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Abstract—The paper describes a Fault Tolerant Control (FTC) of 

Induction Motors (IM) based Direct Torque Control (DTC). We 

study the case of stator inter-turn fault, which is the most 

frequently encountered in practice. An analytical method for the 

modeling of this fault has been presented including space 

harmonics effect. The obtained model is less complicated to be 

implemented for condition monitoring or to validate FTC 

algorithms. The equations which describe the transients as well 

as steady states behavior including the computation of machine 

inductances are presented. Simulation results show, on the one 

hand that the proposed control scheme provides high-

performance dynamic characteristics, and on the other hand the 

applicability and the tolerance of this control. 
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I. INTRODUCTION  

Induction machine is used in wide variety of applications. 
Industrial drives, pumps and electric traction are but few 
applications of large IM. However, the IM are subject to many 
faults, due to a combination of thermal overloading, transient 
voltage stresses, mechanical stresses and environmental 
stresses [1-4]. From a number of surveys, it can be deduced 
that inter-turn fault accounts approximately 40% of all failures 
[5-8]. The research on condition monitoring and fault tolerant 
control of IM often needs an accurate model. For this purpose, 
we have to elaborate a model which enables us to predict the 
performances and to extract fault signatures on 
electromagnetic torque, stator current and magnetic field. In a 
real machine, the magnetomotive force (MMF) produced is 
not sinusoidally distributed in the air-gap. The harmonics in 
the MMF have a significant detrimental effect on the 
performances of the machine [9-10]. Particularly, they 
influence the harmonic content of the stator currents which 
can be used for monitor internal faults or for fault tolerant 
control of IM. The harmonic inductances can be calculated 
using the magnetic field distribution, which can be evaluated 
analytically from the machine structure. The obtained model 
gives a good compromise between modeling accuracy and 
simulation time.  

For controlled IM drives, the FTC preserves the pre-
specified performances: continuity, quality of services and 
stability despite the presence of faults. Some FTC schemes 
require explicit detection and estimation of the fault (active 

FTC), while some FTC schemes operate using robust 
controller without such explicit detection (passive FTC)      
[11-14]. 

For conventional DTC, the stator flux is obtained from the 
stator voltage model, using the measured stator voltages and 
currents [15-16]. This method, utilizes open loop pure 
integration, suffers from the well known problems, especially 
at low speeds operation mode [17].  

For closed loop estimation, the state estimation is affected 
by parameter variation, especially the stator resistance, 
particularly at low speeds [18-19]. Therefore, to improve the 
estimation of the stator flux components, it’s necessary to 
compensate this parameter variation by using an online 
adaptation [20]. So, the proposed FTC is a combination 
between an active and passive FTC.  The advantage of this 
FTC is that when the fault is not tolerant an alarm signal will 
indicate that the operator’s intervention is necessary. 

II.  CALCULATION OF MACHINE INDUCTAQNCES 

A. Windings distributrion 

In order to obtain the machine inductances, firstly should 
be obtained the spatial distribution of magnetomotive force 
produced by a phase “j” of the stator windings. Using this 
distribution it is possible to get the harmonic components of 
magnetic flux linkage between the two phases “i” and “j”. 
These harmonics of flux linkage create the harmonic 
inductances. Self inductances are obtained for i = j and mutual 
inductance for i ≠ j. To illustrate the calculation of the 
machine inductances, it is convenient to consider the 
elementary 2-poles, star connected three phase induction 
machine. The stator windings are concentric with consequent 
poles. This distribution configuration corresponds more to the 
real situation induction machines [15]. Each phase is 
composed of four coils in series as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Concentric windings with consequent poles. 



B. Spacial Distribution of Magnetomotive Force 

The MMF of the stator winding “j” through the machine 
air-gap is represented as follows. 

 

 

 

 

 

 

 

 

 

 

 
The MMF distribution is expressed represented by the 

following equation when submitted to a current ij.
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A decomposition of )(αW scs in its Fourier series gives 
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h  : Harmonic order 

sα : Angular position which locates any point along the 

circumference of the air-gap from a fixed reference. 

jα : Value of sα in through the centre of coil. 

Each of the jq coils is the origin of an order h harmonic 

component of MMF which can be extracted from (2) 
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For any winding of phase j, the harmonic component “h” 
of the spatial distribution of MMF in the air-gap can be 
obtained by superposition of space harmonics with the same 
order from the phase coils. The MMF distribution for phase j 
to the harmonic order h is 
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where jq is the number of distribution coils in phase j. 

C. Harmonic Inductances of Stator Windings 

Magnetic field distribution )(αB sjh  produced by )(αw sjh is 

obtained through the application of Ampére law in the air-gap 
only; the magnetic circuit reluctance in the iron parts is 
neglected. Consequently, the magnetic field distribution is  
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Where 0µ the air magnetic permeability and g is the air-gap 

length. Space distribution )(αB sjh gives origin to a component 

of harmonic order “h” of the mutual flux in an order “b” coil 

for the phase “i” winding given by  
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L : Magnetic length of the rotor.  

r : Average radius of the air-gap.  

