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Abstract— This paper deals with the state and parametric 

estimation of nonlinear systems described by Wiener 

mathematical models. We propose an approach, where we 

combine a state estimation algorithm based on the linear Kalman 

Filter (for state estimation) and a parametric estimation 

algorithm based on the Recursive Least Squares techniques and 

the adjustable model (for parametric estimation). The proposed 

algorithm can be extended to other block-oriented models, such 

as Hammerstein mathematical models. A simulation example is 

treated to test the effectiveness of the proposed algorithm. 

Keywords— Nonlinear systems; State estimation; Parametric 

estimation; Wiener mathematical models; Kalman Filter; Recursive 

estimation algorithm. 

I.  INTRODUCTION  

In order to describe adequately a nonlinear system over the 
entire range of operating conditions, a nonlinear block-oriented 
model is often used and the identified system is generally 
subdivided into linear dynamic system and nonlinear static 
system [1]. The well-known models are the Hammerstein 
mathematical models and Wiener mathematical models, which 
correspond to processes with linear dynamic, but a nonlinear 
gain [2]. These mathematical models reveal the capability of 
describing a wide class of different systems and apart from 
industrial examples, such as distillation and pH neutralization 
process [3,4].  

The Hammerstein and Wiener mathematical models are 
useful in representing the nonlinearities of a system without 
introducing the complications associated with general 
nonlinear operator [5].  

This paper deals with recursive state and parametric 
estimation of a nonlinear system described by Wiener 
mathematical models. We will show how we can use the linear 
Kalman Filter KF, with some changes, to estimate the state 
variable of this type of models. Then, we will use the least 
squares method for parametric estimation. After, we will 

combine these two approaches in order to estimate jointly the 
state variable and the parameters of these considered 
mathematical models. 

In order to describe adequately a nonlinear system over the 
entire range of operating conditions, a nonlinear block-oriented 
model is often used and the identified system is generally 
subdivided into linear dynamic system and nonlinear static 
system [1]. The well-known models are the Hammerstein 
mathematical models and Wiener mathematical models, which 
correspond to processes with linear dynamic, but a nonlinear 
gain [2]. These mathematical models reveal the capability of 
describing a wide class of different systems and apart from 
industrial examples, such as distillation and pH neutralization 
process [3,4].  

The Hammerstein and Wiener mathematical models are 
useful in representing the nonlinearities of a system without 
introducing the complications associated with general 
nonlinear operator [5].  

This paper deals with recursive state and parametric 
estimation of a nonlinear system described by Wiener 
mathematical models. We will show how we can use the linear 
Kalman Filter KF, with some changes, to estimate the state 
variable of this type of models. Then, we will use the least 
squares method for parametric estimation. After, we will 
combine these two approaches in order to estimate jointly the 
state variable and the parameters of these considered 
mathematical models. 

II. WIENER MATHEMATICAL MODEL 

Let us assume that the considered system can be described 
by the following Single-Input Single-Output (SISO) discrete-
time Wiener mathematical model [6, 7]: 
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where ( )u k R∈ , ( ) n
x k R∈ and ( )y k R∈  are the input, 

the unmeasurable state and the output, respectively, ( )e k  is a 

white noise zero mean, [ ].f  is a nonlinear function, which can 

be described by a matrix form, such as: 

 

( ) ( ) ( )( ),
T

f z k z k z k kα θ ψ= +    
(2) 

where 
1p

Rθ ×∈  is the parameters vectors and ( ) 1p
k Rψ ×∈  

is the nonlinear observation vectors, which depend to ( )z k .  

The matrix A and the vectors B  and C  are definite 

respectively by: 
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 [ ]1

T

n
B b b= …  (4) 

 

 [ ]1

T

n
C c c= …  (5) 

 

Let the orders n  and p  be known. The parameters in the 

matrix n n
A R

×∈ , in the vectors 
1n

B R
×∈  and 

1n
C R

×∈   are 

supposed to be unknown, the parameters in the vector 
1p

Rθ ×∈ are supposed also unknown. 

The purpose of this paper is to present a recursive algorithm 
to estimate the state and the parameters of the considered 
system (1), which is described by a Wiener mathematical 

model, from given input-output data ( ) ( ){ },u k y k .  

