

On Fast Algorithms for Matrix System Solving
Ryma Mahfoudhi

1
 and Zaher Mahjoub

2

Faculty of Sciences of Tunis, University of Tunis El Manar,

University Campus - 2092 Manar II, Tunis, Tunisia
1
rimahayet@yahoo.fr

2
zaher.mahjoub@fst.rnu.tn

Abstract— We design and analyse in this paper two

recursive blocked algorithms, based on the ‘Divide and

Conquer’ paradigm, for matrix system solving (MSS) i.e.

AX=B where A, X and B are dense square matrices of size

n, A and B being known whereas X is unknown. The

theoretical analysis leads to algorithms of O(������)

complexity. An experimental study achieved on both the

two algorithms and the level 3 BLAS matrix system

solving based on LU factorization kernel permits to

evaluate the practical interest of our contribution.

Keywords— BLAS, Decomposition, Dense/Triangular

matrix system Divide & conquer, LU factorization,

Recursive algorithm.

I. INTRODUCTION & RECALL

Linear system of equations resolution is a basic kernel used

in many scientific applications. Given its cubic complexity in

terms of the matrix size, say n, several works addressed the

design of practical efficient algorithms for solving this

problem. Apart the standard Gaussian elimination (GE)

algorithm, another algorithm, namely LU factorization, (LUF)

of same complexity, is frequently used. It consists, in a first

phase, in factorizing the input matrix, say A, into a product of

a lower (L) triangular matrix and an upper (U) triangular one

i.e. A=LU. Afterwards, if Ax=b is the input system, we have

to successively solve, in a second phase, the two triangular

systems Ly=b and Ux=y. We recall that phase 1 costs

2n
2
/3+O(n

2
) and phase 2 costs 2n

2
+O(n), thus an overall

2n
2
/3+O(n

2
) complexity [1]. Now, consider the matrix system

(MS) : AX=B where A, X and B are three dense square

matrices of size n, A and B being known whereas X is

unknown. Clearly, a straightforward approach for solving

such a matrix system (MS) consists in solving n classical

systems of size n. Obviously, this standard algorithm (SA) has

a complexity SA(n)=8n
3
/3+ O(n

2
) since we need only one

factorization followed by solving n couples of triangular

systems.

Our objective here is to propose and alternative approach

of better complexity for solving AX=B based on the “Divide

and conquer” paradigm that outperforms the BLAS routines.

It has to be underlined that this study comes within the

framework of a generic approach for efficiently solving a

generic class of matrix problems already started in previous

papers of ours [2,3].

II. DIVIDE AND CONQUER PARADIGM

The ‘Divide and Conquer’ (D&C) paradigm is widely used

to design efficient algorithms for scientific and engineering

applications. Algorithms of this type, based on multi-

branched recursion, split the original problem into

subproblems of (in general) same size [4]. Once the sub-

solutions are found, they are combined in order to build the

solution of the original problem. When the subproblems are of

the same type as the original problem, the same recursive

process can be carried out until the subproblem size is

sufficiently small. This special type of D&C is referred to as

D&C recursion. The recursive nature of many D&C

algorithms makes it easy to express their time complexity as

recurrences [5].

Consider a D&C algorithm for solving a problem of size n.

A first decomposition leads to a subproblems of same size say

n/b. Combining and conquering is assumed to take an f(n)

time. The base-case corresponds to n=1 (or ne for an

elementary size) and is solved in constant time. Therefore, the

time complexity T(n) of such D&C algorithm can be

expressed as follows:

 T(n) = O(1) if n = 1 (or ne)

 = aT(n/b) + f (n) otherwise.

PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.2, pp. 136-139, 2013

Copyright - IPCO

PC
Typewriter
136

PC
Typewriter

The master theorem [5] leads, when f(n)=O(n
δ
) for some

constants a > 0, b > 1, and δ ≥ 0 to the following:

 T(n) =

()
()
() b a if

 b a if log

b a if

log δ

δδ

δδ

�

≺

a

b

bnO

nnO

nO

=

III. RECURSIVE MATRIX SYSTEM SOLVING

ALGORITHMS

A. Recursive Algorithm Using LU Factorization (RLU)

As previously mentioned, solving the MS: AX=B by LU

factorization requires one LU factorization (LUF) i.e. A=LU,

then solving two triangular matrix systems (TMSS) : LY=C

and UX=Y i.e. 2n classical triangular systems of size n. Our

aim is to optimize (through the D&C paradigm) both LUF and

TMSS kernels in order to obtain a fast algorithm for solving

the MS.

1) LU Factorization (LUF)

LU factorization (LUF) is an important numerical

algorithm for solving systems of linear equations encountered

in Science and Engineering and is characteristic of many

dense linear algebra computations. It refers to the factorization

of a square matrix into two factors, a lower triangular

matrix and an upper one.

To reduce the complexity of LUF, blocked algorithms

have been proposed since 1974 [6]. For a given matrix A of

size n, the L and U factors verifying A=LU may be computed

as follows:

Matrix decomposition:

Formula:

 (1) L1U1= A11 (3) L3U1 = A21

 (2) L1U2 = A12 (4) L3U2+ L4U4 = A22

We hence remark that the LUF of matrix A of size n requires :

• One LUF of size n/2 i.e. (1) : L1U1= A11 giving L1 and U1

• Solving 2 (lower) triangular matrix systems (TMSS) i.e. (2) :

 L1U2=A12 giving U2 and (3)
T

: U1
T
L3

T
=A21

T
 giving L3

• One matrix multiplication (MM) i.e. L3U2

• One LUF of size n/2 i.e. (4) : L4U4 = A22 -L3U2 giving L4 and

U4.

Therefore, the complexity recurrence formula is as follows :

LUF(n) = 2LUF(n/2) + 2TMSS(n/2) + 1MM (n/2) + O(n
2
)

Remark that O(n
2
) is required by matrix addition.

Algorithm
Begin
 If (n=1) Then L=1;U=A

 Else /* split matrices into four blocks of sizes n/2

 (L1, [U1, U2]) = LUF([A11 A12])

t
U1

t
L3= A21

 H = A22 – L3U2

 (L4, U4) = LUF(H)

 Endif

End

2) Triangular Matrix System Solving (TMSS)

We now discuss the design of solvers for triangular matrix

system AX=B with matrix right hand side AX=B (or equiva-

lently left hand side XA=B) where A (a triangular matrix) and

B (a dense matrix) are known. This kernel is commonly

named trsm in the BLAS convention. In the following, we

will consider, without loss of generality, the resolution of a

lower triangular matrix system with matrix right hand side

(AX=B). Our approach is based on a block recursive

algorithm in order to reduce the computation to matrix

multiplication (MM) [2,3].

To optimize this algorithm, we will use a fast algorithm for

dense MM i.e. Strassen algorithm.

Matrix decomposition:

Formula:

 (1) A11X11 = B11 (3) A21X11 + A22X21= B21

 (2) A11X12 = B12 (4) A21X12 + A22X22= B22

Hence, solving a TMSS of size n requires 4 TMSS of size

n/2 and 2 MM of size n/2. Thus, the resulting complexity

recurrence formula is :

TMSS(n) = 4TMSS(n/2) + 2MM(n/2) + O(n
2
).

Algorithm
Begin

 If (n=1) Then

 X = B/A

 Else /* split matrices into four blocks of sizes n/2

X11 = TMSS(A11,B11)

X12 = TMSS(A11,B12)

X21 = TMSS(A22, B21-MM(A21,X11))

X22 = TMSS(A22, B22-MM(A21,X12))

 Endif

End

 A X B

X11 X12

X21 X22

B11 B12

B21 B22

A11

A21 A22

* =

 A L U

A11 A12

A21 A22

L1

L3 L4

= *

U1 U2

U4

PC
Typewriter
137

3) Complexity evaluation

Since RLU requires one LUF and two TMSSs, we get:

RLU(n)= LUF(n)+2TMSS(n) + O(n
2
).

