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Abstract—    We design and analyse in this paper two 

recursive blocked algorithms, based on the ‘Divide and 

Conquer’ paradigm,  for matrix system solving (MSS) i.e. 

AX=B where A, X and B are dense square matrices of size 

n, A and B being known whereas X is unknown. The 

theoretical analysis leads to algorithms of O(������) 

complexity. An experimental study achieved on both the 

two algorithms and the level 3 BLAS matrix system 

solving based on LU factorization kernel permits to 

evaluate the practical interest of our contribution.  

Keywords— BLAS, Decomposition, Dense/Triangular 

matrix system Divide & conquer, LU factorization, 

Recursive algorithm. 

I. INTRODUCTION & RECALL 

Linear system of equations resolution is a basic kernel used 

in many scientific applications. Given its cubic complexity in 

terms of the matrix size, say n, several works addressed the 

design of practical efficient algorithms for solving this 

problem. Apart the standard Gaussian elimination (GE) 

algorithm, another algorithm, namely LU factorization, (LUF) 

of same complexity, is frequently used. It consists, in a first 

phase, in factorizing the input matrix, say A, into a product of 

a lower (L) triangular matrix and an upper (U) triangular one 

i.e. A=LU. Afterwards, if Ax=b is the input system, we have 

to successively solve, in a second phase, the two triangular 

systems Ly=b and Ux=y. We recall that phase 1 costs 

2n
2
/3+O(n

2
) and phase 2 costs 2n

2
+O(n), thus an overall 

2n
2
/3+O(n

2
) complexity [1]. Now, consider the matrix system 

(MS) : AX=B where  A, X and B are three dense square 

matrices of size n, A and B being known whereas X is 

unknown. Clearly, a straightforward approach for solving 

such a matrix system (MS) consists in solving n classical 

systems of size n. Obviously, this standard algorithm (SA) has 

a complexity SA(n)=8n
3
/3+ O(n

2
) since we need only one 

factorization followed by solving n couples of triangular 

systems.      

 

Our objective here is to propose and alternative approach 

of better complexity for solving AX=B based on the “Divide 

and conquer” paradigm that outperforms the BLAS routines.  

It has to be underlined that this study comes within the 

framework of a generic approach for efficiently solving a 

generic class of matrix problems already started in previous 

papers of ours [2,3].    

 

II. DIVIDE AND CONQUER PARADIGM 

 

The ‘Divide and Conquer’ (D&C) paradigm is widely used 

to design efficient algorithms for scientific and engineering 

applications. Algorithms of this type, based on multi-

branched recursion, split the original problem into 

subproblems of (in general) same size [4]. Once the sub-

solutions are found, they are combined in order to build the 

solution of the original problem. When the subproblems are of 

the same type as the original problem, the same recursive 

process can be carried out until the subproblem size is 

sufficiently small. This special type of D&C is referred to as 

D&C recursion. The recursive nature of many D&C 

algorithms makes it easy to express their time complexity as 

recurrences [5].  

 

Consider a D&C algorithm for solving a problem of size n. 

A first decomposition leads to a subproblems of same size say 

n/b. Combining and conquering is assumed to take an f(n) 

time. The base-case corresponds to n=1 (or ne for an 

elementary size) and is solved in constant time. Therefore, the 

time complexity T(n) of such D&C algorithm can be 

expressed as follows: 

    T(n)    = O(1)                     if     n = 1 (or ne)  

               = aT(n/b) + f (n)    otherwise. 
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The master theorem [5] leads, when f(n)=O(n
δ
) for some 

constants a > 0, b > 1, and δ ≥ 0 to the following: 

 

          T(n)  =          

( )
( )
( )  b a  if          

 b a  if    log

b a  if              

log δ

δδ

δδ

�

≺

a

b

bnO

nnO

nO

=  

          

III. RECURSIVE MATRIX SYSTEM SOLVING 

ALGORITHMS 

 

A. Recursive Algorithm Using LU Factorization (RLU) 

As previously mentioned, solving the MS: AX=B by LU 

factorization requires one LU factorization (LUF) i.e. A=LU, 

then solving two triangular matrix systems (TMSS) : LY=C 

and UX=Y i.e. 2n classical triangular systems of size n. Our 

aim is to optimize (through the D&C paradigm) both LUF and 

TMSS kernels in order to obtain a fast algorithm for solving 

the MS. 