III.  KALMAN FILTER AND RLS ESTIMATION 

In this section, we present recursive method for state and 
parametric estimation of a Wiener mathematical model [8].  
First, we formulate the state estimation problem assuming that 
the parameters in the considered model (1) are known. Second, 
we treat the inverse case, i.e., we suppose that the state vector 
is measurable, but the parameters are unknown. Finally, we 
combined these two problems and we suppose that the state 
vector and the parameters are unknown. 

A. Kalman Filter 

The well-known state estimation filter is the Kalman filter, 
which has been widely used in the literature. In the case of 
general nonlinear system, this filter cannot be used. For that, 
several approximate solutions have been proposed, such that, 
the extended Kalman filter, which utilizes a linearized model 
along the estimated state trajectory; and the unscented Kalman 
filter, which utilizes a nonlinear transformation to approximate 
the probability density function of the state at each time instant 
[9]. 

In our case, we consider the nonlinear systems which are 
described by blocks oriented models. It is known that the study 
of a dynamic nonlinear system in term of connected systems, 
simplify the formulation of the identification diagram and 
control system. Since, one can apply the developed results for 
the linear systems, with some techniques of practical 
implementation [10].   

In this section, we will present a state estimation algorithm 
based on the linear kalman filter, in order to estimate the state 
vector of the considered system, which is described by a 
wiener mathematical model (1). 

First, we define ( )x̂ k  the a priori estimate of the state 

( )x k , formulated at discrete-time k , given the data at 

discrete-time 1k − . We define also ( )0
x̂ k  the a posteriori 

estimate of the state ( )x k , developed at discrete-time k , 

based on the data at the same time k . 

We can define the a priori estimation error ( )kξ  and the a 

posteriori estimation error ( )0
kξ , by the following 

expressions, respectively:  

 ( ) ( ) ( )ˆk x k x kξ = −  (6) 

and 

 ( ) ( ) ( )0 0
ˆk x k x kξ = −  (7) 
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The variance-covariance matrix ( )P k  of the a priori 

estimation error ( )kξ  can be defined by: 

 ( ) ( ) ( )T
P k E k kξ ξ =    (8) 

 The variance-covariance matrix ( )0
P k  of the a posteriori 

estimation error ( )0
kξ  is defined as follow: 

 ( ) ( ) ( )0 0 0

T
P k E k kξ ξ =    (9) 

 
Based on the equation of the Kalman filter, we can express 

the a posteriori estimate ( )0
x̂ k  of the considered model (6)  as 

follow: 

 ( ) ( ) ( ) ( ) ( )( )0
ˆ ˆ ˆT
x k x k K k z k C x k= + −  (10) 

where ( )K k  is an adaptation gain vector, which can be 

calculated by the following expression: 

 
( )

( )
( )2

T

T

P k C
K k

CP k Cσ
=

+
 

(11) 

where 
2σ  is the variance of the noise ( )w k  affecting the 

output of the linear part. The problem is that the output of the 

linear part ( )z k  is inaccessible to measurement.  For that, it 

must be estimated using measured data of the considered 
system.  

Consider the following equations: 

 ( ) ( ) ( )

( ) ( ) ( )( ) ( )

1 1

,

T

T

z k C x k w k

y k z k z k k e kα θ ψ

+ = + +

= + +
 

(12) 

This can be written in the following form: 

 ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

 1

,

T T

T T

z k C Ax k C Bu k w k

y k C x k z k k e kα θ ψ

+ = + +

= + +
 

(13) 

    Define the a priori estimation error ( )z
kξ  and his 

variance-covariance matrix ( )R k , by the following equations, 

respectively: 

 ( ) ( ) ( )ˆ
z

k z k z kξ = −  (14) 

and 

 ( ) ( ) ( )T

z zR k E k kξ ξ =    (15) 

 

We can express the estimate ( )ˆ 1z k +  of the considered 

model (10) as follow: 

 ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

0

0

ˆˆ 1

ˆ

T T

T T

z

z k C Ax k C Bu k

K k y k C x k kα θ ψ

+ = +

+ − − �
 

(16) 

where ( )z
K k  is an adaptation gain vector, which is 

defined by the following expression: 

 
( )

( )
( ) ( )2

2

T

z T T

C AP k C
K k

C P k C G k

α

α α σ θ θ
=

+ +
 

(17) 

 

where 
2

2σ  is the variance of the noise ( )e k  affecting the 

output system and ( )G k  is the variance-covariance matrix, 

defined by: 

 ( ) ( ) ( )( ) ( ) ( )( )
T

G k E k k k kψ ψ ψ ψ = − −
 

� �  (18) 

where ( )kψ�  is the approximated vector of  ( )kψ .  

