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Abstract— This paper presents an approach of stabilization and 
control of time invariant linear system of an arbitrary order that 
include several time delays. In this work, the stability is ensured 
by PI, PD and PID controller. The method is analytical and 
needs the knowledge of transfer function parameters of the plant. 

It permits to find stability region by the determination of pK , 

iK and dK gains.  
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I. INTRODUCTION 

Time delay systems are often encountered in various 
engineering systems such as electrical and communication 
network, chemical process, turbojet engine, nuclear reactor, 
hydraulic system; it is frequently a source of instability, 
oscillation and poor performance in many dynamic systems. 
Furthermore, delay makes system analysis and control design 
much more complex [7], [17]. 

The PID controller is widely applied in control engineering 
applications for many industries. The choice of the PID 
controller parameters leads to obtain a closed loop stable 
system.  

Many researches have been applied the PID controller to 
different classes of dynamical systems [1]. Among these the 
particular class of time delay system has been investigated by 
means of several methods [8], [14], [15], [16], of which the 
Nyquist criterion, a generalization of the Hermite-Biehler 
Theorem, and the root location method. The main objective to 
design the PID controller is to ensure closed loop stability. 
Indeed, by using the Hermit-Biehler theorem applicable to the 
quasi-polynomials [9], [10], [11], a characterization of all 
values of the PI/PID stabilization gains for stable first order 
delay system is addressed.  However, these results are not 
applicable to the second order delay system. In [2], [3], the 
stabilizing problem of PI/PID controller for second order 
delay system is analysed and then used  to obtain all PI and 
PID gains that stabilize an interval first and second order 
delay system [4], [5].   

The design methods of PID controllers can be analytically 
determined in the case of knowledge of the transfer function 

parameters or numerically in the case of the knowledge of the 
delay system frequency response [6], [12], [13]. 

Since these methods have been developed mainly for the 
case of a single system delay, the contribution of our work 
concerns the stabilization of system with several time delays 
by using the PI, PD and PID controllers. The proposed 
approach is based on the extension of the analytical method 
developed in [6], [12], [13]. 

 
The considered feedback structure is depicted in Fig. 1 and 

the related transfer functions of the process ( )G s  and the 

controller ( )C s are given by: 

1

( ) ( ) i

N
s

i
i

G s G s eτ−

=

=∑  

( ) i
p d

K
C s K K s

s
= + +  

where N is the number of delays, 
i

τ  is the time delay and 

iG is a continuous linear system of any order, pK , iK  and 

dK  are the PID parameters. 

 
 
 
                                 

    
Figure 1:  The closed-loop system with controller 

 
The region of stability is found in the (pK , iK ) plane for 

PI controller, ( pK , dK ) plane for PD controller and 

( pK , iK , dK ) space for PID controller. This approach has 

been applied to continuous time linear systems of any order, 
with multiple time delays. 

 
The paper is organized as follows: In part II stabilization 

approach with PI controller is presented, similarly 

Controller Process 

C(s) G(s) + -  
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stabilization approach with PD controller is developed in 
section III. The case of PID controller is discussed in section 
IV. Finally, simulation results are given in section V. 

 

II. STABILIZATION SEVERAL TIME DELAYS SYSTEM USING PI 
CONTROLLER 

The considered plant is a continuous linear time-invariant 
system of any order that contains several time delays. It is 
described by its transfer function given by (1). 

 
In this section, the stabilization of the plant is assured by 

the PI controller designed as follows: 
 

( ) p ii
p

K s KK
C s K

s s

+
= + =

 
The proposed method leads to an efficient calculation of the 

proportional and integral gains pK  and iK  achieving 

stability. 
Let’s note ∆(s) the closed loop characteristic polynomial of 

the process shown in Fig. 1. 
In frequency domain, the characteristic polynomial is 

defined by: 
 

( ) 1 ( ) ( ) ( ) ( )j C j G j R jIω ω ω ω ω∆ ∆∆ = + = +  

 
the transfer function can be then written as: 
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where R∆ and I ∆  are the real and the imaginary parts of the 

characteristic polynomial, respectively. iR and iI  are the real 

and  the imaginary parts  of the transfer function ( )iG jω . 

