} \\
i_{rq,\text{ref}} &= \frac{e_{rq}}{M} \\
i_{rq,\text{mes}} &= \frac{e_{rq}}{M}
\end{align*}
\]

(35)

Concerning the second status, we first change \(Q_s\) at time \(t = 0.5s\) and then \(P_s\) at time \(t = 0.7s\) as shown in the Figures 12b and 13b. We remark that the change of one of these size do not influence the change of the other, which testifies a decoupled control of the active and reactive power, both in sub-synchronous mode (Fig.12 b) and super-synchronous (Fig.13.b). However, allow for the functioning of the DFIG in the different quadrants, during the status 3, we changed \(P_{s,\text{ref}}\) and \(Q_{s,\text{ref}}\) in the opposite sense of the status 2. It is found that the control remain decoupled.

Finally, during the status 4, only \(Q_s\) is changed while keeping \(P_s\) constant. Under these operating conditions, we remark that the power active and reactive to the rotor (see Fig.12.c and Fig.13.c) evolve correctly. However, we notice that since the DFIG needs a reactive power necessary to its magnetization and as the stator reactive power is null (\(Q_s = 0\)), the DFIG absorbs the reactive power by the rotor.

Fig.12.d and Fig.13.d displays respectively the DC voltage \(V_{dc}\) in sub-synchronous and super-synchronous mode. Furthermore, thanks to the compensation in the implementation control of CV2, it can be seen that \(V_{dc}\) voltage follows perfectly \(V_{dc,\text{ref}}\). In addition, we remark as a light variation of \(V_{dc}\) and that because of the important variation of the rotor reactive power. Knowing that the rotor powers is not uncoupled contrary to the stator powers.

Figures 14 and 15, show the evolution of the stator, rotor and filter currents in sub-synchronous and super-synchronous mode respectively. The currents normally follow the evolutions of the powers previously discussed for the case of stator currents Fig.14a and Fig.15a, whereas the currents to the rotor Fig.14b and Fig.15b evolve identically to the rotor active power in sub-synchronous mode and inversely in super-synchronous mode. Concerning the currents crossing the filter, they remain weak for the case of sub-synchronous mode Fig.14c and Fig.15c and that the current filter on the direct axis is null for the two modes.

Fig. 10 Bloc diagram of rotor currents control

IV. SIMULATION AND INTERPRETATION

Based on the last study, we present the block diagram of the tested system in following figure. The developed program was used to present the simulation illustrated and discussed for the validity of the study. The simulation parameters are given in table 1 of the appendix A. The studied system has been tested in sub-synchronous and super-synchronous modes.

The Figures 12 and 13 show the simulation results corresponding respectively to the two modes. For this, the unity power factor in the connection of the CNV with the grid is obtained by setting \(Q_{r,\text{ref}} = 0\). Similarly, we vary the stator reactive power \(Q_s\) by varying its reference value in the control of CNV. And, the speed wind 8m/s and 12m/s correspond 1556rd/min and 2336rd/min at the machine speed (see Fig.12a and Fig.13a). All the simulations presented correspond to the changes of the references of active \((P_s)\) and reactive \((Q_s)\) powers as show in table 2 of the appendix A. Note that for the first time interval \((0-0.5s)\), we held to show the functioning of the wind system with a unity power factor \((P_{s,\text{ref}} = -0.5 \text{ MW and } Q_{s,\text{ref}} = 0)\).
Fig. 12 Sub-synchronous mode

