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Abstract. This paper is inclined to consider the problem of controller synthesis 

and to meet the goal of stabilizing a single-input affine nonlinear system. First, re-

garding the concept of state feedback linearization, various state transformations 

are synthesized. In fact, the main benefit of this step is to transform the nonlinear 

system into an equivalent switched one by using multi-diffeomorphism. In the 

second part, a Lyapunov analytical bounded control design is developed so as to 

characterize stability by the use of multiple Lyapunov functions. The design of the 

proposed approach consists of two main stages. In the first stage, a set of bounded 

nonlinear state feedback controllers is constructed in a way that it provides an 

asymptotic stability for each mode. Then, the second stage is aimed to produce a 

stabilizing switching law that coordinates the transition between the active mode 

and its appropriate controllers in a way that the process is globally stabilized. Fi-

nally, the method is pointed up with an example to demonstrate the applicability 

of the suggested approach. 

Keywords: Switched systems; Multi-diffeomorphism; Bounded nonlinear control; 

Multiple Lyapunov Functions. 

1   Introduction 

Traditionally, most of the fundamental control problems have predominantly 

been concerned with the control of continuous dynamic processes described by 

ordinary differential equations. Yet, there are many other processes that include 

discontinuous actuators and physical constraints. Accordingly, the properties of 

the system instantaneous changes may depend on a complex interaction between 

the discrete and continuous variables. This, unfortunately, complicates the model-

ling [5] the analysis and the design [3] of the system. These have extensively been 
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discussed when referring to the hybrid systems because they involve interaction 

between the continuous and discrete dynamics and the state jumps which alto-

gether lead to the overall system response in time and space. Indeed, amongst the 

most important classes of such systems are the switched systems [3], [11]. The 

switched systems are basically the outcome of considering the hybrid systems 

from the last point of view. More precisely, a switched system is composed of a 

family of subsystems with a continuous dynamics and a logical law that indicate 

the active subsystem. In recent years, the research on the switched systems has 

been the focal point of hundreds of publications, numerous monographs and sev-

eral comprehensive textbooks, such as [12], [15] which provide an outstanding 

overview on the switched systems. For this class, the control research is of a grow-

ing importance as it helps exploring the conditions of the switched system so as to 

guarantee the closed loop stability. Actually, the strong desire to implement the 

control approaches, which allow for an explicit characterization of the stability  

properties of the switched systems, has motivated  the research topic about the de-

sign of stabilizing control laws by using the tools of Multiple Lyapunov Functions 

(MLF) [2], [16]; in other words, one Lyapunov function for each mode. The key 

feature of the proposed control methodology is the integrated synthesis via MLF. 

On the one hand, a family of bounded nonlinear feedback controllers enforces sta-

bility in the constituent modes and provides an explicit characterization of the 

feedback stability region for each mode. On the other hand, we attempt to develop 

switching laws that ensure safe transitions between the modes in a manner that 

they guarantee stability in the global switched closed-loop system. In whole, this 

paper is organized as follows. Section 2 is a thorough presentation of the theoreti-

cal background of the studied approaches and a review of the basic concepts of in-

put–state feedback linearization. A switching control approach via MLF is de-

scribed in Section 3. In Section 4, we realize a numerical simulation study in order 

to validate the proposed approach. Finally, a conclusion is summarized in Section 

5.  

2   Theoretical Background 

2.1   Description of the Studied System 

In this work, we have focused on analytical nonlinear continuous systems    de-

scribed by the following state-space equation [9]: 

( ) ( )
.

 

( )

X F G U

y

X

X

X

h


 = +

 =

 

(1) 
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with nX ∈ℜ  is the state vector, n designs the system order,  U ∈ℜ  is the in-

put,  
ny∈ℜ  is the system output n nF : ℜ → ℜ , n nG : ℜ → ℜ  are nonlinear vec-

tor functions describing the system dynamics. n nh : ℜ → ℜ  is a nonlinear func-

tion giving the output expression y. All over this work, the functions F , G  and h
 

are assumed to be sufficiently smooth in nℜ  and also differentiable with an un-

specified order.  

2.2 Inputs-State Feedback Linearization 

The design of input-state feedback linearization has been described in many 

papers [4], [10]. The primary goal, here, is the determination of the relative degree 

r  (the number of times the output has to be differentiated with respect to time be-

fore the input appears) which equals to the dimension of the state vector in an op-

erating point nx . An analytic state feedback transformation 

( ) ( )1r
F FT( X ) h( X ) L h X L h Xξ − = =

 
K  and a static nonlinear state feedback 

U a( X ) b( X )v= + for which the closed loop of system (1), using the feedback in 

the new coordinates, will be equivalent to a linear model in the following form: 

.

