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ABSTRACT 

 

Several modern speaker recognition systems use a bank of 

linear filters as the primary step in performing frequency 

analysis of speech and extracting the acoustics parameters 

that permit characterizing the speaker identity. In this paper 

we point up the employ of novel feature set extracted from 

speech signal. The new skill for extracting these parameters 

is based on the human auditory system characteristics and 

relies on the Gammachirp Filterbank to imitate the cochlea 

frequency resolution with nonlinear resolution according to 

the equivalent rectangular bandwidth (ERB) scale. For 

evaluation a comparative study was operated with standard 

PLP, and the effect of these differences using an usual 

HMM/GMM for text independent speaker recognition 

system, for noisy environments. Performances were test 

database contaminated with additive noise different real-

environment noises were used: car noise provided by Volvo, 

factory noise and white noise from Noisex92 [1]. Tests were 

carried out at different SNR levels (-3dB, 0dB, 3dB, 6 dB, 

12 dB). 

Index Terms— Speaker Identification, Gammachirp, 

PLP, PLP-GC, HMM/GMM. 

 

1. INTRODUCTION 

 

Security has turn out to be an extremely important issue due 

to wide use of internet technology as well as due to multi-

user applications. Identifying users and yielding access only 

to those users who are authorized is a key to afford security. 

Users can be identified using a variety of approaches and 

their combinations. As the technology is getting advanced, 

more sophisticated approaches are being used to assure the 

need of security. Some of the most popular techniques are 

use of login and password, face recognition, fingerprint 

recognition; iris recognition etc. Use of login and password 

is becoming less reliable because of the ease with which 

hackers can usurp the password such as sophisticated 

electronic eavesdropping techniques [2]. Face recognition, 

fingerprint recognition and iris recognition also carry their 

own drawbacks. Users should be willing to endure the tests 

and should not get upset by these procedures when these 

techniques are used to identify them. Speaker identification 

permits nonintrusive monitoring and also achieves high 

accuracy rates which conform to most security requirements. 

Speaker recognition is the process of automatically 

recognizing who is speaking based on some unique 

characteristics present in speaker’s voice [3]. For this 

recognition purpose, speaker specific characteristics present 

in speech signal need to be preserved. Job of Speaker 

recognition can be classified into two main categories, 

namely speaker identification and speaker verification. 

Speaker identification deals with distinguishing a speaker 

from a group of speakers. In contrast, speaker verification 

aims to decide if a person is the one who he/she claims to be 

from a speech sample. Speaker identification problem can be 

further classified as text dependent and text independent 

Speaker Identification based on relevance to speech contents 

[4]. Text dependent Speaker Identification involves the 

speaker saying exactly the enrolled or the given 

password/speech. Text independent Speaker Identification is 

a process of verifying the identity without constraint on the 

speech content. Compared to text dependent Speaker 

Identification, text independent Speaker Identification is 

more convenient because the user can speak freely to the 

system. However it requires longer training and testing 

utterances to achieve good performance. 

 

2. SPEAKER IDENTIFICATION SYSTEM 

 

The block diagram of a speaker identification system 

consists of the training phase and the testing phase as shown 

in fig. 1. In the training phase, the features of a speakers 

speech signal are stored as reference features. The feature 

vectors of speech are used to create a speakers model. The 

numbers of reference templates that are required for efficient 

speaker recognition depend upon the kind of features or 

techniques that the system uses for recognizing the speaker. 

In the testing phase, features similar to the ones that are used 

in the reference template are extracted from an input 

utterance of the speaker whose identity is required to be 

determined [5]. 
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Figure 1: Training and testing modes of an automatic speaker identification 

system 

The decision depends upon the computed distance 

between the reference template and the template devised 

from the input utterance. In speaker identification, the 

distance between an input utterance and all of the available 

reference templates is computed. The template of the 

registered user, whose distance with the input utterance 

template is the smallest, is finally selected as the speaker of 

the input utterance. In case of speaker verification the 

distance is computed only between the input utterance and 

the reference template of the claimed speaker. If the distance 

is smaller than the predetermined threshold, the speaker is 

accepted other the speaker is rejected as an imposter [6]. 

 

3. FEATURE EXTRACTION  

 

A wide range of possibilities exist for parametrically 

representing the speech signal for the speaker recognition 

task, such as Linear Prediction Coding (LPC), Mel- 

Frequency Cepstrum Coefficients (MFCC), Perceptual linear 

Predictive coefficients(PLP)[7]. Perceptual linear predictive 

analysis (PLP) was proposed by Hynek Hermansky in 1989 

[8]. PLP analysis is similar to linear predictive coding 

(LPC), except that the PLP technique also uses three 

concepts from the psychophysics of hearing. These three 

concepts are the critical-band spectral resolution, equal 

loudness curve, and intensity loudness power law [9]. Both 

LPC and PLP use the autoregressive all-pole model to 

estimate the short-term power spectrum of speech. However, 

as pointed out by Hermansky, the LPC all-pole model is not 

consistent with human auditory perception because it does 

not consider the non uniform frequency resolution and 

intensity resolution of hearing. PLP alleviates this problem 

by applying the all-pole model to the auditory spectrum. The 

auditory spectrum is designed to be an estimate of the mean 

rate of firing of auditory nerve fibers [9]. 

