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Abstract—In this paper, a new technique of decentralized There is different orthogonal functions basis such as Légen

control synthesis with decentralized state observer is pposed polynomials [7], Chebychev [8], or Hermite polynomials [9]
by using orthogonal functions. The use of this interesting dol and Walsh functions [10].

allows the conversion of differential state equations inta set of The i . | . f th h |
algebraic ones by expanding the system inputs and outputs xia e Important operational properties of the orthogona

ables on an orthogonal functions basis and using the operahal ~functions as the integration operational matrix are exgtbi
properties of the considered orthogonal functions. The desloped in this contribution to design a decentralized observer and

method leads to the determination of decentralized controbains  develop a new technique leading to the determination offine
even when the subsystems states are not all measurable. W'thdecentralized control laws such that each controlled sitbsy

thi h h trolled subsyst f the global systeh .
thg gggzzche?%imgﬂgég Ce)f as léhzﬁses Te?erer?cg %gd:?.l 8 of the global system has the desired performances of a chosen

Index Terms—Decentralized control, decentralized state ob- reference model.

server, orthogonal functions, reference model. This paper is organized as follows: a short review of the
orthogonal functions is persented in the second section. In
. INTRODUCTION the third section our main contribution is exposed where we

In the last decades The decentralized control has giveresent the proposed approach of the decentralized control
rise to enourmous studies based on large scale interca@theslynthesis with decentralized state observer using ortialgo
systems, especially when it is related to sensitive fieldb ss functions. A numerical simulated example is provided in the
power generating plants, aircraft dynamics, economic sodéourth section to illustrate the developed method.
and others.

The decentralized control of an interconnected system aims Il. REVIEW OF ORTHOGONAL FUNCTIONS
to make each system perfectly regulated using only its ownConsider a complete set of orthogonal functions
local state variables, and at the same time to insure the {¢;(t),i € N} defined on an intervgh, b] C R.
global stability of the whole system. Often the complet®he principle of orthogonality leads to the property:

state measurements are not available at each subsystem for X

decentralized control. Consequently the state observebea o
used to estimate the non measurable subsystem states [1]. Vi, j € N’/w(t)‘bi(t)@ (t)dt = bijqi 1)
However, the complexity of the considered large scale a

interconnected systems makes, in general, the synthesisyfkre w(t) is the weight functions,; is the Kronecker's
a decentralized controller relatively difficult, espalyiakhen  gympol.

desired performances have to be imposed for the systemagSintegrable functionf on [a, b] can be developed as:
optimal control, or the tracking of a chosen reference model
In the literature different techniques of decentralizedtoml
design are developed [2], [3], [4].- Only that, the proposed
approaches are in general concerned with particular dasse
of interconnected systems, and specific conditions have to'\§here: b
verified in order to achieve the problem resolution. fi= 1/%‘/ w(t) f(t)di(t)dt 3
The focus of this paper is the development of a decentralized a
control design technic with decentralized observer ush® tFor obvious practical reasons, the development is truddate
expension of the dynamic system and the state obserefier N which is large enough to allow a good approximation.

F)=>" fidi(t) )
=0

variables on an orthogonal functions basis. Thus, one has:
The orthogonal functions have been succesfuly applied N1
for the identification, model reduction, analysis and oointr ~ o
of linear and some classes of nonlinear systems [5], [6]. f(#t) = ; 1i9i(t) = FnOn(?) “)
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with: The principle of orthogonality of The shifted Legendre poly

Fx=1[fo fi - fn-1] nomials is expressed by the following equation [12]:
Dy(t) = [po(t) ¢1(t) .. on_1(t)]" tr t
| o _ 0i(0)6; (1)dt = 553 (12)
This truncated projection of scalar or vector functions ban 0 U

very useful in practice in different kinds of engineeringlpr So, any integrable function o, ¢,] can be developed into a
lems related to modelling, identification ,analysis, siation, ¢aries of shifted Legendre polynomials as follows:

control, etc.
Indeed, by means of the operational properties of orthdgona e
functions, the differential equations describing dynammio- ft) = Zfi‘bi(t) (12)
cess can be reduced into algebraic relations allowing itapor =0
simplifications in the analysis or synthesis problems. where the coefficientg; are given by [13]:
A. Operational matrix of integration %1 [tr
For a given basis of orthogonal functiods= {¢;(t),i € fi= tr /0 F)¢i(t)dt (13)
N}, the operational matrix of integration is a constant matrix
Py € RVXN such as: we choose an ordeiN sufficiently large to represent the
‘ function f(¢):
/‘I)N(T)dT = PN(I)N(t) (5) N-1
o &)= figi(t) = FnOn(t) (14)
=0

Obviously, the operational matrix of integration depends o

the type of considered orthogonal basis. We consider in thigth:

study to use a set of Legendre polynomials as a complete basis Fy=[fo fi - fn_i]
of orthogonal functions.