The resulting recursive state estimation algorithm of the 
wiener mathematical model, in the sense of Kalman filter, 
consists of the following stages: 

1) Step 1 (estimation at discrete-time k ):  

a) Determining the a posteriori estimate ( )0
x̂ k  of the 

state ( )x k : 

 ( ) ( ) ( ) ( ) ( )( )

( )
( )

( )

0

2

ˆ ˆ ˆˆ T

T

T

x k x k K k z k C x k

P k C
K k

CP k Cσ

= + −

=
+

 

(19) 

b) Determining the variance-covariance matrix ( )0P k  

of the a posteriori estimation error ( )0 kξ : 
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 ( ) ( ) ( ) ( )0
P k P k K k CP k= −  (20) 

2)  Step 2 (prediction):  

a) Determining the a priori estimate ( )x̂ k  of the state 

( )x k : 

 ( ) ( ) ( )0ˆ ˆ1x k Ax k Bu k+ = +  (21) 

b) Determining the variance-covariance matrix 

( )1P k +  of the a priori estimation error ( )kξ : 

 ( ) ( )01 T
P k AP k A Q+ = +  (22) 

c) Determining the estimate ( )ˆ 1z k +  of the output 

linear part: 

 ( ) ( )

( ) ( ) ( ) ( )( )

( )
( )

0

2

2

ˆˆ 1 1

ˆ

T

T T

z

T

z T T

z k C x k

K k y k C x k k

C AP C
K k

C P C G k

α θ ψ

α

α α σ θ θ

+ = +

+ − −

=
+ +

�  

(23) 

d) Determining the estimate vector ( )1kψ +�  of the 

vector ( )1kψ +   at the discrete-time 1k +  : 

 ( ) ( )( )ˆ1 1k h z kψ + = +�  (24) 

 

B.  Recursive parametric estimation algorithm 

Several recursive algorithms have been proposed to solve 
the parametric estimation problem, which are based on the 
prediction error method and such as Least squares technique 
[11].  

The Least Squares technique is the simplest technique, 
which can be extended for an online implementation, namely, 
Recursive Least Squares (RLS) [12].  

In this section, we will propose a recursive parametric 
estimation algorithm for parameters estimation, based on the 
adjustable model and the Least Squares technique. 

Referring to the Wiener mathematical model (1), we 
propose the following adjustable mathematical model: 

 ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ1 1 1

ˆ

ˆ

p

T

p

T

p

x k A k x k B k u k

z k C k x k

y k k kφ υ

+ = + + +

=

=

 

(25) 

where )1(ˆ +kA  and ( )ˆ 1B k +  represent the estimated 

parameters of the matrix  A and the vector  B ,  respectively, at 

the discrete-time  k+1, ( )Ĉ k  and ( )ˆ kφ
 

is the estimated 

vectors of C  and
 
φ ,  respectively, where  

T Tφ α θ =    is 

the parameters vector and ( ) ( ) ( )T T
k z k kυ ψ =    is the 

observation vector. 

The recursive parametric estimation algorithm allowing to 
estimate the various parameters in the matrix A ,  in the vectors 

B, C, and φ , is given by: 

 

( )

ˆ ˆ( 1) ( ) ( ) ( ) ( 1)

ˆ ˆ( 1) ( ) ( ) ( ) ( 1)

ˆ ˆ( 1) ( ) ( ) ( ) ( )

ˆ ˆ( 1) ( ) ( ) ( )
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x
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k k k G k k
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k y k k k

ξ δ

ξ δ

ξ δ

φ φ ξ δ υ

δ

δ

δ φ υ

Τ+ = + −

+ = + −

+ = +

+ = +

= − − − −

= −

= −
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( 1) ( 1) ( 1) ( 1)
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k
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ξ
λ ρ

ρ

ξ
λ

ξ
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Τ

=
−

− = − − + −

=

=
                        

                                        

 

 

 

 

 

                          (26) 

 

where 
x

G , 
z

G  and 
y

G  are definite positive symmetrical 

matrices,  
xGλ  , 

zGλ  and 
yGλ  are, respectively the maximum 

eigenvalue of the matrix 
x

G ,  the maximum eigenvalue of the 

matrix 
z

G  and  the maximum eigenvalue of the matrix 
y

G . 
x

l , 

z
l  and 

y
l are three parametric gains, that must be chosen in a 

proper way to ensure the stability of the parametric estimation 
scheme. The convergence analysis of the proposed parametric 
estimation algorithm was made in [13]. 