 

3.1. PLP Algorithm 

In the PLP technique, several well-known properties of 

hearing are simulated by practical engineering 

approximations, and the resulting auditory like spectrum of 

speech is approximated by an autoregressive all-pole model 

[10] [11].  

 

3.1.1.  Spectral analysis 

The speech segment is weighted by the Hamming window: 

( ) 0.54 0.46cos[2 n/ (N 1)]w n π= + −                     (1) 

Where N is the length of the window.  The typical length of 

the window is about 20ms.The discrete Fourier transform 

(DFT) transforms the windowed speech segment into the 

frequency domain. Typically, the fast Fourier transform 

(FFT) is used here [10]. The real and imaginary components 

of the short-term speech spectrum are squared and added to 

get the short term power spectrum [10]. 
2 2

( ) Re[s(w)] Im[s(w)]P w = +                            (2) 

3.1.2.  Critical-band spectral resolution: 

The spectrum P(w) is warped along its frequency axis w into 

the bark frequency Ω , by 

  { }2 0.5
( ) 6 ln /1200 [(w/1200 ) 1]w w π πΩ = + +    (3) 

The resulting warped power spectrum is then convolved 

with the power spectrum of the simulated critical-band 

masking curve  . 

This step is similar to spectral processing in Mel cepstral 

analysis, except for the particular shape of the critical-band 

curve. In PLP technique, the critical-band curve is given by: 
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The discrete convolution of  with (the even symmetric and 

periodic function) P(w) yields samples of the critical-band 

power spectrum. 
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The convolution with the relatively broad critical-band 

masking curves Ψ(Ω) significantly reduces the spectral 

resolution of ϴ(Ω) in comparison with the original P(w). 

This allows for the down-sampling of θ (Ω). 

3.1.3.  Equal-loudness preemphasis 

The sampled  is preemphasized by the simulated equal-

loudness curve: 

   
[ (w)] E(w)[ (w)]Ξ Ω = Θ                                     (6) 
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The function E(w) is an approximation to the non equal 

sensitivity of human hearing at different frequencies and 

simulates the sensitivity of hearing at about the 40-dB level. 

The particular approximation is adopted from Makhoul and 

Cosell(1976) and is given by: 

[ ]2 6 4 2 6 2 2 9

( ) [( 56.8 * 10 ) ] / ( 6.3 * 10 ) * 0.38 * 10E w w w w w= + + +  (7) 

Finally, the values of the first (0bark) and the last (Nyquist 

frequency) samples (which are not well found) are made 

equal to the values of their nearest neighbors. Thus   begins 

and ends with two equal-valued samples [10]. 

 

3.1.4.  Intensity-loudness power law: 

The last operation prior to the all-pole modelling is the 

cubic-root amplitude compression. 

 
0.33

( ) ( )Φ Ω = Ξ Ω
                                                                 (8) 

This operation is an approximation to the power law of 

hearing (Stevens 1957) and simulates the nonlinear relation 

between the intensity of sound and its perceived loudness. 

Together with the psychophysical equal-loudness 

preemphasis, this operation also reduces the spectral 

amplitude variation of the critical band spectrum so that the 

following all-pole modelling can be done by a relatively low 

model order [10]. 

3.1.5.  Autoregressive modelling 

In the final operation of PLP analysis, Φ(Ω)  is 

approximated by the spectrum of an all-pole model using the 

autocorrelation method of all-pole spectral modelling. We 

give here only a brief overview of its principle: the inverse 

DFT (IDFT) is applied to Φ(Ω) to yield the autocorrelation 

function dual to  . The first M+1 autocorrelation values are 

used to solve the Yule-Walker equations for the 

autoregressive coefficients of the Mth-order all-pole model. 

The autoregressive coefficients could be further transformed 

into some other set of parameters of interest, such as cepstral 

coefficients of all-pole model [10]. 

