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Abstract— This paper proposes a higher order sliding mode 

controller for uncertain robot manipulators. The motivation for 

using high order sliding mode mainly relies on its appreciable 

features, such as high precision and elimination of chattering in 

addition that assure the same performance of conventional 

sliding mode like robustness. Instead of a regular control input, 

the derivative of the control input is used in the proposed control 

law. The discontinuity in the controller is made to act on the time 

derivative of the control input. The actual control signal obtained 

by integrating the derivative control signal is smooth and 

chattering free. The stability and the robustness of the proposed 

controller can be easily verified by using the classical Lyapunov 

criterion. The proposed controller is tested to a three-degree-of-

freedom robot to prove its effectiveness. 

Keywords—High order sliding mode; robot control; 

Lyapunov method 

I.  INTRODUCTION 

Control under uncertainty condition is one of the main 

topics of the modern control theory. Among the existing 

control techniques [1-3], sliding mode control [4-6] is a 

powerful method to control nonlinear systems having 

uncertainties and disturbances. In this method, states are 

forced to move along a chosen manifold in the state space, 

called the sliding surface [7]. After reaching the sliding 

manifold, the system becomes totally insensitive to parametric 

uncertainty and external disturbances. 

In spite of the robustness property of the sliding mode 

control, its main disadvantage is the chattering phenomenon. It 

is the high frequency finite amplitude oscillations occurring 

due to the discontinuous control signal. This phenomenon is 

extremely dangerous to the actuator of electromechanical 

systems. 

Several approaches are proposed to eliminate chattering. 

One such is to replace the sign function in a small area of the 

surface by a smooth approximation, which is the so-called 

boundary layer control [8]. Then the chattering is reduced but 

accuracy and robustness are deteriorated. Another technique 

uses the observer design. This approach exploits a localization 

of the high frequency phenomenon in the feedback loop by 

introducing a discontinuous feedback control loop which is 

closed through an asymptotic observer of the plant [9]. 

Consequently, it suppresses the high frequency oscillations of 

the control input [9]. Recently, new approach has been 

proposed called higher order sliding mode [10-16]. Instead of 

influencing the first sliding surface time derivative, the sign 

function is acting on its higher time derivative. Keeping the 

main advantage of standard sliding mode control, the 

chattering effect is eliminated and higher order precision is 

provided [7]. In the case of  order sliding mode control, the 

objective is to keep the sliding variable and its  first time 

derivatives to zero through discontinuous function acting on 

the  time derivative of the sliding variable. 

Many papers are available in the case of second order 

sliding mode control [17-20]. Arbitrary order sliding mode 

controllers have recently been proposed in [21-25]. In [23], the 

proposed algorithm assure tuning only one gain parameter of 

the higher order sliding mode control. However, the 

convergence rate cannot be arbitrary selected. The problem of 

the algorithms in [24] is parameter adjustment. Indeed, there is 

no explicit condition for the gain tuning. Therefore, the 

convergence cannot easily be made arbitrary fast or slow. The 

approach given in [21] proposes higher order sliding mode 

based on linear quadratic approach. In spite of their 

advantages (constructive approach, practical applicability), its 

major drawback is that the higher order sliding mode control 

is only practical. The system trajectory reaches the small 

neighborhood of the origin in finite time. In [22], the authors 

use the integral sliding mode control and guarantee the 

establishment of a higher order sliding mode. The advantages 

of this algorithm are easy to implement and guarantee the 

robustness of the system during the entire response. But it 

directly depends on the initial conditions of the system and 

complex off-line computations are needed before starting the 

control action. A higher order sliding mode control based on 

geometric homogeneity is developed in [25]. The control of 
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this approach [25] suffers from the undesired phenomenon of 

chattering. 

    

This paper proposes a higher order sliding mode control 

applied to robotic manipulator in uncertainty condition. The 

main attributes of the proposed controller are robustness and 

finite time stabilization which are the basic properties of a  

higher order sliding mode controller. Moreover, the chattering 

phenomenon, in the control input, is eliminated. Indeed, the 

discontinuity is used in the derivative of the control, instead in 

the control.  

The outline of this paper is as follows. Section 2 presents 

the robot model. In section 3, the second order sliding mode 

controller is designed for uncertain robot manipulator. The 

controller eliminates the chattering in the control input. 

Section 4 presents simulation results to demonstrate the 

efficiency and advantages of the proposed controller. Section 

5 concludes the paper. 

