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Abstract— This paper treats the identification of nonlinear 

systems using RKHS models, with Kernel Canonical  

Correlation Analysis (KCCA) technique. KCCA finds 

common semantic features between mapped input-output data 

in high dimension nonlinear spaces, and then use the common 

features to represent the data.  We use KCCA and Kernel  

Partial Least Square (KPLS) technique in nonlinear system 

identification benchmark, a Wiener-Hammerstein, and we 

compare results.  

 

 

Keywords— RKHS, Kernel method, KPLS, KCCA, Wiener-

Hammerstein 

 

I. INTRODUCTION 

During last years, a lot of  researchs were performed in the 

field of nonlinear system identification using Kernel methods 

[5, 12], many techniques have been developed and widely used 

in different applications, such as Support Vector Machines 

(SVM) [3], Kernel Patial Least Square (KPLS) [10],  Kernel 

Principal Component Analysis   (KPCA) [11], Kernel 

Independent Component Analysis (KICA) [2],  ... 

 

In this paper we are interested in using Kernel Canonical 

Correlation Analysis (KCCA) in regression problems. KCCA 

is the kernel extension of Canonical Correlation Analysis 

(CCA) with positive definite kernels [1] and is mainly used in 

classification problems [5, 6, 7]. CCA was proposed by 

Hotelling in 1936 [8], to solve the problem of finding vector 

bases for two sets of variables such that the correlations 

between the projections of the variables onto these bases are 

mutually maximized. The solution then results in solving an 

eigenvector problem. Kernel methods principle maps the data 

into a higher dimensional feature space, KCCA is 

then applied on the mapped input-output data and extract their 

common information allowing the construction of the RKHS 

model. 

The partial least squares (PLS) [15, 17] creates orthogonal 

score vectors (component, latent vectors)by using the existing 

correlations between different sets of variables (blocks of data) 

while also keeping most of the variance of both sets.  

Kernel PLS (KPLS) is the kernel extension of PLS and deals 

with the data mapped into a higher dimensional feature [10, 

16]. 

In this paper we use KCCA and KPLS techniques to identify 

RKHS models for nonlinear systems, with applications on a  

Wiener-Hammerstein benchmark [13]. 

 

The paper is organized as follows. In sections 2, 3 and 4 we 

present the Kernel  Canonical  Correlation Analysis, the 

eigenvector problem is firstly solved with a complete Cholesky  

decomposition,  and then with a Partial Gram Shmidt 

Orthogonalisation [3]. In section five, we perform a numerical 

simulation on benchmark application,  and a comparison study 

on KCCA  and KPLS results is presented. 

 

II. KERNEL CANONICAL  CORRELATION  ANALYSIS  (KCCA) 

 

Due to its linearity, CCA may not extract useful descriptors of 

the data in nonlinear cases. KCCA offers a solution by 

mapping the data into a higher dimensional feature space. 

Consider the set of data { }
1, ...,

,
i i i N

D x y
=

= ,  N  the number of 

observations. We define 2:
x x

k E IR→ and 2:
y y

k E IR→  to 

be continuous positive definite kernels[9, 14, 1].  It exists 

sequences of orthonormal eigenfunctions ( )
1 2
, , ...,

lx x xϕ ϕ ϕ  in 

( )2

y
EL   and  ( )

1 2 '
, , ...,

ly y yϕ ϕ ϕ  in ( )2

xEL  (where l and  

'l can be infinite) so that:  
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We have then: 

 
' ' '

( , ) ( ), ( ) , ,
x x x x

k x x x x x x E= Φ Φ ∈  

' ' '
( , ) ( ), ( ) , ,

y y y y
k y y y y y y E= Φ Φ ∈

 
 

Let the  Gram   matrices N N

x
K IR ×∈  and N N

y
K IR ×∈  :  

 

( ) ( , )x ij x i jK k x x=  and ( ) ( , )y ij y i jK k y y=  

 

We consider   ,
x y

u v defined by : 

 

( ), ( )
T

x x x x x
u x f f X= Φ = Φ                                                                          

(7) 

 

( ), ( )
T

y y y y y
v y f f Y= Φ = Φ                                                                         

(8) 