 

3.2 Gammachirp filterbank: 

The proposed a temporal model deduced from the impulse 

responses measured from the electric impulses of the 

nervous fibers of the internal ear. [12] proposed a new 

model of the auditory filter called gamma chirp, to introduce 

dependence opposite the level of intensity of resonant hard 

working stimulus .The impulse response of the gamma chirp 

filter is given by the following expression [13]: 

  
2 ( ) 2 ln1( ) r rbERB f t j f t jc t jn

c
g t at e e

π π ϕ− + +−=                       (9) 

Where: n is a filter order, fr is the modulation frequency of 

the gamma function, as is the carrier normalization 

parameter, c is the asymmetry coefficient of the filter, ϕ is 

the initial phase; bERB is the filter envelope, ERB 

represents the equivalent rectangular band given by [14, 15]: 

 

ERB(fr)=24.7 + 0.108 fr                                                  (10) 

 
 

Figure 2: Temporal impulse response of the gamma chirp filter (a =1, 

b=1.019, c=1, n=4). 

 
Figure 3: Frequency response of the gamma chirp filter 

 

 

The Fourier magnitude spectrum of the gammachirp filter is: 
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And Ґ(n+jc) is the complex gamma distribution. 

Figures 2 and 3 represent respectively the temporal impulse 

response and the frequency response of the gamma chirp 

filter. The ERB is calculated in function of the central 

frequency (fr) according to [14]. If we use the formula and if 

we suppose that the signal band is between fH and fL with a 

filter recovery ratio (V) hence, the N number of filters is 

selected like this [16]: 

228.79.26
ln

228.7

H

L

f
N

v f

+
=

+
                                               (13) 

However, the central frequencies (fr) can be premeditated by 

the expression: 

( ) 9.26228.7 228.7
n

c h
f f e

ν
−

= − + +
                       (14) 
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4. PERCEPTUAL LINEAR PREDICTION BASED ON 

GAMMACHIRP FILTERBANK (PLP-GC) 

 

The linear predictive model is based on the mechanism of 

speech production. A major shortcoming of this method 

(LP) is that the filter spectrum uniformly distributed over all 

frequencies of the analysis band. Thus, it is possible that 

certain important details of the spectrum are not taken into 

account in the LP analysis. However, to take account of the 

collection must be based on the hearing mechanism.  The 

purpose of the analysis is PLP-GC coefficients by estimating 

a model of auditory filter based on a filter bank in which 

every size of each GC filter varies with the input power of 

signal followed by a filtering operation of the external and 

middle ear models (equal intensity curve). The pattern of 

PLP-GC analysis is given in fig.4. The short term power 

spectrum of the speech signal is calculated. Then we 

multiply the spectrum of each filter of the filter bank 

Gammachirp by the spectrum of the speech signal in this 

step is to use only the model of the inner ear that is to say, 

This passage provides a first approximate of crudely the 

auditory filter, complying recovery critical bands and the 

masking phenomenon of the change of the template based 

filter Gammachirp asymmetry parameter C. Psychoacoustic 

experiments showed that the ear has nonlinear 

characteristics. Indeed, experiments conducted by Fletcher 

and Munson [17] showed that the intensity, when we listen 

to a pure constant sound intensity varies with the frequency 

of the pure tone. To simulate this occurrence in the PLP 

analysis of GC, we multiply the power spectrum resulting 

from the preceding step. For the model of the outer and 

middle ear by the given filter whose impulse response is 

given by the following equation: 

( ) ( )( ) ( )( )
20.8 3 3.6

0.6 3.64 6.5 exp 0.6 3.3 10
om

w f f f f
− −

= − + − − −
(15) 

It is possible to estimate the model of the outer and middle 

ear, referring to a chart of equal loudness lines along which a 

pure ear gives a feeling of equal intensity. This is the origin 

of what we call the loudness considered subjective loudness 

of sounds. This curve is an approximation of the non-equal 

sensitivity of the human outer and middle ear for different 

frequencies that simulates the susceptibility of the outer and 

middle ear. The previous two treatments are not sufficient to 

be a correspondence between the measured intensity and the 

subjective intensity (loudness). Stevens says the law after 

achieving integration of critical bands and pre-emphasis, the 

relationship between intensity and loudness becomes: 

 

Loudness= (intensity) 0.33                                               (16) 

This involves applying the amplitude compression according 

to the cube root law (eq.8) Preemphasis with the outer and 

middle ear model and the application of the law of Stevens 

reduce the amplitude variation of the spectrum bands. The 

last step of the analysis PLP -GC is to approximate Φ(Ω)  

with the spectrum of all-pole model using the 

autocorrelation method. The Inverse Discrete Fourier 

Transform to determine the all-pole model coefficients and 

cepstral recursion and matrix coefficients PLP -GC. 