Â B vξ ξ= +  
(2) 

Where ( )ˆ ,A B  is a controllable pair of constant matrices of appropriate dimen-

sions. v  is a new external input. The following Theorem gives the sufficient con-

dition for the output of the exact linearization: 

 

Theorem 1. [8] Exact Linearization Problem for the system (1) is solvable near 

an operating point nx  if and only if the following conditions are satisfied: 

- The matrix ( ) ( )1( ) , ( ) , ( )n
n n nG x ad F G x ad F G x− 

 
K has the rank n. 

- The distribution ( ) ( ){ }2, ,nspan G ad F G ad F G−
K  is involutive 

near nx . 

If the system (1) satisfies the conditions of Theorem 1, ( )h X  satisfies this par-

tial derivate equation: 

- ( ) 0, 0, , 1k
G FL L h X k n= = −K    

-  1 ( ) 0k
G FL L h X− ≠
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3   A Switching Control System Approach via Multiple 

Lyapunov Control Functions 

3.1   Formulation of the Proposed Approach 

The nonlinear system linearizable by feedback depends on the diffeomorphism 

and the transient behavior of the loop of regulation will be different. Since the dif-

feomorphism is not unique, it is shown that a linearizable system feedback has 

various diffeomorphisms but the best transient behavior is achieved by using the 

appropriate diffeomorphism.  

Using the concept of multi-diffeomorphism in the exact input-state lineariza-

tion, the dynamics of the nonlinear system (1) has to be transformed into a dynam-

ic switching system which will be transformed as follows: 

 

 ( )  ( ) u

( )

i i ix f x g x

y h x

= +


=

&
 

(3) 

Where [ ]1( ) ( ), , ( )
n

nx t x t x t= ∈ ℜK  is the state, [ ]1, , n
i nu u u= ∈ℜK is a measurable lo-

cally essentially bounded control input taking values in the set 

{ }max
: :  

m
i i iu u u u= ∈ℜ <  containing the origin. With  . , we note that the Eucli-

dean norm of the signals u, if and ig  are a finite family of the smooth vector 

fields which give rise to the switched nonlinear system (3).  { }1, ,i I N∈ = K is a 

constant  function called the switched signal. This is the index set that specifies 

the active subsystem. The number N of the switches is finite on every bounded 

time interval. Throughout the paper, we take the notation 
k

it  and 
1k

it
+

 to denote 

the t
th

 times that the i
th

 subsystem is switched in and out. We can assume, in the 

rest of the study, that the continuous state of the i
th

 active mode evolves according 

to the state equation and the output equation governed for each
1k k

i i
t t t

+< < . The 

switching sequence is depicted as shown in Fig.1: 

3 3 3 ( )  ( ) ux f x g x= +&1 1 1 ( )  ( ) ux f x g x= +&

2 2 2
 ( )  ( ) ux f x g x= +&

 ( )  ( ) u
N N N

x f x g x= +&

 
 

Fig. 1. Concept of the proposed approach. 
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The key feature of this approach is to propose the switched nonlinear control 

methodology, for the class of switched nonlinear systems (3), based on the Lyapu-

nov theory which is a useful tool for both the stability analysis and the control 

theory. One of the most employed stability concepts in the control theory is the 

MLF. As it will be, later on, used in the control of the switched systems, we will 

briefly review the main idea of the MLF. In fact, its principle lies in the use of a 

family of functions named pseudo-Lyapunov functions { }:iV i I∈  associated with 

each field of vectors ( )ix f x=& , to demonstrate stability. 

Definition 1. [13] (Pseudo-Lyapunov function)  

A pseudo Lyapunov function for the system (3), with 0,iu i I≡ ∈ in an operating 

point in a stability region of the space ( n
n ix ∈Ω ⊂ ℜ ) is a real-valued function 

( )iV x defined in a region iΩ  satisfying the following conditions: 

− Positive definite: ( ) 0 and ( ) 0 for i n i n iV x V x x x= > ≠ ∈Ω  

− derivative defined non-positive: for all x
 
included in the stability region 

iΩ  

( )( ) ( ) ( ) 0i iV x V x x f x= ∂ ∂ ≤&  (4) 

We can, then, write the following result: 

Theorem 2. [2], [6] 

Suppose that n
iΩ = ℜU  and for each vector field if has an associated Lyapu-

nov-like function iV  in the region iΩ , neighborhood nx .   