With ( )
x

XΦ and ( )
y

YΦ are the mappings of X , and Y with 

the applications 
x

Φ and 
yΦ  respectively. We suppose that 

( )
x

XΦ and ( )
y

YΦ are centered, and with 
x x

f F∈ , 
y y

f F∈  

are defined  as: 

 

1

( )
N

x i x i

i
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, , 1, ...,
i i

IR i Nα β ∈ =  

 

The correlation between xu and  
y

v  is defined   by 

 

( ( ), , ( ), )
x x y y
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(11) 
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( )1 2, , ...,
T

N
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(12) 

 

( )1 2
, , ...,

T

N
β β β β=

                                                                                 (13) 

 

Using the kernel trick, and performing some easy calculus, we 

have: 

  

1
cov( , ) T

x y x y
u v K K

N
α β=                                                                    

(14) 

1
var( )

T

x x x
u K K

N
α α=                                                                           

(15) 

1
var( )

T

y y y
v K K

N
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(16)             

KCCA then solves the following problem: 

 

2 2,

max
N

T

x y

T TIR
x y

K K

K Kα β

α β

α α β β∈
                                                                    

(17) 

 

subject  to : 

 
2 1T

x
Kα α =  and 2

1
T

y
Kβ β =  

The  Lagrangian   is  

2 2

( , , , )

( 1) ( 1)
2 2

x y

T T T

x y x y

L

K K K K
βα

λ λ α β

λλ
α β α α β β

=

− − − −
 

 

The derivative of  the  Lagrangian :  
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2 0
x y x

L
K K Kαβ λ α

α

∂
= − =

∂
                                                                        

(18) 

 

2
0y x y

L
K K Kβα λ β

β

∂
= − =

∂
                                                                       

(19) 

 

multiplying relation (18) by  Tα and  (19)  by Tβ ,  and 

subtracting   them,  we find 

 
2 2

0
T T T T

x y x y x y
K K K K K Kα βα β α λ α β α β λ β− − + =  

 

Or:     2 2
0

T T

y x
K Kβ αλ β β λ α α− =  

 then   β αλ λ= , let   β αλ λ λ= =
 

 

We consider  
x

K  and  
yK  are non singular, we have : 

 
1

y x
K K α

β
λ

−

=                                                                                               

(20) 

 

From  relation  (20)  and  (18) we find 

 
1 2 0

x y y x x x
K K K K K Kα λ α− − =  

 

Hence  2 0
x x x x

K K K Kα λ α− =  

 

Then  

 
2

Iα λ α=                                                                                                        

(21) 

  

From equation (21), we can deduce that  1λ =  for every 

vector α ,  hence  if  
x

K  and 
y

K are invertible, then perfect 

correlation can  be formed, suggesting learning is trivial and   

applying KCCA in this fashion will  not then provide useful 

results. 

 

Instead of solving (17), we solve a regularized form, we 

introduce a control on the flexibility of the projection mapping 

by penalizing the norms of the associated weights, and we 

convexly combine the CCA term with the regularization term,  

we obtain: 

 

  
2, 22 2

max
N

T

x y

IR T T

x x y y

K K

K f K f
α β

α β

α α τ β β τ
∈

+ +

     0τ >                        

(22) 

 

 

According to the definitions of 
x

f and 
y

f , in (9) and (10): 

 

2

1 1

, ( ), ( )
N N

x x x i x i j x j

ï j

f f f x xα α
= =

= = Φ Φ∑ ∑  

1 1

( , )
N N

i j x i j

i j

k x xα α
= =

=∑∑ T

xKα α=  

 

 

similarly  
2

, T

y y y y
f f f Kβ β= =  

 

Then  the KCCA regularized problem  becomes  

 

2 2,

max
N

T

x y

T T T TIR
x x y x

K K

K K K Kα β

α β

α α τ α α β β τ β β∈ + +
                               

(23) 

                                                                                              

Subject  to   

 
2 1T T

x x
K Kα α τ α α+ =  and 2 1T T

y x
K Kβ β τ β β+ =  

 

The  Langrangien  is  

   

2

2

( , , , ) ( 1)
2

( 1)
2

T T T

x y x x

T T

y y

L K K K K

K K

α
α β

β

λ
λ λ α β α β α α τ α α

λ
β β τ β β

= − + −

− + −

 