 

1) LU Factorization (LUF)   

 

LU factorization (LUF) is an important numerical 

algorithm for solving systems of linear equations encountered 

in Science and Engineering and is characteristic of many 

dense linear algebra computations. It refers to the factorization 

of a square matrix into two factors, a lower triangular 

matrix and an upper one. 

 

To reduce the complexity of LUF, blocked algorithms 

have been proposed since 1974 [6]. For a given matrix A of 

size n, the L and U factors verifying A=LU may be computed 

as follows: 

 

Matrix decomposition:  

 
Formula: 

 (1) L1U1= A11                                     (3) L3U1 = A21 

 (2) L1U2 = A12                      (4) L3U2+ L4U4 = A22 

 

We hence remark that the LUF of matrix A of size n requires :  

• One LUF of size n/2 i.e. (1) : L1U1= A11 giving L1 and U1 

• Solving 2 (lower) triangular matrix systems  (TMSS) i.e. (2) : 

 L1U2=A12 giving U2  and (3)
T 

: U1
T
L3

T
=A21

T
 giving L3   

• One matrix multiplication (MM) i.e. L3U2  

• One LUF of size n/2 i.e. (4) : L4U4 = A22 -L3U2 giving L4 and  

U4.    

Therefore, the complexity recurrence formula is as follows :  

LUF(n) = 2LUF(n/2) + 2TMSS(n/2) + 1MM (n/2) + O(n
2
) 

Remark that O(n
2
) is required by matrix addition.          

 

Algorithm 
Begin 
    If (n=1) Then L=1;U=A 

    Else /* split matrices into four blocks of sizes n/2 

              (L1, [U1, U2]) = LUF([A11 A12])   

              
t
U1 

t
L3= A21   

              H = A22 – L3U2   

             (L4, U4) = LUF(H) 

    Endif 

End 

 

2) Triangular Matrix System Solving (TMSS) 

 

We now discuss the design of solvers for triangular matrix 

system AX=B with matrix right hand side  AX=B (or equiva-

lently left hand side XA=B) where A (a triangular matrix) and 

B (a dense matrix) are known. This kernel is commonly 

named trsm in the BLAS convention. In the following, we 

will consider, without loss of generality, the resolution of a 

lower triangular matrix system with matrix right hand side 

(AX=B). Our approach is based on a block recursive 

algorithm in order to reduce the computation to matrix 

multiplication (MM) [2,3]. 

To optimize this algorithm, we will use a fast algorithm for 

dense MM i.e. Strassen algorithm. 

 

Matrix decomposition:  

 

 
Formula: 
  

 (1) A11X11 = B11                                   (3)  A21X11 + A22X21= B21 

 (2) A11X12 = B12                       (4)  A21X12 + A22X22= B22 

 

Hence, solving a TMSS of size n requires 4 TMSS of size 

n/2 and 2 MM of size n/2. Thus, the resulting complexity 

recurrence formula is : 

TMSS(n) = 4TMSS(n/2) + 2MM(n/2) + O(n
2
). 

 

Algorithm 
Begin 

    If (n=1) Then 

       X = B/A 

    Else /* split matrices into four blocks of sizes n/2         

X11 = TMSS(A11,B11)  

X12 = TMSS(A11,B12) 

X21 = TMSS(A22, B21-MM(A21,X11)) 

X22 = TMSS(A22, B22-MM(A21,X12)) 

   Endif 

End 

      A                               X                                     B 

X11 X12 

X21 X22 

B11 B12 

B21 B22 

A11 

A21 A22 

* = 

        A                                  L                                U 

A11 A12 

A21 A22 

L1 

L3 L4 

= * 

U1 U2 

U4 
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3) Complexity evaluation  

 

Since RLU requires one LUF and two TMSSs, we get:  

RLU(n)= LUF(n)+2TMSS(n) + O(n
2
). 

Besides, we have:  

TMSS(n)= 4TMSS(n/2) + 2MM(n/2) + O(n
2
). 

Using a fast Algorithm for dense MM i.e. Strassen 

algorithm whose complexity is O�n
��
�� [7], we obtain :    

TMSS(n) = 4TMSS(n/2) + O�n
��
�� = O�n
��
�� 
Consequently,   

LUF(n) = 2LUF(n/2) + 2TMSS(n/2) + 1MM (n/2) + O(n
2
)          

= 2LUF(n/2) +  O�n
��
�� =  O�n
��
�� =>  

Thus RLU(n)= LUF(n)+2 TMSS(n)= O�n
��
�� 
 

B. Recursive Algorithm using Blocked decomposition (RB) 

  

We introduce now another algorithm for solving the MS: 

AX=B. The main idea consists in decomposing both matrices 

A, X and B into 4 submatrices of size n/2 as follows.  