Theorem 1. Consider a nonlinear dynamic system described 
by  Wiener mathematical model, which is composed of a 
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dynamic linear part, modulated by a state-space equation, and a 
static nonlinear part. The estimation of the parameters in the 

matrix A and in the vectors B, C and φ
 
of this mathematical 

model can be made using the recursive estimation algorithm 

(26).  The choice of parameters 
x

l  , 
z

l  and 
y

l , must satisfy the 

following conditions: 

 20 << xl  (27) 

 0 2
z

l< <
 

(28) 

and 

 20 << yl  (29) 

   
to ensure the stability of the proposed scheme. 

C. Units Kalman Filter combined with recursive parametric 

estimation algorithm 

In this section, we present a recursive algorithm that 
combines the state estimation method with the recursive 
parametric estimation algorithm, in order to estimate the state 
and the parameters of the mathematical model (1).  

The steps of the proposed algorithm are as follow: 

Initialization:  An initial estimate is given for various 

parameters of the considered model, i.e, ˆ(0)A , ˆ(0)B , ˆ (0)C , 

ˆ(0)φ , ˆ(0)x ,  ˆ(1)x , ˆ(2)x , 0ˆ (0)x , ˆ(0)z , ˆ(1)z  ˆ (0)ψ , ( )0P  , 

( )0G  and ( )0P .  The good choice of initial values can make 

the recursive algorithm more stable and can give convergence 
to the global minimum.       

Parametric estimation:  Given ˆ( 1)x k − , ˆ( 2)x k − , and 

( )ˆ 1kυ − , we can use the following algorithm: 

 

 

( )

ˆ ˆ ˆ( ) ( 1) ( ) ( 1) ( 2)

ˆ ˆ( ) ( 1) ( ) ( 1) ( 2)

ˆ ˆ ˆ( ) ( 1) ( ) ( 1) ( 1)

ˆ ˆ ˆ( ) ( 1) ( ) ( 1) 1

ˆ ˆˆ ˆ( 1) ( 1) ( 1) ( 2) ( 1) ( 2)

ˆˆ( 1) ( 1)

x x x

T

x x x

z z z

y y y

x

z

A k A k k G k x k

B k B k k G k u k

C k C k k G k x k

k k k G k k

k x k A k x k B k u k

k z k

ξ δ

ξ δ

ξ δ

φ φ ξ δ υ

δ

δ

Τ= − + − −

= − + − −

= − + − −

= − + − −

− = − − − − − − −

− = − −

( )

( )

2

2 2

ˆ( 1) ( )

ˆ ˆ( 1) ( 1) ( 1) ( 1)

( )
( 2)

ˆ ˆ( 2) ( 2) ( 2) ( 2)

( )
ˆ ˆ( 1) ( 1)

( )
ˆ ˆ( 1) ( 1)

x

z

y

T

T

y

x

x

G

z T

G

y T

G

C k x k

k y k k k

l
k

k

k x k x k u k

lz
k

x k x k

ly
k

k k

δ φ υ

ξ
λ ρ

ρ

ξ
λ

ξ
λ υ υ

Τ

−

− = − − − −

=
−

− = − − + −

=
− −

=
− −  

 
State estimation: this step consists of: 

a) calculate the gain filter  

 
( )

( ) ( )

( ) ( ) ( )2

ˆ

ˆ ˆ

T

T

P k C k
K k

C k P k C kσ
=

+
 

(31) 

b) estimate the a posteriori estimate ( )0
x̂ k  of the state 

( )x k : 

 ( ) ( ) ( ) ( ) ( ) ( )( )0
ˆˆ ˆ ˆˆ

T
x k x k K k z k C k x k= + −  (32) 

c) determine the variance-covariance matrix ( )0
P k : 

 ( ) ( ) ( ) ( ) ( )0 ˆP k P k K k C k P k= −  (33) 

d) determine the a priori estimate ( )x̂ k : 