B. Legendre polynomials and:

The Legendre polynomials are orthogonal on the interval n(t) =[bo(t) d1(t) ... on-1(t)]
[—1, 1], with a weight functionw(r) = 1.
The set of Legendre polynomials is obtained from the formu
of Olinde-Rodrigues:

Pa' The operational matrix of integration of shifted Legendre
polynomials

In the case of shifted Legendre polynomials, The operationa

1 dv(r?-1)" . ) . R
Ly(7)= ST (Td ) (6) matrix of integrationPy is given as follows [14]:
n! T
This gives: 1 1 0 - 0 0 0
3.2 -3 2 0 - 0 0 0
Lo(t) =1,L1(7) = 7, La(7) = ( 5 ) @ t 0 _% 0 --- 0 0 0
Py = —+ . . .
These polynomials can also be obtained from the recursive 2 ' oo " ' 1
relationship [11]: 0 0 0 - —95y=3 01 IN—3
0 0 0 0 w5 O

(n+ 1)Lypt1(7) = 2n+ )7Ly (1) — nLy—1(7)  (8)

) Ill. PROBLEM FORMULATION
with: Lo(t) =1 et Li(r) =71
i ) Let us consider a global large scale sysigfh consisting of
C. The shifted Legendre polynomials M interconnected subsysteriS;) described by the following
To obtain orthogonal Legendre polynomials on the intervatate equation:

[0,t¢], we perform the following change of variable:

M
=2 with o<t<t © (s i (t) = Aiwi(t) + Biua(t) + J; Aij;(t) as)
ty i i
The recursive relationship (8) becomes: yi(t) = Cizi(1)

2t herex;(t) € R™ w;(t) € R™ andy,(t) € RP* are respec-
+ D) nr1(t) = 2n+1)(= = D)on(t) — ngn_1(t) (10) W i i Yi P
(n+ Déns1(t) = (2n )(tf J9u(t) = néu-a() (10) tively the state vector, the control vector and the outpatwe

with ¢, () The shifted Legendre polynomials for< ¢ < ¢;. ©f the subsystentS;). A;, B;, C; and A;; are the constant
o matrices characterising the subsystés}) with respective
andgy(t) =1 et¢1(t) = rol 1
f

dimensions(ni X ni), (ni X mi), (pi X nl) and (nl X nj).
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A. The decentralized state observer design the equation (20) yields the following one:

we are interested to design a decentralized linear observer Vec(en) =
that will track the state of every subsysteff;) . Hence, - . -
the designed observer is described by the following statbixn —Pn" @(A=LC)) ™" (Vec(eo,n)+(Py” ®T)Vec(zn))
equations: _ . _ (22)
) To determine the observation gain parameters, we choose a
{ Ti(t) = Aidi(t) + Biui(t) + Li(y(t) — 9:(2)) (16) reference observation error described by the followingaequ

9:(t) = Cid4(t) tion:
with: Er(t) = Myer(t) (23)
L; € R™*Pi : the observation gain matrix of thé" subsys- such that the observation error should be as close as passibl
tem. to the reference, this condition can be expressed by:
z; : the observed state.
The dynamic of the observation error between iHe true e(t) = er(t) (24)
state and the'" observer output is given by: The projection of the equation (23) on the orthogonal fuori
M basis, and the use of thEec operator give the following
gi(t) = di(t)—2i(t) = (Ai—LiCi)ei(t)+ Y Ayja;(t) (17) relation:
;;1 erN = (Inxn — Pn" @ M) Yo n (25)
When considering the globel systdi$i), the observation error The equation (24) can be equivalent to the next one:
can be expressed by: EN = EnN (26)
é(t) = i(t) — &(t) = (A= LC)e(t) + Tx(t)  (18) which may be written by:
with: wl(eon + (PnT @ T)Vec(zn)) = wr " Leron (27)
A= o : L= o : w:(Ian—PNT@)(A—LC))
0 --- Ay 0 -+ Ly wr:(Ian_PNT(g)MT)
ci ... 0 0 e Al when considering the same initial values, the observatim g
C - C . T — . . . parameters can be obtained by minimizing the next system of
0 .. Cy Ay - 0 equations:
The integration of th tion (18) yields the followi (5){ P, (28)
ean;ir(I)ggra ion of the equation (18) yields the following W (PxT @ T) = Opxn
t B. Decentralized control with state observer synthesis
/ e(r)dr =e(t) —e(t=0) = . . .
0 It is desired to determine for the global system a control
. . law with a decentralized structure of the following form:
/0 (A— LC)e(r)dr +/0 Tx(r)dr (19) wi(t) = Jiri(t) — K;a(t) (29)
Consider now anV orthogonal functions basi®y (), then Where:ri(t) € R’ i =1,..., M order vector.
the projection of the vectos(t) gives: K; e Rm*™ andJ; € R™i*Pi, are the control parameters to
be determinated: = 1, ..., M). The subsysteniS;) with the
e(t) = e(t)Nen (1) control law (29) can be written by the following equation:

The use of these approximations in the integrated equation . M
(19), and the exploitation of the operational matrix of inte i(t) = Aixi(t)_BiKixi(t)+BiJiT(t)+Z Agjz;(t) (30)
gration of the orthogonal basiBy (¢) lead to the following i=1

. . G#i
algebraic equation: The integration of the equation (30) from null initial cotidns
enOn(t) —eonPn(t) = (A— LC)enPnOn(t) yields the following equation:
+TenPnOn (1) (20) x;i(t) = /t Az (T)dT — /t B;K;&;(t)dr
Making use of thelVec operator, which transform a matrix M 2 Ot
structure into a vector and the specific property [15]: + Z / Ay (1)dr —|—/ BiJiri(t)dr (31)
Vec(ABC) = (CT @ A)Vec(B) (21) =1 0
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The projection of vectors;(t), Z,;(t) andr;(t) on a base of The equation (36) can then be expressed by the following one:

orthogonal functions gives: M

zi(t) =2 iy O N (1) ai;Vece(r;n) = BiVec(rn) + Z M(A;j)Vec(zin) (37)
j=1

#i(t) = 2in P (1) i

OET ) where:
The exploitation of the operational matrix of integratidrthoe aii = M(Ai) + M(K;)M(K;, Li) "' M(L;)
orthogonal basisb y () in the integrated equation (31), lead oi; = M(Asj)
to the following algebraic equation: E *

-1

iNnPn(t) = AN PNON(t)— B K;&in + Bi Jirn Py O (2) Bi = M(J;) — M(K;)M(K;, Li)~ M (J;)

M From the equation (37) one may write:

Aijx;nPNON (T 32
+ ; JTiN PN PN (1) (32) Vee(zin)

i : =
Making use of thel’ec operator, the equation (32) yields the Vec(zun)
following one:

Vl?
(IN><n — (Pg; X Ai))VGC(.TiN) = —(P]z; X BiKi)Vec(:%iN) .
M 11 . Q1M ﬁl . 0 Vec(rlN)
+(PY @ BiJi)Vec(rn) + > _(PY @ Ayj)Vec(zjn) (33) : : : ;
g;l apmi o MM 0 - PBum Vec(run)

when considering the equation (29), the observer state-equa M (K, Ly) Mp (Ki,Li, Ji) Vi

(38)
. In the other hand, the projection matrices of the different
z;(t) = (A; — BiK; — L;C;)&;(t) + B;Jiri(t) + L;C;xz;(t)  subsystems outputs on the orthogonal basig(t):

tions become:

(34)
The projection of the equation (34) on the orthogonal fuomi yi(t) = yin®n (1)
ba5|§, ar.1d the use of thEfec operator give the following can be expressed using the projection matriggsof the state
relations: vectorz;(t) by the following relation:
M(K;, L)Vec(#in) = (Py ® BiJ;)Vec(ry) Vee(yin)
+(PL @ L;C))Vec(zin) (35) : -
with: Vec(ymn)
~— ———
M(K;, Li) = (Inxn — (PY @ (Ai — BiK; — L;C;))) g

By substitution, the equations (33) and (35) give: In®Ci ... 0 Vec(zin)

M : : : (39)
M(A;))Vec(xin) = M(J;))Vec(rn) + Z M(A;j)Vec(z;n) 0 o IN®Cup Vec(zyn)

i V.