The stability region is determined when ( )jω∆ is equal to 

zero: 
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According to equations (4) and (5), the following results 
are obtained: 
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Applying the real part and the imaginary part equal to zero 
leads to the following equations:  
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Similar,  
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The pK  and iK  parameters are determined by solving the 

following system to ensure closed loop stability 
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The obtained expressions of  pK  and iK are: 
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III.  STABILIZATION SEVERAL TIME DELAYS SYSTEM USING PD 

CONTROLLER 

In this section, the same plant (1) is stabilized with a PD 
controller as shown in Fig. 1. 

The transfer function of this controller is given by: 
 

( ) p dC s K K s= +
 

To obtain stability region in terms of proportional and 

derivative gains pK  and dK , the previous approach  is 

applied in the case of several time delay system with PD 
controller 

The closed loop characteristic polynomial ( )s∆ is written 

as: 
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by setting ( )jω∆ equal to zero: 

( ) ( ) ( ) 0j R jIω ω ω∆ ∆∆ = + =  

where: 
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the real part and the imaginary part equal to zero lead to the 
following equations:  
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Equivalently the system can be written as: 
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Solving (18), the results are as follows:  
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where
2

( )G jω is given by (12). 

 

IV.  STABILIZATION SEVERAL TIME DELAYS SYSTEM USING PID 

CONTROLLER 

Considering the same system (1) shown in Fig. 1, we 
attempt to achieve stabilization with PID controller presented 
by: 
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The same approach is applied in the case of several time 

delay system with PID controller.  
The closed loop characteristic polynomial ∆(s) is written as: 
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The stabilization region is determined by setting ( )jω∆ to 

zero: 
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where: 
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Real part and the imaginary part are setting to zero to 
obtain equation system of three unknown variable 
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In the first step, the dK parameter is fixed. The ( pK , iK ) 

plane is then determined by solving the following system: 
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leading to the pK and iK expressions:  
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where
2

( )G jω is given by (12). 

In the second step, theiK  parameter is now fixed. The 

( pK , dK ) plane is then determined by solving the following 

system: 
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pK  is given by the same equations (26) and: 
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V. SIMULATION RESULTS 

The proposed approach is illustrated on a linear system 
defined by two parallel subsystems, having two different time 
delays. The first subsystem is of order one and the second is 
of order three given by: 
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We suppose that:                 
1
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noting: 
 

[ ] [ ]1 1 1 2 2 2( ) ( ) cos( ) sin( ) ( ) cos( ) sin( )G j G j j G j jω ω τ ω τ ω ω τ ω τ ω= − + −
                                                                                                    
Developing (31), the results are as follows: 
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1R , 1I  are the real and imaginary parts of1G , respectively 

2R , 2I are the real and imaginary parts of 2G , respectively 

 

A. Stabilization with PI controller  

pK  and iK parameters are given by: 
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Substituting (32) and (33) into (34) leads to determine 

stability region in ( pK , iK ) plane shown in the following 

figure: 
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            Figure 2: Stability region with PI Controller 

In ( pK , iK ) plane, the curve described by values of pK  

and iK given by equations (34) bounds a zone that represents 

stability region, which is displayed as shaded in Fig. 2.  
Closed loop responses of this system are represented by the 

following figures: 
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       Figure 3: Closed loop step responses with PI Controller (Kp= 0.05, 
Ki=0.1: red response; Kp= 0.1, Ki=0.077: green response): stable case 
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Figure 4: Closed loop step response with PI Controller (Kp= 0.2, Ki=0.04): 

unstable case 
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The parameters of the PI controller are altered according to 
their belonging to stability region.  

Starting with pK = 0.05, iK = 0.1, the closed loop 

response system is described by the red response shown in  
Fig. 3.  

Corresponding response for these gains displays that the 
system is stable in the shaded zone. 

For pK = 0.1, iK = 0.077, these proportional and integral 

gains define a point belonging to the border of the shaded 
zone. Corresponding closed loop behavior system is shown by 
the green response in Fig. 3. In the transient regime, the 
system presents oscillations and it is stabilized in the steady 
state which represents the limit of the stability. 