Besides, we have:

TMSS(n)= 4TMSS(n/2) + 2MM(n/2) + O(n
2
).

Using a fast Algorithm for dense MM i.e. Strassen

algorithm whose complexity is O�n
��
�� [7], we obtain :

TMSS(n) = 4TMSS(n/2) + O�n
��
�� = O�n
��
��
Consequently,

LUF(n) = 2LUF(n/2) + 2TMSS(n/2) + 1MM (n/2) + O(n
2
)

= 2LUF(n/2) + O�n
��
�� = O�n
��
�� =>

Thus RLU(n)= LUF(n)+2 TMSS(n)= O�n
��
��

B. Recursive Algorithm using Blocked decomposition (RB)

We introduce now another algorithm for solving the MS:

AX=B. The main idea consists in decomposing both matrices

A, X and B into 4 submatrices of size n/2 as follows.

Matrix decomposition:

Formula:

(1) ������ � ������ � ��� � ��� � ���
������ � �������

(2) ������ � ������ � ��� � ��� � ���
������ � �������

(3) ������ � ������ � ���

� ������
������ � ������� � ������ � ���

(4) ������ � ������ � ���

� ������
������ � ������� � ������ � ���

To ensure that the complexity of RB algorithm does not

exceed that of the standard algorithm (SA) i.e. 8n
3
/3 +O(n

2
),

we must choose the most suitable kernels.

From (3), we deduce:

���� � ������
��������� � ��� � ������

�����

Let � � ������
�� � ��� � ���� � ���

� � � ���
��

 � � ���� , � � ����

We get :

(3)� ���� � ����� � ��� � �

 (4)� ���� � ����� � ��� � ����

 (1)� ������ � ��� � ������

(2)� ������ � ��� � ������

Remark that we have to solve 5 dense matrix system i.e.

���
� � � ���

�� and two couples of dense matrix systems

i.e. ((3),(4)) and ((1),(2)) where each couple depends on the

same matrix. Remark in addition that the second couple

depends on the transposed matrix of the first system. Thus

we’ll use RLU algorithm for each in order to save

computations by factorizing each matrix only once.

Hence, to solve the (dense) matrix system AX=B of size n, we

need:

• (a) One dense matrix system solving of size n/2 i.e.

���
� � � ���

�� giving D (by RLU algorithm)

• (b) Two matrix multiplications (MM) of size n/2 i.e.

� � ���� and �� � ���

• (c) One dense matrix system solving of size n/2 i.e. (3)

���� � ����� � ��� � � giving ���(by RLU algorithm)

• (e) Solving 2 triangular matrix systems (TMSS) of size n/2

i.e. (4) ���� � ����� � ��� � ���� giving X22

• (f) Solving 2 triangular matrix systems (TMSS) of size n/2

i.e. (1) ������ � ��� � ������ giving X11

• (g) Solving 2 triangular matrix systems (TMSS) of size n/2

i.e. (2) ������ � ��� � ������ giving X12

Remark that for (f) and (g) we use the LUF already done for

solving (a) by RLU algorithm.

So : RB(n) = 2RB(n/2)+ 6TMSS(n/2)+5MM(n/2) + O(n
2
)

 = 2RB(n/2) + O�n
��
�� = O�n
��
��

Clearly, if any MM algorithm of O�n
��
�� complexity is

used, then the algorithms previously presented both have the

same O�n
��
�� complexity instead of O(n
3
) for the

corresponding standard algorithms.