 
Figure 4: PLP-GC algorithm 

 

5. EXPERIMENTAL   EVALUATION 

 

In this study, we are interested to evaluate the performance 

of the suggested front-end based on PLP-GC method in a 

text-independent speaker identification context. We consider 

identification task for TIMIT Speaker Database [20]. The 

TIMIT corpus of read speech has been designed to provide 

speaker data for the acquisition of acoustic phonetic 

knowledge and for the development and evaluation of 

automatic speaker recognition systems. TIMIT contains a 

total of 6300 sentences, is composed of speech composed of 

8 American dialects. 

We consider 2 male speakers and 2 female from each 

dialect, out of 630 speakers for speaker recognition, 

everyone have 5 words in the training and 5 other words for 

testing because here we have text independent in which we 

must not find the same words spoken in both of training and 

testing. The parameters of the system are 16 KHz sampling 

rate with 16 bit sample resolution. 25 millisecond Hamming 

window duration with a step size of 10 milliseconds. PLP 

coefficients with 22 as the length of cepstral liftering and 26 

filter bank channels of which 12 are the number of PLP 

coefficients.  Like an initial starting point a vector size of 39 

is defined by using the 12 cepstral coefficients and the 

logarithmic frame energy plus the corresponding delta and 

acceleration coefficients. The vector size may be changed 

when testing with an alternative front-end that generates a 

different number of features.  

The reference recognizer is based on the HTK software 

package version 2.2 from Entropic.  The training and 

recognition parameters are defined to compare the 

recognition results when applying different feature 

extraction schemes. The task of recognition is considered 

without restricting the string length. The words spoken by 
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the speakers ‘database are modeled as whole word HMMs 

with the following parameters: 

• Single  left-to-right HMM model 

• mixture of 3 Gaussians per state 

• Prototype model with means 0 and variances 1 

The training is done in several steps by applying the 

embedded Baum-Welch reestimation scheme (HTK tool 

HERest). GMM is widely used for speaker modeling in 

context independent speaker identification [21]. In our 

research, we use HTK to design the speaker models 

[22].each speaker is modeled using a three-state HMM in 

which only one state is modeled with Gaussian mixture 

distributions, the other two states are dummy states. This 

HMM speaker model is almost the same as the GMM 

speaker model except that the former has state self-transition 

involved in the calculation of the likelihood probability. The 

identification rate is defined as the ratio between the number 

of correctly identified speech segments and total number of 

speech segments for each speaker. Our purpose in this study 

is to test whether the proposed feature has more speaker 

individual information, thus a three-state with two dummy 

states HMM is used for each speaker modeling to evaluate 

the proposed method. 

 

6. RESULTS  

 

The evaluation of the speaker identification performances of 

our systems, One Performance measures, the correct 

recognition rate (CORR) is adopted for comparison. They 

are defined as:   

 % CORR = no. of correct labels / no. of total labels * 100% 

Tables 1, 2, 3 shows the results associated with the rate 

recognition of different parameterization techniques, using 

“energy”, “delta” and “delta delta” vectors according to the 

signal to noise ratio (SNR). 

Please do not paginate your paper.  Page numbers, session 

numbers, and conference identification will be inserted when 

the paper is included in the proceedings. 

Table1. Speaker identification accuracy rate for white noise 

 -3 DB 0 DB 3 DB 6 DB 12 DB AVG 

PLP _E_D_A 23.68 36.98 67.03 89.01 91.65 61.67 

PLP-GC_E_D_A 25.83 41.56 72.67 94.35 97.51 66.38 

Table 2. Speaker identification accuracy rate for the car noise. 

 -3DB 0 DB 3 DB 6 DB 12DB AvG 

PLP_e_d_a 43.19 64.97 71.53 77.83 89.14 69.33 

PLP-GC e_d_a 54.11 67.81 79.50 81.67 94.44 75.50 

Table3. Speaker identification accuracy rate  for the factory noise. 

 -3DB 0 DB 3 DB 6 DB 12DB AvG 

PLP _e_d_a 41.50 50.65 58.98 76.82 92.14 64.01 

PLP-GC e_d_a 53.39 57.05 61.30 82.23 96.93 70.18 

 

7. DISCUSSION 

This three tables show the identification rate of PLP 

_E_D_A, PLP-GC _E_D_A  frontends in various SNR 

conditions. These results indicate clearly that the PLP-GC 

_E_D_A produces interesting results. However, in noisy 

environments, all variants of PLP-GC exceed all variants of 

PLP. The average identification rate of PLP-GC is about 

75.50% while the average identification rate of PLP is still 

equal 69.33% when SNR changes from  -3dB to 12dB. In 

others words, these results indicate that in noisy 

environments the PLP-GC algorithm works better than PLP 

and the dynamic variants of these algorithms are better 

suited to robust conditions. 

8. CONCLUSION 

An auditory motivated technique has been described to 

extract significant feature sets from the speech signal. It is 

mainly based on the Gammachirp filterbank. Gammachirp 

Auditory filterbank are non-uniform band pass filters, 

designed to imitate the frequency resolution of human 

hearing. The bloc diagram of PLP-GC has been 

implemented under Matlab and tested on the TIMIT 

databases using HTK. When compared to PLP, achieves 

better performance.  
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