 ( ) ( ) ( ) ( ) ( )0ˆ ˆˆ ˆ1x k A k x k B k u k+ = +  (34) 

e) determine the variance-covariance matrix ( )1P k + : 

 ( ) ( ) ( ) ( )0ˆ ˆ1
T

P k A k P k A k Q+ = +  (35) 
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f) calculate the  gain ( )z
K k : 

 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )2

2

ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆˆ ˆ

T

z T T

C k A k P k C k
K k

k C k P k C k k G k k

α

α α σ θ θ
=

+ +
 

(36) 

g) determine the estimate ( )ˆ 1z k + : 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0

2

ˆ ˆˆ 1 1

ˆ ˆˆ ˆ

T

T T

z k C k x k

K k y k k C k x k k kα θ ψ

+ = +

+ − − �
 

(37) 

h) determine the estimate vector ( )ˆ 1kψ +  : 

 ( ) ( )( )ˆ1 1k h z kψ + = +�  (38) 

Ιn this section, we propose to use the parameters gains 
x

l , 

z
l  and 

y
l as a variables in discrete-time k , in order to give 

more robustness of the state and parametric estimation 
algorithm. The variation range of each gain should be chosen 
adequately, in order to verify the convergences conditions (27), 
(28) and (29) of the parametric estimation algorithm.  

Calculation of the three parametric gains can be made as 
follow [11]: 

 ( ) ( )( )0 1          , ,i i il k l j k i x z y= − =  (39) 

where 
0il , a positive parameter, must be selected as: 

0
0 2

i
l< <  and the parameter ( )i

j k  can be calculated using 

the following recursive equation: 

 

( ) ( ) ( )0

0 0
1 + 1        

i

i i i i
j k j j k j j= − −

 
(40) 

 
We can easily show that: 

 

( ) 0
lim        

i

i
k

j k j
→∞

=
 

(41) 

 
and 

 

( ) ( )0

0lim 1        i

i
k

l k l j
→∞

= −
 

(42) 

 

we represent, Fig.1, an example of evolution curve of the 

parameters gains  
x

l , 
z

l  and 
y

l , which are described by (39). 
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2

 

Fig. 1. The evolution curve of the parametric gains 
x

l , 
z

l  and 
y

l . 

It can be noted that the proposed recursive algorithm of 
state and parametric estimation can be divided into three 
blocks: a parametric estimation block, a state parametric block 
and a prediction block.  

There is a coupling between the three blocks, in the sense 
that the practical implementation of one block requires a 
transfer of information and data with the other blocks.   

IV.  ILLUSTRATIVE EXAMPLE 

In this section, we consider an example to illustrate the 
proposed algorithm for recursive state and parameters 
estimation.  

Consider a nonlinear system, described by the following 
Wiener mathematical model: 

 

( ) ( ) ( ) ( )

( ) [ ] ( ) ( )

( ) ( ) ( )

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

1

a a a b

x k a a a x k b u k v k

a a a b

z k c c c x k w k

y k f z k e k

   
   + = + +   
      

= +

= +  

 

(43) 

   

where ( ) ( ) ( ) ( )1 2 3

T
x k x k x k x k=    , ( )u k , ( )z k   and 

( )y k  represent, respectively, the state vector, the system input, 

the output of the linear part and the system output at the 

discrete-time k , ( ) ( ) ( ) ( )1 2 3

T
v k v k v k v k=     is the noise 

vector that acts the state system ( )x k , ( )w k  and ( )e k  denote 

the noises affecting,  respectively,  the output of the linear part 

( )z k  and the measured value of the output system ( )y k  and 

,maxi
l  

,mini
l  

( )il k  
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:f R R→  is a nonlinear function, (see Figure 2), with 

hysteresis-relay nonlinearity such that: 

 

 
( )

( )

( )

z k
f z k

z k

β τ

β τ

> −
=   

− <
 

(44) 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Hysteresis-relay nonlinearity 

This function can be expressed as: 

 

( ) ( ) ( ) ( ) ( )sgn sgn
2

f z k z z z z
β

τ τ τ τ
τ

= + + − − −      
 

(45) 

where  

 

[ ]
1 0

sgn
1 0

∗ ≥
∗ = 

− ∗ <  

(46) 

Then, (38) can be written as: 