IV. EXPERIMENTAL STUDY

This section presents experiments of our implementation

of the different versions of dense matrix system solving

described above. We have to mention the importance of the

determination, for each algorithm used, of the optimal number

of recursive levels (nrl) i.e. the one leading to the best

execution time. Indeed, the optimal nrl depends on both the

matrix size and the target machine architecture and has to be

determined experimentally. It is well known that the execution

time decreases for increasing nrl until a precise threshold, then

increases [8].

Our experiments used BLAS library [9] in the last

recursion level and were achieved on two target machines i.e.

TM1 (clock 3 GHz, 4Go RAM, 3Mo cache memory) and

TM2 (clock 2.5 GHz, 2Go RAM, 3Mo cache memory). We

used the g++ compiler under Ubuntu 11.01. All execution

times are the means of several runs.

We discuss in this section the variations of the execution

time in terms of the matrix size n. For this purpose, n was

chosen in the range [512 32768] and the input matrices

involving real floating point elements were randomly

generated. For sake of simplicity and without loss of

generality, we chosed n as a power of 2. WE recall that when

this is not the case, there are techniques known in the

literature proposing efficient strategies (e.g. padding, dynamic

peeling) leading to the power-of-2 case without increasing the

complexity order [10].

* =

 A11 A12

 A21 A22

 X11 X12

 X21 X22

 B11 B12

 B21 B22

PC
Typewriter
138

We named our routines RLU and RB, and the BLAS

routine where the routine dtrsm was used in combination with

the factorization routine dgetrf to solve dense systems. We

precise that we denote by ‘Speed-up alg1/alg2’ the ratio

execution time of alg1 on execution time of alg2.

TABLE I

EXECUTION TIMES - DENSE MATRIX SYSTEM SOLVING (SECONDS) – TM1

n BLAS RLU RB
Speed-up

BLAS/RLU

Speed-up

BLAS/RB

Speed-up

RLU/RB

512 0.14 0.20 0.14 0.71 1.00 1.43

1024 1.16 1.19 1.01 0.97 1.15 1.18

2048 9.31 9.04 8.03 1.03 1.16 1.13

4096 75.82 71.53 64.80 1.06 1.17 1.10

8192 630.88 595.17 534.65 1.06 1.18 1.11

16384 5406.73 5006.24 4360.27 1.08 1.24 1.15

32768 47633.38 42912.95 37506.60 1.11 1.27 1.14

TABLE II

EXECUTION TIMES – DENSE MATRIX SYSTEM SOLVING (SECONDS) – TM2

n BLAS RLU RB
Speed-up

BLAS/RLU

Speed-up

BLAS/RB

Speed-up

RLU/RB

512 0.16 0.23 0.17 0.69 0.94 1.35

1024 1.45 1.59 1.48 0.91 0.98 1.07

2048 11.86 11.74 10.59 1.01 1.12 1.11

4096 96.03 88.92 84.24 1.08 1.14 1.06

8192 800.12 727.38 683.86 1.10 1.17 1.06

16384 6488.08 5792.93 5406.73 1.12 1.20
1.07

32768 67261.48 59523.43 54684.13 1.13 1.23
1.09

From the above results, we can remark the following:

• With TM1 which has both a higher clock frequency

and a RAM capacity than TM2 (i.e. 1.2 times and 2 times

more), the execution times are always lower i.e. up to 1.5

times better.

• For both TM1 and TM2 and for any n, RB is always

faster than RLU. The corresponding speed-up RLU/RB seems

to stabilize for large sizes and reaches better amounts with

TM1 than with TM2.

• For TM1 and TM2, both RLU and RB are better than

BLAS from n=2048 and on. The corresponding speed-ups

increase with n. Indeed, for n=32768, RLU is 11% better than

BLAS with TM1 and 13% better with TM2. As to RB and for

the same n, it is 27% better than BLAS with TM1 and 23%

better with TM2.

We have to add that the recursion is terminated when the

size of the size of remaining subproblems to be solved is

smaller than the machine block size, which is the only

architecture-dependent parameter in our algorithms. We

precise that for TM1, the block size is 512 whereas for TM2,

it is 256.