 

We  calculate 
L

α

∂

∂
 and  

L

β

∂

∂
 we obtain 

2
( ) 0

x y x x

L
K K K Kαβ λ α τ α

α

∂
= − + =

∂
                                                          

(24) 

2
( ) 0y x y y

L
K K K Kβα λ β τ β

β

∂
= − + =

∂
                                                         

(25) 

 

We multiply (24) by  Tα  and   (25) by Tβ  and subtracting 

both equations, we obtain:   

 
2

2

( )

( ) 0

T T

x y x x

T T

y x y y

K K K K

K K K K

α

β

α β λ α α τ α
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Then 

 
2 2( ) ( ) 0T T T T

y y x x
K K K Kβ αλ β β τ β β λ α α τ α α+ − + =  

 

Then β αλ λ= , let  β αλ λ λ= =
 

 

We consider 
x

K  and  
y

K  non singular, then equation (25) 

gives: 
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1
( )

y x
K I Kτ α

β
λ

−+
=                                                                                     

(26) 

 

The equations (24) and (26) give  
1 2

( ) ( )
x y y x x x

K K K I K K K Iτ α λ τ α−+ = +  

 

Then   

 
1 2

( ) ( )
y y x x

K K I K K Iτ α λ τ α−+ = +  

 

we finally obtain the eigenvector problem 

 
1 1 2

( ) ( )
x y y x

K I K K I Kτ τ α λ α− −+ + =                                                          

(27) 

 

we  obtain   an  eigenvector problem  of   the  form 

3 3A x xλ= , with 

 
1 1

3 ( ) ( )
x y y x

A K I K K I Kτ τ− −= + +                                                              

(28) 

 

 Unfortunately, the matrix 
3A  in (28) is not symmetric and 

this may yields imaginary eigenvalues. Besides, matrix 

inversion in the case of large T

y y y
K R R=  training sets may 

lead to computational problems. 

III.  FIRST   LEVEL  HEADING KCCA REGULARISATION WITH 

PARTIAL GRAM CHMIDT ORTHOGONALISATION 

 
To overcome the problem we apply Partial Gram Shmidt 

Orthogonalisation (PGSO) [3] or equivalently incomplete 

Cholesky decomposition to reduce the dimensionality of the 

kernel matrices.   

We will decompose the kernel matrices  
x

K  and  
y

K via  the 

complete Cholesky decomposition as:  

 

 
T

x x x
K R R=  

T

y y y
K R R=  

 

where 
xR  and

y
R   is a lower triangular matrices,  gives 

 

the relation  (24) et  (25)  can  be written as  

 

( ) 0T T T T T

x x y y x x x x x x
R R R R R R R R R Rβ λ τ α− + =                                       

(29) 

 

( ) 0
T T T T T

y y x x y y y y y y
R R R R R R R R R Rα λ τ β− + =                                   

(30) 

Multiplying (29) with T

x
R  and (30) with T

y
R , we obtain  

( ) 0T T T T T T T

x x x y y x x x x x x x
R R R R R R R R R R R Rβ λ τ α− + =                       

(31) 

( ) 0
T T T T T T T

y y y x x y y y y y y y
R R R R R R R R R R R Rα λ τ β− + =                         

(32)
 
 

 

we define   T

xx x xZ R R= , T

yy y y
Z R R= , T

xy x y
Z R R= , 

T

yx y x
Z R R= , T

xRα α=� , 
T

y
Rβ β=�  

 

the relation (31)  and  (32)  can  be written  as  

 

( ) 0
xx xy xx xx

Z Z Z Z Iβ λ τ α− + =� �                                                                 

(33) 

 

( ) 0
yy yx yy yy

Z Z Z Z Iα λ τ β− + =��                                                                 

(34) 

 

From   equation  (34) we write 

 
1 1

( )
yy yy yy yx

Z I Z Z Zτ α
β

λ

− −+
=

�
�  

 

Then   

 
1

( )
yy yx

Z I Zτ α
β

λ

−+
=

�
�                                                                                    

(35) 

 

Using the relation   (33)  and   (35),  we  obtain 

 
1 2

( ) ( )
xx xy yy yx xx xx

Z Z Z I Z Z Z Iτ α λ τ α−+ = +� �                                              

(36) 