 

Matrix decomposition:  

 
Formula: 

(1) ������ � ������ � ��� � ��� � ���
������ � ������� 

(2) ������ � ������ � ��� � ��� � ���
������ � ������� 

(3) ������ � ������ � ���                                                

� ������
������ � ������� � ������ � ��� 

(4) ������ � ������ � ���                       

� ������
������ � ������� � ������ � ��� 

 

To ensure that the complexity of RB algorithm does not 

exceed that of the standard algorithm (SA) i.e. 8n
3
/3 +O(n

2
), 

we must choose the most suitable kernels. 

 

From (3), we deduce:  

 

���� � ������
��������� � ��� � ������

�����   
 

Let � � ������
�� � ��� � ���� � ���

� � � ���
��  

           � � ����  ,  � � ���� 

 

We get :  

 

(3)� ���� � ����� � ��� � � 

 (4)� ���� � ����� � ��� � ���� 

 (1)�  ������ � ��� �  ������ 

(2)�  ������ � ��� �  ������ 

Remark that we have to solve 5 dense matrix system i.e. 

���
� � � ���

��  and two couples of dense matrix systems 

i.e. ((3),(4)) and ((1),(2)) where each couple depends on the 

same matrix. Remark in addition that the second couple 

depends on the transposed matrix of the first system.  Thus 

we’ll use RLU algorithm for each in order to save 

computations by factorizing each matrix only once.  

Hence, to solve the (dense) matrix system AX=B of size n, we 

need: 

• (a) One dense matrix system solving of size n/2 i.e. 

���
� � � ���

��  giving D (by RLU algorithm) 

• (b) Two matrix multiplications (MM) of size n/2  i.e. 

� � ����  and  �� � ��� 

•  (c) One dense matrix system solving of size n/2 i.e. (3)     

���� � ����� � ��� � � giving ���(by RLU algorithm) 

• (e) Solving 2 triangular matrix systems (TMSS) of size n/2 

i.e. (4) ���� � ����� � ��� � ���� giving X22 

• (f) Solving 2 triangular matrix systems (TMSS) of size n/2 

i.e. (1)  ������ � ��� �  ������  giving X11 

• (g) Solving 2 triangular matrix systems (TMSS) of size n/2 

i.e. (2)  ������ � ��� �  ������ giving X12 

Remark that for (f) and (g) we use the LUF already done for  

solving (a) by RLU algorithm. 

So  : RB(n) =  2RB(n/2)+ 6TMSS(n/2)+5MM(n/2) + O(n
2
) 

                    =  2RB(n/2) + O�n
��
�� = O�n
��
�� 
 

Clearly, if any MM algorithm of O�n
��
��  complexity is 

used, then the algorithms previously presented both have the 

same O�n
��
�� complexity instead of O(n
3
) for the 

corresponding standard algorithms.   

IV. EXPERIMENTAL STUDY 

 

This section presents experiments of our implementation 

of the different versions of dense matrix system solving 

described above. We have to mention the importance of the 

determination, for each algorithm used, of the optimal number 

of recursive levels (nrl) i.e. the one leading to the best 

execution time. Indeed, the optimal nrl depends on both the 

matrix size and the target machine architecture and has to be 

determined experimentally. It is well known that the execution 

time decreases for increasing nrl until a precise threshold, then 

increases [8].   

 

Our experiments used BLAS library [9] in the last 

recursion level and were achieved on two target machines i.e. 

TM1 (clock 3 GHz, 4Go RAM, 3Mo cache memory) and 

TM2 (clock 2.5 GHz, 2Go RAM, 3Mo cache memory). We 

used the g++ compiler under Ubuntu 11.01. All execution 

times are the means of several runs. 

 

We discuss in this section the variations of the execution 

time in terms of the matrix size n. For this purpose, n was 

chosen in the range [512  32768] and the input matrices 

involving real floating point elements were randomly 

generated. For sake of simplicity and without loss of 

generality, we chosed n as a power of 2. WE recall that when 

this is not the case, there are techniques known in the 

literature proposing efficient strategies (e.g. padding, dynamic 

peeling) leading to the power-of-2 case without increasing the 

complexity order [10].  