II. ROBOT MODEL 

According to the Lagrange theory [26], the dynamic 

equation of n -joint robot manipulator can be described by 

 

                       ( ) ( , ) ( ) ( )M q q C q q G q d tτ+ + = +�� �                 (1) 

Where nq R∈ is the vector of joint angles, ( ) n nM q R ×∈ is the 

inertia matrix, ( , ) nC q q R∈�  is the Coriolis and Centrifugal 

terms, ( ) nG q R∈  is the gravitational torque, n
Rτ ∈ is the 

vector of the torque produced by actuators, and ( ) nd t R∈  is 

the vector of bounded input disturbance, 
1

( )d t d<  where 

1
0d > . 

Assuming that the system described by (1) has parts which are 

known 
0
( )M q , 

0
( , )C q q� , 

0
( )G q   and unknown ( )M q∆ , 

( , )C q q∆ � , ( )G q∆ , then 

                            
0

( ) ( ) ( , )M q M q M q q= + ∆ �                         (2) 

                           
0

( , ) ( , ) ( , )C q q C q q C q q= + ∆� � �                      (3) 

                           
0

( ) ( ) ( )G q G q G q= + ∆                                 (4) 

From (2)-(4), (1) can be written in the following form  

                         
0 0 0
( ) ( , ) ( ) ( )M q q C q q G q tτ ρ+ + = +�� �           (5) 

Where ( ) ( ) ( , ) ( ) ( )t M q q C q q G q d tρ = −∆ − ∆ − ∆ +�� � . 

The control objective is to assure the tracking of the angular 

position to the desired position in finite time, with robustness 

and without chattering. 

III.  HIGH ORDER SLIDING MODE CONTROL OF ROBOT 

MANIPULATOR 

Consider the robot manipulator model and define the desired 

trajectory as 

( ) [ ( ) ( )]T

d d d
Q t q t q t= �  

Where ( ) n

d
q t R∈  is the vector of desired joint angular and 

( )
d

q t�  is the vector of desired angular velocities. 

Define the tracking error vector as 

                             
1

2

( )

( )

d

d

q q t e
e

q q t e

−   
= =   

−   � �
                              (6) 

The matrix form corresponding to the robot model (1), without 

uncertainty, is 

                        ( , ) ( ) ( , )e Ae F q q B q f eτ τ= + + =� �                 (7) 

Where  

0

0 0

nI
A

 
=  
 

, 
( )1

0
( , )

( ) ( ) ( , ) ( )
F q q

q t M q C q q G q
−

 
=  

− − + 
�

�� �
 

 

1

0
( )

( )
B q

M q
−

 
=  
 

 

A sliding surface is chosen for the system (7), in the following 

form 

                                           S C e=                                        (8) 

Such that ( )'

nC C I= and '

1 2
( , ,..., )

n
C diag c c c= . 

Define the new system formed by 
1

y S=  and 
2

y S= �� , then 

                                 
1 2

2 ( ) ( )

y y

y e eϕ ψ τ

=


= +

�

� �
                               (9) 

Where 
( , )

( )
f e

e C e
e

τ
ϕ

∂
=

∂
�  and 

( , )
( )

f e
e C

τ
ψ

τ

∂
=

∂
. 

In (9), the time derivative of the control input τ�  would be 

designed to act on the higher order derivative of the sliding 

surface. Hence, instead of the actual control τ , the time 
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derivative control, τ�  would be used as the control input. The 

new control τ�  would be designed as a discontinuous signal, 

but its integral (the actual control τ ) would be continuous 

thereby eliminating the high frequency chattering.  

Matrices ( )eϕ  and ( )eψ , in (9), consist of nominal parts  

( )eϕ  and ( )eψ  which are known a priori and uncertain parts 

( )eϕ∆  and ( )eψ∆  which are unknown and we suppose that 

are bounded. Thus we have 

                             
( ) ( ) ( )

( ) ( ) ( )

e e e

e e e

ϕ ϕ ϕ

ψ ψ ψ

 = + ∆


= + ∆
                           (10) 

Using (10), the thr  order sliding mode system can be written 

as 

                     
1 2

2
( ) ( ) ( , )

y y

y e e P e tϕ ψ τ

=


= + + ∆

�

� �

                        (11) 

where ( , ) ( ) ( )P e t e eϕ ψ τ∆ = ∆ + ∆ �  include all uncertain 

parameters and external disturbance. 