Taking in consideration phase “i” made by distribution iq of 

coils, the flux linkage between phases “j” and “i” is expressed 
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Thus, the harmonic inductance between phases “i” and “j” is  
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Consequently, the mutual inductance is in the form 
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For i = j, we obtain the magnetizing inductance 
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D. Mutual Inductance Stator-Rotor 

To obtain the harmonic mutual inductance between the 
stator phase “j” and any rotor loop, firstly should be obtained 
the component of harmonic order “h” of the mutual flux in the 
rotor loop. This component is expressed 
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kθ : Angular position of the rotor loop of order “k”. 

rα : Rotor loop pitch. 
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Figure 2. MMF distribution of a generic coil. 



The flux linkage between phase “j” and the rotor loop of order 

“k” is
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rθ : Angular position of the first rotor loop. 

III.  MODFELLING OF INTERTURN FAULTS 

A. General Considerations 

In induction machines, coils are insulated one from other 
in slots as in end winding region. The biggest probability for 
inter-turn fault is inter-turn between turns in the same coil. 
When an inter-turn fault occurs, the phase winding has less 
turns. As a result of the inter-turn fault, the mutual between 
the phase in which inter-turn is occurred and all of the circuits 
in machine are altered. Initially, we consider the sample 
example, where the coil U-V has four turns and occupied two 
slots. When, a short circuit occurred between the contact 
points c1 and c2, three turns in series are obtained. In addition, 
a new short-circuited turn which we call the short circuited 
phase D is created and magnetically coupled with all the other 
circuits. It is evident that the phase current and the currents 
which follow in the short-circuited phase produce opposite 
MMFs. Therefore, inter-turn short circuits have a cumulative 
effect in decreasing the total MMF produced in the air-gap. 

 

 

 

 

 

 

 

 

 

 

 

 

B. Spacial Distribution of Magnetomotive Force 

The new phase D is described by the voltage equation 
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Where dΦ , di and dr are respectively the magnetizing flux, the 

current and the resistance of the new phase D. 

Applying the previous method for the calculation of machine 

inductances, we obtain the self and mutual inductance of the 

new phase and all the other circuits. 

C. Stator Voltage Equations 

In the case of unbalanced conditions, we employ line to 
line voltages as inputs in simulation model [16]. The stator 
voltage equation becomes 
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uab, ubc and uca are the line to line voltages. 

ias, ibs and ics are the line currents. 

ras, rbs and rcs are the resistances of stator windings. 
The flux equations are expressed
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ssL , and srL  are the matrices of the stator, and the stator-rotor 

mutual inductances. ri is the rotor vector current. 

When a number short-circuited turns are created. The new 
short-circuited turns are identical and have no conductive 
contact with other phases. They can be analyzed with the same 
manner as the case of one short-circuited turn. The defect 
phase short-circuit factor is defined by 
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sN is the number of turns in healthy condition. 

ccN is the number of short-circuited turns. 
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Figure 3. Short-circuited coil 



D. Rotor Voltage Equations 

The voltage equation for the rotor circuit is expressed 

dt

dΦ
iR0 r
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The rotor flux is expressed 
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Where rrL and rsL are the matrices of the rotor, the rotor-

stator mutual inductances respectively.  

The mechanical equation is expressed 
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d
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Where J is the inertia of the rotor and the connected load, Te 

the electromagnetic torque, Tl the load torque, Ω the 

mechanical angular speed and vf is the viscose friction 

coefficient.  The electromagnetic torque can be expressed [6] 
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Where P is the number of poles and rθ is the electrical 

angular displacement of the rotor. 

IV. FTC DESIGN 

The global FTC scheme is represented as follows.  

 

 

 

 

A. Fault Detection and Localization Unit 

The fault detection and localization unit detects the 
occurence of fault and determines its nature. This can be 
realized by analyzing the harmonic content of stator currents 
or by analyzing the change of the stator resistance and then 
take the appropriate decision: accept the default or stop the 
machine and execute a curative maintenance.  

B. Adaptive Observer 

The objective is to determine the mechanism adaptation of 
the speed and the stator resistance. The structure of the 
observer is based on the induction motor model in stator 
reference frame. The adaptive observer is of the following 
structure. 

 
 

 

 
 

 

 
The state equations of the induction motor can be 

expressed as follows [21] 
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Where sαv , sβv are the components of stator voltage vector, 

dsi , qsi are the components of stator current vector, rαΦ , rβΦ  

are the components of rotor flux vector, σ is the leakage 

factor, sR and rR  are stator and rotor resistance, sL and rL  

represent the stator and rotor cyclic inductances and mL is the 

stator-rotor cyclic mutual inductance. sω , ω  are the stator 

and mechanical pulsation. 
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Figure 4. Global Fault tolerant Control 
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The previous state system can be expressed in the form 
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A linear state observer can then be derived as follows by 
considering the mechanical speed as a constant parameter 
during a sampling time since its variation is very slow. 