Finally, pK and iK parameters are chosen so that they 

define a point out of the region of stability. ForpK = 0.2, 

iK = 0.04, the closed loop response system is presented in  

Fig. 4. The result shows that in the not shaded region, the 
system becomes unstable. 
 

B. Stabilization with PD controller     

The same approach is applied in the case of stabilization 
with PD controller. 

The pK  and dK expressions are given by: 

 

1 2
2 2

1 2 1 2

1 2
2 2

1 2 1 2

( ) ( )
( )

( ( ) ( )) ( ( ) ( ))

( ) ( )
( )

(( ( ) ( )) ( ( ) ( )) )

p

d

R R
K

R R I I

I I
K

R R I I

ω ωω
ω ω ω ω

ω ωω
ω ω ω ω ω

+ = − + + +
 + =
 + + +

 

Substituting (32) and (33) into (35) leads to obtain pK and 

dK  values. 

As seen previously, the stability region which is shaded in 

Fig. 5 is bounded by the curve defined in (pK , dK ) plane.  

Closed loop responses of this system for different pK and 

dK  values are represented by the figures Fig. 6, Fig. 7. 
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Figure 5: Stability region with PD Controller 
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Figure 6: Closed loop step response with PD Controller (Kp= 0.2, Kd=0.5: 
red response; Kp= 0.41, Kd=0.5: green response): stable case 
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Figure 7: Closed loop response step with PD Controller: (Kp= 0.5, Kd=0. 4): 

unstable case 

 
For pK = 0.2, dK =0.5, the closed loop system is stable. 

In the case of pK = 0.41, dK =0.5, the system is on the 

limit of the stability in the closed loop. 

Finally, for pK = 0.5, dK =0.4, the system is unstable in 

the closed loop. 
The obtained results show the effectiveness of the proposed 

approach. 
 

C. Stabilization with PID controller  

Considering the previous approach, two cases are presented. 
In the first step, the stability region can be determined in 

the ( pK , iK ) plane with fixed dK . The results are as follows 

(35) 
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In the second step, the stability region can be determined in 

the ( pK , dK ) plane with fixed iK . The results obtained are 

as follow: 
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Substituting (32) and (33) into (36) and (37) leads to 

obtain pK , iK and dK  values. 

For each value of iK , a stability region is defined in the 

( pK , dK ) plane. A three dimensional curve is then obtained 

by varying iK  as shown in Fig. 8. 
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Figure 8: Stability region with PID Controller 

The figures Fig. 9, Fig. 10 and Fig. 11 show the closed loop 
responses of the system for different chosen PID parameters. 
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Figure 9: Closed loop step response with PID Controller (Kp= 1, Ki=2.085, 

Kd=4.2): stable case 
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Figure 10: Closed loop step response with PID Controller (Kp= 0.6, Ki=2.085, 
Kd=4.2): stable case 
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Figure 11: Closed loop step response with PID Controller (Kp= 0.5, Ki=0.05, 

Kd=0.1): unstable case 

For pK =1, iK = 2.085 and dK =4.2, the closed loop 

system is stable. 

In the case of pK =0.6, iK = 2.085 and dK =4.2, the 

system is on the limit of the stability in the closed loop. 

Finally, for pK =0.5, iK = 0.05 and dK =0.1, the system is 

unstable in the closed loop. 
 

VI.   CONCLUSIONS 

The main contribution of this paper concerns the 
stabilization of continuous linear time invariant system of any 
order and which presents several delays using a PID controller. 
The proposed approach is based on mathematical calculation 
of the proportional, derivative and integral gains by extracting 
the real and imaginary parts of the system transfer function. 
This not complicated method leads to the determination of the 

stability regions in ( pK , iK ) plane for PI controller, 

( pK , dK ) plane for PD controller and ( pK , iK , dK  ) space 

for PID controller.  

(36) 

(37) 
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The simulation results point out the correspondence 
between the time domain responses and the obtained stability 
regions. This proposed method is then efficient to stabilize 
system with any order and several time delays. 
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