To determine a high order sliding mode control, a novel 

surface is defined for the system (11) as 

                                     
2 1

y D yσ = +                                   (12) 

where ( ), 1,...,
i

D diag D i n= = , such that σ  satisfy 

                            ( ( ))N W signσ σ σ= − +�                           (13) 

where ( )
i

N diag N=  and ( )
i

W diag W= , 0
i

N >  , 0
i

W >  , 

1,...,i n=  . 

Differentiating (12) and using (11) and (13), the derivative of 

the control is expressed as 

          ( )1

2
( ) ( ) ( ( ))e e D y N W signτ ψ ϕ σ σ−= − + + +�          (14) 

where 

                                  ( , )
i i i

N W P e t> ∆                                 (15) 

Theorem. Consider the robot model (7), if the gains 
i

N  and 

i
W  fulfill the condition (15) the control law (14) ensures the 

establishment of the 2
nd

 order sliding mode in the sliding 

surface S , i.e. the trajectory of the system converges 

asymptotically to zero. 

 

Proof. 

A Lyapunov function  is selected as 

                                         
1

2

T
V σ σ=                                   (16) 

Differentiating (16) and using (12) and (11), one obtain 

2
( ) ( ) ( , )TV e e P e t D yσ σ ϕ ψ τ= = + + ∆ +� �   

Substituting (14) and simplifying, then 

( )

1 1

1

( ( )) ( , )

( ) ( , )

( ( , )

T

n n
T

i i i i i i

i i

n
T

i i i i

i

V N W sign P e t

N N W sign P e t

N N W P e t

σ σ σ

σ σ σ σ σ

σ σ σ

= =

=

= − + + ∆

≤ − − + ∆

≤ − − − ∆

∑ ∑

∑

�

 

Then, using (15) yields 0V <� . 

Therefore, asymptotic convergence to a domain 0S =  is 

guaranteed from any initial condition. 

As is evident from (14), τ�  is discontinuous but integration of 

τ�  yield a continuous control law τ� . Hence, the undesirable 

high frequency chattering of the control signal is alleviated.  

IV. SIMULATION RESULTS 

The proposed higher order sliding mode control is applied to a 

three degree freedom robot manipulator. The model of this 

robot is simulated by using MATLAB Simulink platform with 

fixed step size of 0.001. 

The robot model is defined by the following equation [27] 

11 12 13 1 1 1 1 1

12 22 23 2 2 2 2 2

13 23 33 3 3 3 3 3

M M M q C G d

M M M q C G d

M M M q C G d

τ

τ

τ

          
          

+ + = +          
          
          

��

��

��

 

where : 

11 1 2 2 2 3 3 3 1

12 1 2 2 2 3 3 3 2

22 2 3 3

13 2 2 3 3 3 3

23 3 3 3

33 3

2 cos 2 cos( ) 2 cos

cos cos( ) 2 cos

2 cos

cos( ) cos

cos

M b q b q q b q a

M b q b q q b q a

M a b q

M b q q b q a

M a b q

M a

= + + + +

= + + + +

= +

= + + +

= +

=
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2 2 2 2 2 2

1 1 1 1 2 2 1 2 3 3 1 2 3

2 2 2

2 2 2 2 3 3 2 3

2

3 3 3 3

( ) ( )

( )

c c c

c c

c

a J m L J m L L J m L L L

a J m L J m L L

a J m L

= + + + + + + + +

= + + + +

= +

 

1 1 2 1 2 2 2 1 2 3 2 3 2 3

3 3 1 2 3 3

2 2

2 1 1 2 2 1 2 3 3 1 2 3 3 3

2 2

3 2 1 2 3 3 1 2 3

(2 )sin (2 )( )sin( )

(2 2 )sin

sin sin( ) (2 2 ) sin

sin( ) ( ) sin

C b q q q q b q q q q q q q

b q q q q q

C b q q b q q q b q q q q q

C b q q q b q q q

= − + − + + + +

− + +

= + + − + +

= + + +

� � � � � � � �

� � � �

� � � � � �

� � �

 

1 2 1 2 3 1 2

2 3 1 3

3 3 2 3

c

c

c

b m L L m L L

b m L L

b m L L

= +

=

=

 