 ( ) ( )T
f z k kφ υ  =   (47) 

with  

 
1 1

2 2 2 2

T β β β β
φ

τ τ

 
= − −  

 
(48) 

and 

 

( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

[ sgn

sgn sgn sgn ]

T
k z k z k z k z k

z k z k z k z k

ϑ τ

τ τ τ

= − +

+ − −
 

(49) 

The parameters
ij

a , 
i

b  and 
i

c  of the linear part are 

supposed unknown, for , 1, ,3i j = … . The parameters in vector 

φ  are supposed also unknown.  The state variables ( )1
x k , 

( )2
x k  and ( )3

x k  are assumed immeasurable for all values of 

the discrete-time k . The input signal ( )u k  and the output 

signal ( )y k  are measurable.  These measured values are 

assumed independent of the noise component ( )1
v k , ( )2

v k  

and ( )3
v k  and of the noise ( )e k .  

In order to estimate the state variables and the parameters 
of the mathematical model (36), we will use the proposed state 
and parametric estimation algorithm given by (27) to (35).  

The relative data to this example of numerical simulation, 
for the practical implementation of the proposed algorithm, are 
given as hereafter: 

a) the input ( )u k  is taken as a random sequence with 

zero mean and constant variance.  

b) the components ( )1
v k , ( )2

v k  and ( )3
v k  of the 

noise vector ( )v k  consist of independent random variables 

with zero mean. The variance-covariance matrix of the noise 

vector is given by: 
3 3

0.02Q I ×= . 

c) the noise ( )w k  and ( )e k  are consists of an 

independent random sequences with zero mean and variances  
2 0.05
w

σ =  and 2 0.015
e

σ = .  

d) the number of measurements M  being chosen, such 

as: 1, , 200M = … . 

e) the adaptation gain and the initial conditions of the 

various quantities involved in the proposed state and 

parameters estimation algorithm are selected with an 

adequate way. 

 
The quality estimation of the parameters intervening in the 

Wiener model (36) can be made by considering the parametric 

distance ( )d k  given by: 

 

( )
( ) ( )

( ) ( )

22
3 3 3

1 1 1

0.5
22

3 6

1 1

ˆˆ

ˆˆ

ij ij i i

i j iij i

p pi i

i pi p

a a k b b k
d k

a b

kc c k

c

φ φ

φ

= = =

= =

   − −= +          

 −−   + +        

∑∑ ∑

∑ ∑

 

(50) 

 

 

β−

β

( )z k  

τ  τ−  

( )y k
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             The evolution curves of the three state variables 

( )1
x k , ( )2

x k  and ( )3
x k  with the estimate state variable 

( )1̂
x k , ( )2

x̂ k  and ( )3
x̂ k   and the system output ( )y k  are 

given Fig.3. The evolutions curves of the three state estimation 

error ( )1
kδ , ( )2

kδ  and ( )3
kδ and the evolution curve of the 

output system ( )y
kδ  are illustrated Fig.4. 

Fig.5 shows the evolutions curves of the variance of the 

state estimation error ( )1
kσ , ( )2

kσ  and ( )3
kσ  and the 

evolution curve of the parametric distance ( )d k . The real 

parameters values and the average of its estimated are given by 
Table 1. 

The parameters of the nonlinear part can be deduced from 
the following expression: 

 ( ) ( ) ( )ˆ ˆ ˆ3, 5,k k kβ φ φ= +  (51) 

and 

 
( )

( )

( )

( )

( )

ˆ ˆ1
ˆ

ˆ ˆ2 2 3, 2 5,

k k
k

k k

β β
τ

φ φ

 
= − 

  
 

(52) 
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Fig. 3. Evolution curves of the state variables ( )1
x k , ( )2

x k  and ( )3
x k  

with the estimate state variable ( )1̂
x k , ( )2

x̂ k  and ( )3
x̂ k   and the output 

system ( )y k . 
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Fig. 4. Evolutions curves of the three states estimation errors ( )1
kδ , 

( )2
kδ  and ( )3

kδ and the evolution curve of the output system ( )y
kδ . 
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Fig. 5. Evolutions curves of the variances of the state estimation errors 

( )1
kσ , ( )2

kσ , ( )3
kσ  and of the parametric distance ( )d k . 