The model of the observer is written [24] 
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The machine parameters are assumed to be perfectly 
known, the stator resistance is unknown. We define  

sss RRRδ
∧
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The symbol ∧ denotes estimated values and G is the observer 

gain matrix. We will determine the differential system 

describing the evolution of the error 
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The state matrix of the observer can be written as 
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Then, we can write 
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We define the Lyapunov function 

( )

λ

Rδ
eeV

2

sT
+=

                             
               (35) 

λ is positive scalar. This function should contain terms of the 

difference sRδ to obtain mechanism adaptation. The stability 

of the observer is guaranteed for the condition [25] 
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We consider the hypothesis of a slowly varying regime for 
the machine parameters, thus 
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We obtain the adaptation mechanism in the form [20] 
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The matrix of gain G  is selected such as the eigenvalues 

of the matrix GCA − are in the left plane half of the complex 

plan and that the real part of the eigenvalues is larger in 
absolute value than the real part of the eigenvalues of the state 

matrix A  [24]. 



The estimated electromagnetic torque is expressed 
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V. SIMULATION RESULTS 

The technique presented in the previous sections, has been 
implemented in the MATLAB environment. To illustrate 
performances of the proposed control, particularly at low 
speeds, we simulated the healthy and faulty modes. The 
synthesized observer allows us to reconstruct all the state 
variables. For the DTC simulation, torque and flux hysteresis 
bands are 0.2 Nm and 0.01 Wb respectively. 

A.  Healthy Operation 

We simulated a loadless starting up mode with reference 
speed of -50 rpm; at t = 0.25 sec, the reference speed is 
inversed and becomes +50 rpm, then at t = 0.8 sec, sudden 
changes in load torque of 13.5 Nm is occurred and at t = 1 sec, 
the stator resistance increases of 50 % as a result of elevation 
of temperature. The simulation results are as follows. 

  
Figure 6 Rotor speed 

 
Figure 7. Electromagnetic torque 

 

 
Figure 8. Magnitude of stator flux 

 
Figure 9. Observed stator resistance 

 

It is clear that the external disturbances like changes in 
load torque, reference speed or stator resistance variation don’t 
allocate the performances of the proposed control. The flux 
tracks the reference value and it is insensitive to parameters 
variation. The speed response also stays insensitive to 
parameters variation. The global control scheme introduces 
high performances of robustness, stability and precision, 
particularly, under uncertainties caused by parameter 
variation. 

B. Faulty Operation 

We simulated a load starting up mode with a speed of 
reference equals to +50 rpm with an interturn fault of 5 % on 
the first winding. The simulation results are as follows. 



 
Figure 10. Electromagnetic torque 

 
Figure 11. Magnitude of stator flux 

 
Figure 12. Observed stator resistance 

 

In faulty conditions, the machine is unbalanced. The stator 
resistance oscillates below its nominal value. At low speeds, 
the faulty harmonics are near the fundamental and the 
distinction between the different harmonics becomes very 
difficult. The observed stator resistance will be a very 
interesting tool for fault detection. In this condition, the stator 
resistance is a fictitious quantity which only serves to 
superpose the Clarck model to the faulty one. In addition, the 
adaptation of this resistance serves to improve the robustness 
of the observer. 

CONCLUISION 

A new approach to induction machine modeling has been 

presented including space harmonics effect. It can be readily 

applied for the analysis of stator and rotor faults of IM 

drives. In faulty conditions, the machine is unbalanced 

and significant increase of stator currents is produced.  For the 

proposed control scheme, the speed remains equal to its 

reference value and the overshoot currents can not be avoided. 

When the current is not exceeding the acceptable level, the 

machine continues to operate with degraded performances 

until its repair or exchange. So, it’s always necessary to 

execute early fault detection for less damage. The global 

control scheme introduces high performances of robustness; 

stability and precision. The proposed approach relies on the 

improvement of an estimation of the stator flux components. 

The estimation of the stator flux by the adaptive observer has 

well made more robust stable the FTC of IM based DTC. 

SIMULATED MACHINE PARAMETERS 

Stator phase resistance  Ω  1.5950rs =  

Rotor phase resistance  Ω  1.3053rr =   

Effective air-gap   mm  0.35g =   

Stack length   mm  125L =   

Rotor radius   mm  37.35r =   

Stator phase leakage inductance H  0.0040Lls =   

Rotor phase leakage inductance H  0.0033Llr =   

Drive inertia   
2

kg.m  0.045J =  

Friction coefficient  
-12

v .skg.m  0.0038f =   

Stator phase turns   124Ns =  

Rotor bar resistance  Ω    43.04Erb −=  

Rotor end ring segment resistance Ω    78.75Ere −=  

Rotor bar leakage inductance H   75.16Elb −=  

End ring segment leakage inductance H   91.59Ele −=  
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