For the N-switched nonlinear system (3), with 0,iu i I≡ ∈ , the switching se-

quence can take the value of i  only if ( ) ix t ∈Ω , then the value of iV  decreases on 

each interval when the i
th

 subsystem is active, more specifically 

( )( ) 1 ( ( ))
i i

k k
i iV x t V x t −≤  (5) 

We pose ikt  the k
th

 switching instant for the sequence. Then, the adjacent of the 

operating point nx  of the system (3), is Lyapunov stable. 

As shown above in theorem 2, the existence of MLF iV , one for each subsys-

tem if , is a necessary and sufficient condition for the stability of every mode i  of 

a system without inputs. In addition, the MLF framework may be used as a tool of 

control of the switched nonlinear systems with input constraints. The main idea is 

to use a candidate Lyapunov function for designing the feedback controllers 

though it is made explicit by introducing the concept of Control Lyapunov Func-

tion (CLF) as follows: 

Definition 2. [14] (Control Lyapunov Function) 
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A smooth, proper, and positive-definite function :   nV +ℜ → ℜ called a CLF for 

a system of the form (1) when there is an admissible value 1
, ,

m
u uK for the controls 

such that: 

{ }1

1
inf 0

m

m
F G GL V L VU L VU+ + + <K  (6) 

Where ( ), GF kL V V x F x= ∂ ∂ is the k
th

 column of the matrix G. 

We can generalize the Definition 2 to a switched nonlinear system as shown in 

this assumption:  

Assumption 1  

For every { }1, ,i I N∈ = K , a Control Lyapunov Function, iV , exists for system (3). 

3.2   Development of the Proposed Approach 

In the previous section, we examined how the MLF is used to analyze the sta-

bility of the switched nonlinear systems. In this section, we use the MLF as the 

key for developing a nonlinear control design. The main feature of the proposed 

approach is not only to synthesize the bounded nonlinear feedback controllers of 

the individual subsystems, but also to design an appropriate switching scheme that 

organizes the transition between the different modes and keeps all the system sta-

ble. Firstly, we will formulate the control problem and, then, we will propose the 

switching strategy solutions.  

In the present study, we investigate the problem of control, for a switched non-

linear system (3), based on the input–state feedback linearization formalism. 

In fact, for the system (3) there is a relative degree r n= in nx , if it checks the 

two following conditions, for any x is close to nx  : 

- ( ) 0
i ig f

k
L L xλ =            { }1, ,i I N∈ = K and 0 ( 1)k n< < −  

- ( )( 1)
0

i i

i
g f

L L xλ− ≠  

 And a coordinate transformation ( )T xξ = such that the representation of the 

system of equation (3) in the ξ  coordinate takes the form: 

( )

( )

( )

( )
( )

( )

1 1

2

1

1

( )

( )
( )

( )

i

fi

i i

f
i

i r
i

nn n
i i

xT x x

L x
T x

T x
x

L xT x x

λξ
λ

ξ

λξ

−

−

    
    
    

= = =     
    
    

    

M

MM
 

(7) 

The resulting system with the transformed variables (7) can then be written as: 
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1
2

1

1

1

( ) ( )
i i i

i

r
i

r n n
i f g f iL x L L x u

y

γ

ξ ξ

ξ ξ

ξ λ λ

ξ

+

−

 =




=


= +


=

&

M

&

&

 

(8) 

where ( )( ) ( )
if iL x x f xλ λ= ∂ ∂ is the Lie derivative of (.)if  

with 1 ( ) 0
i i

n
g fL L xλ− ≠  for 

all n
x ∈ ℜ , 1( )i ix T ξ−= and iu is the new input control.  

The first step of the control problems is to synthesize, via MLFs iV  existing for 

each { }1, ,Ni I∈ = K , a family of N-bounded nonlinear continuous feedback con-

trollers that enforces the asymptotic stability for their respective closed-loop sub-

systems. To achieve this end, this control law can be constructed:  

( ) ( )

( )

max( , )( ( )),          ( ) 0

0                                               ( ) 0

i i

i

T T

i g i g i

i
T

g i

k x u L V x L V x

u

L V x


− ≠


= 
 =


 

(9) 

where

( )

( ) ( )
( )

4
2 max

22
max max

( ) ( ) ( )

      ( ) 0

( , ) ( ) 1 1 ( )

0                                                                         

i i

i

i i

T

i i g i
T

g i

T T
i i g i i g i

x x u L V x

L V x

k V u L V x u L V x

θ α
  

+ +  
  

≠
 

     = + +          
 

( )

             

           ( ) 0

        

i

T

g iL V x










 =


 The vector of the manipulated inputs iu  is bounded by max
i iu u≤  where the note 

  .   is the Euclidean norm of the input and max

i
u  is a real positive number. 