Figure3 shows the state estimation performance using the 
proposed state estimation method based on linear Kalman 
filter. The averages of the state estimation error of the three 

state variables ( )1
x k , ( )2

x k  and ( )3
x k  are, respectively, 

( )1
0.1241

k
mδ = , ( )2

0.1125
k

mδ =  and ( )3
0.1139

k
mδ = . 

Moreover, the variances ( )1
kσ , ( )2

kσ , ( )3
kσ  of the 

state estimation errors and the parametric distance in figure 5, 
decreases asymptotically towards a low minimum. 

 

From Tables 1 and 2, we can draw the following 
conclusions:  

( )

( )
1

1___

___

ˆ

x k

x k
 

( )

( )
2

2___

___

ˆ

x k

x k
 

( )

( )
3

3___

___

ˆ

x k

x k
 ( )y k  

k  

k  

k  

k  

( )1 kδ  ( )2 kδ  

( )3 kδ  ( )y
kδ  

k  k  

k  k  

( )1 kσ  ( )2 kσ  

( )3 kσ  ( )d k  

k  k  

k  k  
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• the parameters estimates given by the proposed 
parameters and state estimation algorithm converge to 

their true values as the parameters gains 
x

l , 
z

l  and 
y

l  

are variables in discrete-time k . 

• the state estimation errors depend on the quality of the 
parametric estimation, i.e., it become smaller when the 
estimates parameters converge rapidly to their real 
parameters.   

This shows that the proposed algorithm of the parametric 
and state estimation is effective. 

 

Table . real parameters values, estimated parameters values and the 

average of the states estimation errors 

 
 ( )i

l k
 

11
a  

12
a  

13
a  

21
a  

22
a  

23
a  

Real 

parameters 

 1.800 -1.0400 0.1920 1.000 0.000 0.000 

Estimate 

parameters  

Constants 1.5063 -1.0061 0.1767 0.8534 -

0.0094 

-

0.0097 

Estimate 

parameters 

variables 1.7994 -1.0516 0.1867 0.9980 -

0.0055 

-

0.0010 

 ( )i
l k

 
33

a  
1

b  
2

b  
3

b  
1φ  

2φ  

Real 

parameters 

 0.000 1.000 0.00 0.00 1 -1 

Estimate 

parameters  

Constants -

0.0011 

0.8973 -0.0019 -0.0002 0.8794 -

0.8238 

Estimate 

parameters 

variables 0.000 0.9987 0.0010 0.0003 0.9140 -

0.9715 

 ( )i
l k

 
3φ  

4φ  
5φ  

6φ  1
c  

2
c  

Real 

parameters 

 1 0.5 -1 0.5 1 -

0.2240 

Estimate 

parameters  

Constants 0.9783 0.2383 -0.8553 0.2784 0.8573 -

0.0266 

Estimate 

parameters 

variables 0.9738 0.3812 -0.9866 0.4600 1.0034 -

0.2238 

 ( )i
l k

 
3

c  ( )1
kδ  ( )2 kδ  ( )3 kδ  

Real 

parameters 

 -

0.6470 

   

Estimate 

parameters  

Constants -

0.5550 

0.2346 0.2128 0.1940 

Estimate 

parameters 

variables -

0.6493 

-0.0572 -0.0496 -0.0439 

V. CONCLUSION 

This paper was presented a state and parametric estimation 
algorithm for nonlinear systems described by Wiener 
mathematical models. The latter are composed by a dynamic 
linear part, described by a space-state equation, and a static 
nonlinear part. The developed work was divided into four 
parts. The first part was devoted to the development of a state 
estimation algorithm making it possible to estimate the state of 
the considered nonlinear model, assuming that their parameters 
are known. The formulation of this algorithm is based on the 
linear Kalman Filter. The second part was reserved to the 
development of a parametric estimation algorithm, in order to 

estimate the parameters of the Wiener model, assuming that the 
state vector is measurable. The formulation of this algorithm is 
made using the least square technique and the adjustable 
model. In the third part, the state vector and the parameters of 
the considered system are supposed unknown. For that, we 
present a recursive state and parametric estimation algorithm, 
which combines the state estimation algorithm with the 
recursive parametric estimation algorithm. 

In the last part, an example of numerical simulation was 
treated, in order to test the performances and the effectiveness 
of the developed recursive state and parametric estimation 
algorithm. The results of obtained numerical simulations are 
satisfactory. 
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