Fig. 13 Super-synchronous mode
Fig. 14 Currents d-q axis in sub-synchronous mode

Fig. 15 Currents d-q axis in super-synchronous mode
APPENDIX A

TABLE I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
<td>1.5MW</td>
</tr>
<tr>
<td>Rotor diameter</td>
<td>35.25m</td>
</tr>
<tr>
<td>Gearbox ratio</td>
<td>90</td>
</tr>
<tr>
<td>Friction coefficient : f</td>
<td>0.0024</td>
</tr>
<tr>
<td>Moment of inertia : f</td>
<td>1000</td>
</tr>
<tr>
<td>Stator voltage/Frequency</td>
<td>690V/50Hz</td>
</tr>
<tr>
<td>Rs / Rr (Ω)</td>
<td>0.012/0.021</td>
</tr>
<tr>
<td>Lm / Ls / Lr (H)</td>
<td>0.0135/0.0137/0.013675</td>
</tr>
<tr>
<td>Number of pole pairs : p</td>
<td>2</td>
</tr>
<tr>
<td>Vdc.ref</td>
<td>2000V</td>
</tr>
<tr>
<td>Qref</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>Status</th>
<th>Time (sec)</th>
<th>Reactive power (MVar)</th>
<th>Time (sec)</th>
<th>Active power (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 < t ≤ 0.5</td>
<td>0</td>
<td>0 < t ≤ 0.7</td>
<td>-0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.5 < t ≤ 1</td>
<td>-1</td>
<td>0.7 < t ≤ 1.4</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>1 < t ≤ 1.7</td>
<td>0.8</td>
<td>1.4 < t ≤ 2.5</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>1.7 < t ≤ 2.5</td>
<td>-0.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX B

MPP control \(\lambda_{opt} = 8 \).

Controller gains (pu)

For the synthesis of the regulators we opted for the method of poles compensation.

<table>
<thead>
<tr>
<th>Rotor side converter</th>
<th>DC bus control</th>
<th>Grid side converter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1 = 0.01 \text{ s})</td>
<td>(t_2 = 0.707)</td>
<td>(t_3 = 2 \text{ ms})</td>
</tr>
<tr>
<td>(K_a = \sigma \cdot \frac{L_f}{t_1})</td>
<td>(f = 0.1)</td>
<td>(K_f = \frac{L_f}{t_2})</td>
</tr>
<tr>
<td>(D_f = \frac{L_f}{t_3})</td>
<td>(\xi = 0.03757)</td>
<td>(\xi_f = 25)</td>
</tr>
<tr>
<td>(\frac{R_f}{t_4})</td>
<td>(\frac{R_r}{t_1})</td>
<td>(\frac{R_f}{t_2})</td>
</tr>
<tr>
<td>(\frac{L_f}{t_5})</td>
<td>(\frac{L_r}{t_4})</td>
<td>(\frac{L_f}{t_6})</td>
</tr>
</tbody>
</table>

APPENDIX C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_s, Q_s)</td>
<td>stator active and reactive power</td>
</tr>
<tr>
<td>(P_r, Q_r)</td>
<td>rotor active and reactive power</td>
</tr>
<tr>
<td>(C_{em})</td>
<td>DFIG electromagnetic torque (N m)</td>
</tr>
<tr>
<td>(d, q)</td>
<td>synchronous reference frame index</td>
</tr>
<tr>
<td>(V_{sd.a})</td>
<td>stator d-q frame voltage</td>
</tr>
<tr>
<td>(V_{rd.a})</td>
<td>rotor d-q frame voltage</td>
</tr>
<tr>
<td>(i_{sd.a})</td>
<td>stator d-q frame current</td>
</tr>
<tr>
<td>(i_{rd.a})</td>
<td>rotor d-q frame current</td>
</tr>
<tr>
<td>(\varphi_{sd.a})</td>
<td>stator d-q frame flux</td>
</tr>
<tr>
<td>(\varphi_{rd.a})</td>
<td>rotor d-q frame flux</td>
</tr>
<tr>
<td>(R_s, R_r)</td>
<td>stator and rotor Resistances</td>
</tr>
<tr>
<td>(L_s, L_r)</td>
<td>stator and rotor self Inductances</td>
</tr>
<tr>
<td>(I_m)</td>
<td>mutual inductance</td>
</tr>
<tr>
<td>(\omega_r, \omega_i)</td>
<td>synchronous and rotor angular frequency</td>
</tr>
<tr>
<td>(V_{dc})</td>
<td>DC link voltage</td>
</tr>
<tr>
<td>(L_f, R_f)</td>
<td>filter leakage inductance and resistance</td>
</tr>
<tr>
<td>(\rho)</td>
<td>air density</td>
</tr>
<tr>
<td>(V_w)</td>
<td>wind speed</td>
</tr>
<tr>
<td>(R)</td>
<td>rotor radius</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>tip-speed ratio</td>
</tr>
<tr>
<td>(\Omega_t)</td>
<td>aerotorque rotor speed</td>
</tr>
<tr>
<td>(\Omega_m)</td>
<td>generator speed</td>
</tr>
<tr>
<td>(G)</td>
<td>gearbox ratio</td>
</tr>
<tr>
<td>(J)</td>
<td>turbine total inertia</td>
</tr>
<tr>
<td>(J_{tur}, J_{gen})</td>
<td>rotor and DFIG inertia</td>
</tr>
<tr>
<td>(f)</td>
<td>turbine total external damping</td>
</tr>
<tr>
<td>(V_{dc.ref})</td>
<td>onduleur current</td>
</tr>
<tr>
<td>(CNV_1, CNV_2)</td>
<td>First converter, Second converter</td>
</tr>
</tbody>
</table>