 

Then  

 
1 2

( ) ( )
xy yy yx xx

Z Z I Z Z Iτ α λ τ α−+ = +� �                                                       

(37) 

 

Let  B  be  the  lower triangular  matrix of  the complete  

Cholesky  decomposition  of   xxZ Iτ+  such  that 

T

xx
Z I B Bτ+ =  and   let  ˆ T

Bα α= � , the equation  (27)  

then becomes   

 
1 1 1 2ˆ ˆ( ) ( )

T

xy yy yx
B Z Z I Z Bτ α λ α− − −+ =                                                       

(38) 

It is a symmetric eigenvector problem of the 

form
4 4A x xλ= with 

1 1 1

4 ( ) ( )
T

xy yy yx
A B Z Z I Z Bτ− − −= + .The eigenvector problem 

(38) is equivalent to the eigenvector problem (27), 

with ˆ T T

x
B Rα α= .  
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From the equations  (7),  (8)  we have ( )T

x x x
u f X= Φ   and  

( )
T

y y y
v f Y= Φ , the problem is to find matrix A, such that 

2

min ( ) ( )
T T

y y x x
A

f Y A f XΦ − Φ                                                                       

(39) 

 

Using relations (12) and  (13) we can write  

 

( )
T T

x x xf X KαΦ =                                                                                        

(40) 

 

( )
T T

y y y
f Y KβΦ =

                                                                                       
(41) 

 

   The problem can now be written as follows: 

 
2

min
T T

y x
A

K A Kβ α−                                                                                 

(42) 

 

The matrix T

y
K Y Y= , we obtain 

 

( )
1

T T T

x
Y Y A Kβ β β α

−

=
                                                                        

(43)  

 

The estimate output can be found from the equation (43). 

IV. SIMULATIONS 

 

We proceed to the identification of a Wiener Hammerstein 

using KCCA and KPLS methods, and we compare the 

performances of the RKHS models obtained with the both 

methods. The vector x of  RKHS  model  have the structure: 

 

( ) ( )( )1 , 2 , ( 1)
T

i
x u i u i y i= − − −                                                                 

(44) 

The system to be modelled is sketched by Figure  1. It consists 

on an electronic nonlinear system with a Wiener Hammerstein 

structure that was built by Gerd Vendesteen [13]. This process 

was adopted as a nonlinear system benchmark in SYSID 2009. 

 

 

 

Fig. 1. Wiener Hammerstein benchmark. 

 

 

To build the RKHS model we use the ERBF kernel (Extended 

Radial Basis Function) defined as: 

 

( )
'

, '
x x

k x x e
γ− −

=           With 50γ =                                                              

(45) 

 

In simulation of both methods KCCA and KPLS, we have used 

300 observations in the identification phase and 1600 other 

observations in the validation one. 

 

In figure 2  we  plot  the RKHS model  outputs  using KCCA 

methods and the output process in the validation phase. As 

previously we notice the concordance between the outputs. 

The Means Square Error (MSE) % is equal to   0,1 %. 
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Fig. 2. Validation phase using KCCA. 

 

In figure 3 we plot the RKHS model outputs using KPLS 

methods and the output process in the validation phase. As 

previously we notice the concordance between the outputs. 

The Means Square Error (MSE) % is equal to  0, 01 %. 
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Fig. 3. Validation phase using KPLS. 

In Table I we present the performances of both kernel 

methods. The first performance is the generalization ability 

evaluated by the Means Square Error (MSE) % in the 

identification phase and the validation one and the second 

concerns the compute time.  

y(t) 
u(t) G1(s) 

 

G2(s) ƒ[.] 
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Table 1.  Performances of kernel methods KCCA and KPLS 

 KCCA KPLS 

MSE learning % 0,003 0,0034 

MSE validation  % 0,1 0,0161 

Compute time (seconds) 1,8218 0,8281 

 

VI. CONCLUSION 

In this paper we have presented the KCCA method, it is a 

kernel method used to extract common features between highly 

non linear mapped data. We have used KCCA in the 

regression case to identify benchmark system. A comparative 

study with KPLS method has been achieved and shows the 

effectiveness of the method. 
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