1 1 1 2 1 2 3 1 2 3

2 2 1 2 3 1 2 3

3 3 1 2 3

cos cos( ) cos( )

cos( ) cos( )

cos( )

G k q k q q k q q q

G k q q k q q q

G k q q q

= + + + + +

= + + + +

= + +

 

1 1 1 2 1 3 1

2 2 2 3 2

3 3 3

( )

( )

c

c

c

k m L m L m L g

k m L m L g

k m L g

= + +

= +

=

 

The nominal values of 
1

m , 
2

m  and 
3

m  are assumed to be [27] 

10 20 30
0.5 , 1 , 0.2m Kg m Kg m Kg= = =  

and the other system parameters are assumed to be known [27] 

2

1 1

2

2 2

2

3 1

2 3

2

0.12 0.5

0.25 0.5

0.3 0.25

0.35 0.15

9.81 /

c

c c

J Kg m L m

J Kg m L m

J Kg m L m

L m L m

g m s

= =

= =

= =

= =

=

 

We suppose that we have an uncertainty on masses of the 

order 10%±  (fig. 1-3), and the disturbance vector is 

1 2 3
( ) [ ( ) ( ) ( )]Td t d t d t d t=  where 

1

2

3

( ) 0.2sin(3 ) 0.02sin(26 )

( ) 0.1sin(3 ) 0.01sin(26 )

( ) 0.1sin(3 ) 0.01sin(26 )

d t t t

d t t t

d t t t

π

π

π

= +

= +

= +
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Fig. 1. Variation of the mass 
1

m . 
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Fig. 2. Variation of the mass 
2

m . 
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)

 

Fig. 3. Variation of the mass 
3

m . 

The control objective is to design a robust control law such 

that the angular positions 
1

q , 
2

q  and 
3

q  evolved from the 

following initial conditions 
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1 2 3

1 2 3

[ (0) (0) (0)] [ 0.2 0.2 0.4]

[ (0) (0) (0)] [0 0 0]

T T

T T

q q q

q q q

= − − −

=� � �

 

track the desired angular positions ,  and  defined as 

1

2

3

7 7
1.25 exp( ) exp( 4 )

5 20

7 7
1.25 exp( ) exp( 4 )

5 20

7 7
1 exp( ) exp( 4 )

5 20

d

d

d

q t t

q t t

q t t

= − − + −

= − − + −

= − − + −

 

After many simulations, the high order sliding mode is 

obtained for the following parameter of the two sliding 

surfaces and the control: 
1 2 3

2c c c= = = , 
1

10,D =
2

8,D =  

3
15D = , 

1
100,N =  

2
10,N =  

3
700,N =  

1
10,W =

2
60W =  

3
1W = . 

Figs. 4-6 show the tracking error, the control input, the sliding 

surface S  and the state trajectory of each joint obtained by 

using the proposed high order sliding mode controller. It is 

obvious that the proposed controller ensures finite time 

convergence of tracking error of three joint and robustness. 

From control signal it is clear that the control input has a 

negligible chattering especially in beginning, then it is smooth 

having no chattering. A second order sliding mode is achieved 

on the sliding surface S  and its components reach zero in 

finite time. It is also chatterless. The state trajectory of the 

system evolves without chattering. 
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Fig. 4. Tracking of the first joint. 
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Fig. 5. Tracking of the second joint. 
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Fig. 6. Tracking of the third joint. 

 

The results of the sliding surface σ are presented in figure 7. 

The three sliding surface converge to zero in finite time. 
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Fig. 7. Sliding surface σ. 

 

The sliding variable σ  converges to zero in finite time. A first 

order sliding mode control is then established on this surface. 
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Because the discontinuity act on the first derivative of , their 

components present the chattering phenomenon. 

V. CONCLUSION 

In this paper, we have presented the design of the robust high 

order sliding mode control for the tracking problem of rigid 

robot manipulators. The main feature of this work is assuring a 

smooth high order sliding mode control. The time derivative 

of the control acts on the second derivative of the sliding 

surface. Therefore the obtained control law is continuous and 

robust. The proposed controller guarantees a finite time 

convergence of the tracking error. Also this controller has 

eliminated the chattering phenomenon without losing 

robustness property and precision. Hence, the proposed 

controller is highly suitable for practical applications. The 

stability of the controlled system is proved by using Lyapunov 

stability criterion. Simulation results demonstrate the efficacy 

and advantage of the proposed controller.   
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