TABLE IV

<table>
<thead>
<tr>
<th>Symbol</th>
<th>List of Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_s, Q_s)</td>
<td>stator active and reactive power</td>
</tr>
<tr>
<td>(P_r, Q_r)</td>
<td>rotor active and reactive power</td>
</tr>
<tr>
<td>(C_{em})</td>
<td>DFIG electromagnetic torque (N m)</td>
</tr>
<tr>
<td>(d, q)</td>
<td>synchronous reference frame index</td>
</tr>
<tr>
<td>(V_{sd.a})</td>
<td>stator d-q frame voltage</td>
</tr>
<tr>
<td>(V_{rd.a})</td>
<td>rotor d-q frame voltage</td>
</tr>
<tr>
<td>(i_{sd.a})</td>
<td>stator d-q frame current</td>
</tr>
<tr>
<td>(i_{rd.a})</td>
<td>rotor d-q frame current</td>
</tr>
<tr>
<td>(\varphi_{sd.a})</td>
<td>stator d-q frame flux</td>
</tr>
<tr>
<td>(\varphi_{rd.a})</td>
<td>rotor d-q frame flux</td>
</tr>
<tr>
<td>(R_s, R_r)</td>
<td>stator and rotor Resistances</td>
</tr>
<tr>
<td>(L_s, L_r)</td>
<td>stator and rotor self Inductances</td>
</tr>
<tr>
<td>(I_m)</td>
<td>mutual inductance</td>
</tr>
<tr>
<td>(\omega_r, \omega_i)</td>
<td>synchronous and rotor angular frequency</td>
</tr>
<tr>
<td>(V_{dc})</td>
<td>DC link voltage</td>
</tr>
<tr>
<td>(L_f, R_f)</td>
<td>filter leakage inductance and resistance</td>
</tr>
<tr>
<td>(\rho)</td>
<td>air density</td>
</tr>
<tr>
<td>(V_w)</td>
<td>wind speed</td>
</tr>
<tr>
<td>(R)</td>
<td>rotor radius</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>tip-speed ratio</td>
</tr>
<tr>
<td>(\Omega_t)</td>
<td>aerotorque rotor speed</td>
</tr>
<tr>
<td>(\Omega_m)</td>
<td>generator speed</td>
</tr>
<tr>
<td>(G)</td>
<td>gearbox ratio</td>
</tr>
<tr>
<td>(J)</td>
<td>turbine total inertia</td>
</tr>
<tr>
<td>(J_{tur}, J_{gen})</td>
<td>rotor and DFIG inertia</td>
</tr>
<tr>
<td>(f)</td>
<td>turbine total external damping</td>
</tr>
<tr>
<td>(V_{dc.ref})</td>
<td>onduleur current</td>
</tr>
<tr>
<td>(CNV_1, CNV_2)</td>
<td>First converter, Second converter</td>
</tr>
</tbody>
</table>

V. CONCLUSIONS

This paper presents a powers control strategy for doubly fed induction generator which provides decoupled control of active and reactive power. However, the fact of the control of these powers separately permits to adjust the power factor of the installation and in consequence obtain better performance.

Therefore, the detailed modeling of the mechanical part of the wind turbine taking into account the characteristics of the blade profile used and the wedging angle, and the mechanical assembly includes the gearbox is presented. According this model, a control algorithm simulation is given in Matlab/Simulink software to investigate the validity of the study. We not that, the simulation results show that the stator active and reactive control powers give a good performance. Hence, the power control strategy is well adapted to this kind of system.
REFERENCES