V. CONCLUSION AND FUTURE WORK

The two fast recursive algorithms for matrix system

solving we designed has been proven enough satisfactory in

practice and could outperform some BLAS routines. These

performances are tightly related to the target machine and the

optimal number of recursion levels. Indeed, this occurs at a

threshold reached when the remaining subproblems to be

solved are smaller than the memory machine block size.

Pursuing recursion until a lower size would in general cause

too much overhead and a drop in the overall performance. In

this paper we targeted and reached the goal of outperforming

the efficiency of the well-known BLAS library for dense

matrix system solving. It has to be noticed that our (recursive)

algorithms essentially benefit from both (recursive) Strassen

matrix multiplication algorithm, recursive solvers for

triangular systems and the use of BLAS routines in the last

recursion level. This performance was achieved, particularly

thanks to (i) efficient reduction to matrix multiplication where

we optimized the number of recursive decomposition levels

and (ii) reusing numerical computing libraries as much as

possible.

The results we obtained lead us to precise some attracting

perspectives we intend to study in the future. We may

particularly cite the following points.

- Achieve an experimental study on large scale matrix systems

in order to better evaluate the practical behaviours of our

algorithms.

- Study the numerical stability of the designed algorithms

since recursive matrix algorithms are known to be (in general)

of lower stability than iterative ones [11,12].

- Generalize our approach to other linear algebra kernels such

as rectangular matrix system solving.

REFERENCES

[1] P. Lascaux and R. Théodor, “Analyse numérique matricielle appliquée

à l’art de l’ingénieur, Tome 1, ” Dunod, Paris, 2000.

[2] R.Mahfoudhi, and Z. Mahjoub, “A fast recursive blocked algorithm for

dense matrix inversion, ” Proceedings of the 12th International

Conference on Computational and Mathematical Methods in Science

and Engineering, CMMSE 2012, La Manga, Spain, 2012.

[3] R. Mahfoudhi, “A fast triangular matrix inversion,” Proceedings of the

2012 International Conference on Applied and Engineering

Mathematics, ICAEM 2012, London, 2012.

[4] R. Mahfoudhi, Z. Mahjoub, and W. Nasri, “Une nouvelle méthode de

parallélisation optimale pour l'inversion de matrice triangulaire,”

Proceedings Renpar’20 , Saint Malo, France, 2011.

[5] A. Quarteroni, R. Sacco and F. Saleri, “Méthodes numériques.

Algorithmes, analyse et applications,” Springer, Milano, 2007.

[6] A. V. Aho, J. E. Hopcroft, and J.D. Ullman,” The design and analysis

of computer algorithms,” Addison-Wesley, Reading, Mass, 1974.

[7] V. Strassen, “Gaussian elimination is not optimal”, Numerische

Mathematik, 1969, 13, pp. 354-356.

[8] S. Huss-Lederman, E.M. Jacobson, J.R. Johnson, A. Tsao and

T.Turnbull, “Strassen’s algorithm for matrix multiplication: Modeling,

analysis, and implementation,” Technical Report, Center for

Computing Sciences, Bowie, Maryland, 1996.

[9] (2013) The BLAS website. [Online]. Available: www.netlib.org/blas/

[10] M. Thottethodi, S. Chatterjee and A. R. Lebeck, “Tuning Strassen's

matrix multiplication for memory efficiency,” Supercomputing '98

Proceedings of the 1998 ACM/IEEE Conference on Supercomputing,

Orlando, Florida, 2012.

[11] J. Demmel, O. Holtz and R. Kleinberg, “Fast linear algebra is stable,”

Numerische Mathematik., 2007, 108(1), pp. 59-91.

[12] J. Demmel, O. Holtz and R. Kleinberg, “Fast matrix multiplication is

stable,” Numerische Mathematik., 2007, 106(2), pp. 199-224.

PC
Typewriter
139