1 m
i i i

g i i ig g
L V L V L V =   

K is a row vector, where 
ig iL V

 
is the Lie derivatives of  the 

control Lyapunov function iV for the i
th 

 mode along the column vectors of the 

matrix ig , ( )
ii f i ix L V Vθ ρ= +

 
and 0ρ > . 

So, the behavior is globally input-output linearized according to the previous defi-

nition as it is allowed to synthesize ξ controllers ensuring the stability of the 
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closed loop system. For this reason, we adopt the following notation ( 1)k
i ie vξ −= −  

where [ ]1 1
T

re e e e= K , (1) ( 1)
T

r
v vv v

− =
 

K is a generalized reference input where 

( )k
v  k

th
 is the time derivative of this latter. Consequently, one may prove that the 

ξ -subsystem (8) will be equivalent to the form: 

.

( , ) ( , ) ,         i=1, ,N

( , ) ( )

( , ) ( )

i

i

i i i

r
i f

r
i g

e e v e v u

e v Ae BL h x

e v BL h x

ψ ω

ψ

ω


= +


= +


=



K

 

(10) 

Where  and  are 1   i i rψ ω × are the vector fields, A and B are respective-

ly  matrix and 1 vectorr r r× × with the form: 

0 1 0 0 0

0 0 1 0 0

  and  B

0 0 0 0

0 0 0 0 1

A

   
   
   
   = =
   
   
      

K

K

M M M

K

K

 

(11) 

The previous compact form allows constructing a CLF for each mode of the 

switched system (10) by the use of a quadratic Lyapunov function T
i iV e Pe=  

where iP  is a positive definite matrix chosen to satisfy the following Ricatti in-

equality: 

0T T
i i i iA P P A PBB P+ − <  (12) 

Referring to the second control objective, we must integrate the synthesis, 

bounded nonlinear feedback controllers, given in equation (9), and the switching 

laws that organize the transitions between the constituent modes and their respec-

tive controllers. On the whole, we will use multiple CLFs to design a family of 

bounded controllers, with its estimated regions of stability, in a way that it allows 

us to present the switching rule to any of the bounded controllers at a given time. 

Theorem 3 below summarizes the proposed switching control strategy. The main 

idea provided in this theorem is the formulation of the family of bounded feedback 

continuous controllers together with the appropriate switching rules to govern the 

transitions between the various closed-loop modes in a way that they guarantee the 

desired properties in the constrained switched closed-loop system. 

Theorem 3. [7] 
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Consider the switched nonlinear process (3), for all i I∈  , under the family iu  

of the bounded nonlinear feedback controllers given by the equation (9), where iV
 

is a control Lyapunov function for the i
th

 subsystem. We notice that the closed-

loop state trajectory, x, evolves within the state-space region described by this set: 

( )max: ( ) ( ) ( )
i i

Tn
f i i i i G iD x L V x V x u L V xρ

 
= ∈ℜ + ≤ 
 

 

 We construct the largest invariant subset ( )* max

i iuΩ
 
using the level sets of iV  : 

( ) { }* max
,: ( )

i

n
i i x iu x V x γΩ = ∈ℜ ≤  

Where ,x iγ is the largest number for which ( )* max

ii i
D u⊃ Ω . Without loss of 

generality, we assume that ( )* max( )
in ix x u∈ Ω . If, at any given time Γ , the following 

conditions hold: 

 

( )* max( )
i ix uΓ ∈Ω  (13) 

( ) ( )*( ) ( )j j j
V x V x tΓ <  

(14) 

For some ,j I j i∈ ≠ ,where *
j

t < Γ is the time when the j
th

 subsystem was last 

switched in, then setting  j , for t
+≥ Γ  , guarantees that the origin of the switched 

closed-loop system is asymptotically stable.  

4   Illustrative Example and Simulation Studies 

In this section, the simulation study is presented to demonstrate the implemen-

tation, to evaluate the effectiveness of the proposed switching control strategy 

based on the concept of multi-diffeomorphism as well as Multiple CLF and to test 

its stability. We consider the example of a nonlinear system described by the fol-

lowing equation: 

2
1 1 2

2 1 2

X X X

X X X U

 = +


= + +

&

&
 

(15) 

The system (15) can be written as the form of equation (1). 