* = 

      A11     A12 

 

      A21     A22 

      X11     X12 

 

      X21     X22 

      B11     B12 

 

      B21     B22 
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We named our routines RLU and RB, and the BLAS 

routine where the routine dtrsm was used in combination with 

the factorization routine dgetrf to solve dense systems. We 

precise that we denote by ‘Speed-up alg1/alg2’ the ratio 

execution time of alg1 on execution time of alg2.  

TABLE I 

EXECUTION TIMES - DENSE MATRIX SYSTEM SOLVING (SECONDS) – TM1  

n BLAS RLU RB 
Speed-up 

BLAS/RLU 

Speed-up 

BLAS/RB

Speed-up 

RLU/RB 

512 0.14 0.20 0.14 0.71 1.00 1.43 

1024 1.16 1.19 1.01 0.97 1.15 1.18 

2048 9.31 9.04 8.03 1.03 1.16 1.13 

4096 75.82 71.53 64.80 1.06 1.17 1.10 

8192 630.88 595.17 534.65 1.06 1.18 1.11 

16384 5406.73 5006.24 4360.27 1.08 1.24 1.15 

32768 47633.38 42912.95 37506.60 1.11 1.27 1.14 

TABLE II 

EXECUTION TIMES – DENSE MATRIX SYSTEM SOLVING (SECONDS) – TM2 

n BLAS RLU RB 
Speed-up 

BLAS/RLU 

Speed-up 

BLAS/RB 

Speed-up 

RLU/RB 

512 0.16 0.23 0.17 0.69 0.94 1.35 

1024 1.45 1.59 1.48 0.91 0.98 1.07 

2048 11.86 11.74 10.59 1.01 1.12 1.11 

4096 96.03 88.92 84.24 1.08 1.14 1.06 

8192 800.12 727.38 683.86 1.10 1.17 1.06 

16384 6488.08 5792.93 5406.73 1.12 1.20 
1.07 

32768 67261.48 59523.43 54684.13 1.13 1.23 
1.09 

 

From the above results, we can remark the following:  

• With TM1 which has both a higher clock frequency   

and a RAM capacity than TM2 (i.e. 1.2 times and 2 times 

more), the execution times are always lower i.e. up to 1.5 

times better.  

• For both TM1 and TM2 and for any n, RB is always 

faster than RLU. The corresponding speed-up RLU/RB seems 

to stabilize for large sizes and reaches better amounts with 

TM1 than with TM2.  

• For TM1 and TM2, both RLU and RB are better than 

BLAS from n=2048 and on. The corresponding speed-ups 

increase with n. Indeed, for n=32768, RLU is 11% better than   

BLAS with TM1 and 13% better with TM2. As to RB and for 

the same n, it is 27% better than BLAS with TM1 and 23% 

better with TM2.   

We have to add that the recursion is terminated when the 

size of the size of remaining subproblems to be solved is 

smaller than the machine block size, which is the only 

architecture-dependent parameter in our algorithms. We 

precise that for TM1, the block size is 512 whereas for TM2, 

it is 256. 

V. CONCLUSION AND FUTURE WORK 

The two fast recursive algorithms for matrix system 

solving we designed has been proven enough satisfactory in 

practice and could outperform some BLAS routines. These 

performances are tightly related to the target machine and the 

optimal number of recursion levels. Indeed, this occurs at a 

threshold reached when the remaining subproblems to be 

solved are smaller than the memory machine block size.  

Pursuing recursion until a lower size would in general cause 

too much overhead and a drop in the overall performance. In 

this paper we targeted and reached the goal of outperforming 

the efficiency of the well-known BLAS library for dense 

matrix system solving. It has to be noticed that our (recursive) 

algorithms essentially benefit from both (recursive) Strassen 

matrix multiplication algorithm, recursive solvers for 

triangular systems and the use of BLAS routines in the last 

recursion level. This performance was achieved, particularly 

thanks to (i) efficient reduction to matrix multiplication where 

we optimized the number of recursive decomposition levels 

and (ii) reusing numerical computing libraries as much as 

possible.  

The results we obtained lead us to precise some attracting 

perspectives we intend to study in the future. We may 

particularly cite the following points. 

- Achieve an experimental study on large scale matrix systems 

in order to better evaluate the practical behaviours of our 

algorithms. 

- Study the numerical stability of the designed algorithms 

since recursive matrix algorithms are known to be (in general) 

of lower stability than iterative ones [11,12]. 

- Generalize our approach to other linear algebra kernels such 

as rectangular matrix system solving. 
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