Where 2

1 2 1 2( )       X
T

F X X X X + + = , ( ) 0    1
T

G X =   
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The study is considered in the neighborhood of the instable operating 

point ( )1 , 1nx = − . 

 An exact input-state linearization is used to find a non-linear transformation 

such that in the new coordinate system the model can be completely linear using 

the feedback. The dynamics of the system (15) can be improved by using the mul-

ti-diffeomorpism in linearization. According to the change of coordinate equation 

(7) the process will be transformed under various forms that can be stated as mod-

el (3), where  1,2i = .  

The first diffeomorphism is spelled as: 

1

1 2
1 1

( )
x

T x
x x

 
=  

+  
 

(16) 

Then, from the conditions of theorem 1 we can obtain another diffeomorphism: 

( )

2
1

2 2
1 2 1

1

2
( )

x x

x
T x

x

 +
 =
 +
  

 

(17) 

By the use of the equation (9), we designed the bounded controller to accom-

plish our control objectives which are: 

− to stabilize the parameters in the operating point beginning by mode 1 

− to maintain this state when the system switches to mode 2 

The system (15), describing the dynamics, can be obtained for controller de-

sign: 

 

We construct two bounded controllers for each mode of the form of equation 

(18) using two quadratic Lyapunov function computed using the linearized sys-

tem. We choose  ( )2
1 2 1 21 2V V x x= = +

 

( )( )

( ) ( )( )( )
( )

4
max( )

22 max1 1

i i i

i

i i

L V V L V V u L Vf i i f i i g ii
u L Vi g i

L V u L Vg i g ii

ρ ρ+ + + +

=
 
 + +
 
 

 

(18) 

Where   and ,   i=1,2
i if i i i g i i iL V V e f L V V e g   = ∂ ∂ = ∂ ∂     

The CLF cannot stabilize the full system according to theorem 2 we should use 

for:  

− mode1: 
2 2

1 1 2 2 1 1 21 2 ( 1) 1 2 ( 1) ,     0.94  and  0.23V x xσ σ σ σ= + + − = =
 

− mode 2: 
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2 2
2 3 2 4 1 3 41 2 ( 1) 1 2 ( 1) ,     0.95  and  1.76V x xσ σ σ σ= + + − = =
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Fig. 2. Evolution of the closed-loop state x1 when the system is initialized in mode 

1(without switch)  
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Fig. 3. Evolution of the closed-loop state x2 when the system is initialized in mode 

1(without switch)  
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Fig. 4. Closed-loop state  

when the system switches to mode 2 at t =1 min: x1(solid) and x2 (dotted). 
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Fig. 5.  Closed-loop state  

when the system switches to mode 2 at t =0.5 min. 
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Fig. 6.  Closed-loop state  

when the system switches to mode 2 at t =0.5 min. 

 

Here, we present the simulation of the control objective which stabilizes the 

states of the system in the unstable operating point and illustrates the behavior of 

the controlled system. Fig. 2 and Fig.3 show the convergence of the states to the 

desired values when the system is operated in mode 1 for all times (with no 

switching).  

According to these figures, it is clear that the control provided for this mode 

could successfully stabilize the system in the desired unstable operating point.  

 But when the system switches to the second mode at an arbitrarily given mo-

ment t=1 min, the parameters of the system diverge and the control fails to stabil-

ize the states according to Fig. 4. This phenomenon can be explained by the fact 

that the parameters are outside the stability region of mode 2. In order to success-

fully put the system back in its stable condition, we use the switching diagram 

shown in theorem 3.  

This objective is illustrated in Fig. 5 and Fig. 6 where the system is initialized 

to the first mode. At an arbitrary moment   t=0.5 min existing in the stability re-

gion of the second mode (according to switching condition of the theorem), the 

control switches to mode 2. But this time the goal of the control is achieved: the 

controllers successfully handle the system and, also, remain stable in the neigh-

borhood of the point which is desired throughout the switching phase. 

6   Conclusion 

 In This work, we considered the problem of stabilization of nonlinear 

systems. The inner loop was designed based on the new concept of multi-

diffeomorphism. By using state feedback linearization an equivalent switched li-

near model for the system is constructed. The outer loop is a switched linear con-
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troller which guarantees a global stability. To sum up, we use Lyapunov func-

tion iV in designing the bounded controllers for e-subsystems that stabilize the full 

e-interconnection for each mode. We also employ the Lyapunov function iV to im-

plementing the switching rules. These Lyapunov functions are used in verifying 

the switching conditions at any given time. What is more, we demonstrated the 

application of the propose controller designs through a numerical example. 
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