— M (K)M (K, L) Y (M (J;)Vec(rn) + M(L)Vec(ziy)) The Problem now is the determination&f and.J; matrices
(36) (i =1,..,M). Such that each controlled subsystéf) has

where: an input-output behaviour as same as possible to the referen
M(4;) = (Inxn — (PE @ AY)) model described by the following state equation:
M(J;) = (P§ ® B;J;) R { 2i(t) = Eizi(t) + Firi(t) 40
B\ g t) = Gizat) (40)

M(Aij) = (Py ® Ayj) . .
. where :z;(t) € R™ is the state vector of thé&h reference
M(K;) = (Py ® B;K;) submodel, andy,,(t) € RP: its output vector.E;, F; and
G, are the chosen matrices characterising the reference model
M(J;) = (Py ® B J; : o :
(Ji) = Py ) with respective dimension:; x 7;), (7; X p;) and(p; X ;).
M(L;) = (P @ L;C;) The projection of the vectors (¢) andy,, (¢t) on the orthogonal
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functions basis, and the use of théc operator give the
following relations: 5

— Statex11
#  Observed state x11

2i(t) = zin®n (t) i —
. (41)
Yr,(t) = yr, NP (1 | | I I I | | | !
( ) N N( ) 05 1 15 2 2 3 35 ‘ I 5
{ Vec(ziN) = HiiVGC TiN) (42) ) ‘ ‘ ‘ ‘ ‘

Vec(yrin) = viiVec(rin) -
1{\ *  Observed state 12

L L
45

with:

H;; = [INxﬁi _ (P]z; ®EZ)]—1(P§ ®E) (43) " 05 1 15 P 25 3 3
Yii = (IN & Gz)Hu 15 T T T

1F — — Statex21
Having the same input-output behaviour of each subsyste .
(S;) (¢ = 1,..,M) and its reference mod€IR;) can be e —————————,
expressed by the following relation: Boor oo E o Bn s Em e e

VeC(le) VeC(yrlN) Z\
+  Observed state x22

: = : (44) 4

Vec(yMN) Vec(yHMN) 05 1 15 P 25 3 35 4 15

Time (sec)

Vy Vyr
which may be written as: ) o
Fig. 1. States and observed states variation of subsysteansl 2

McM N (K)Mp(L)V, =TV, (45)

where: To determine the gain parameters of the decentralized ob-

Y11 e 0 . .
. . server, we choose a reference matrix described by:

I'= L :
0 00 o

The equality (45) has to be verified for any. (since each M, = 0 0 —-60 O

subsysten(.S;) must be identical to the reference mod#}) 0 0 0 —-75

for any input signalr;(t)), then one obtains the followin L , . .
equatign' P gnalr:(t)) gWe have minimized the system of équations (28) using an

orthogonal basis ofV = 10 Legendre polynomials. The
(46) X . )
obtained gains are then expressed by the following vectors:
which resolution by means of the numerical minimization of 943
n= ()

McM N (K)Mp(L;) =T

the following norm¢:

14.8
¢ = ||McM (K, Li)Mp(K;, Li, J;) = || (47) . ( 928 )
2:
yields the different control law gaind(; and J; (i = 101

1,..., M). This optimization problem can be easily carried outrigure 1 shows that the obtained state observer is able to
using specific Matlab functions. track changes in subsystems states for any initial comuitio
which proves its validity for the control of the considered
interconnected system.

To illustrate the proposed technique of decentralizedrobnt\we aim now to determine a decentralized control law for each
design using orthogonal functions, we consider the integne of these subsystems such that they have an identica inpu
connected system composed of two second order systesagput dynamic evolution as the second order reference mode
characterized by a state equation of the form (15) with tharacterized by the following matrices:
following matrix parameters:

IV. I LLUSTRATIVE EXAMPLE

-3 -2 2
i s (P2 e (2)e- (o
A1:<21 _13)31:(0.5)01:(01) 10 0 ( )
an orthogonal basis oV = 10 Legendre polynomials. The
Cz = ( 0 06 ) obtained decentralized laws are then characterized by the

0 For this objective we have applied the proposed method using
-2 0.5
A2_< 1 -15 )BQ_<
following gains:

Ao (01 0N, (0 02
2= 0 036 )72~ o054 0 Ki=(-04 28) J =28

O =
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Step Response

15 T T T T T T T T T

Subsystem 1 controlled by the decentralized observer
Reference model

Amplitude

o5F 1

0 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

Time (sec)

Fig. 2. Step response of subsystem 1 and the reference model

Step Response

15 T T T T T T T T T

Subsystem 2 controlled by the decentralized observer
Reference model

Amplitude

05F 1

0 2 4 6 8 10 12 14 16 18 20
Time (sec)

Fig. 3. Step response of subsystem 2 and the reference model

Ky=(-11 08) Jy=32

imposing particular conditions. Furthermore, the decdizied
controllers parameters are adjusted such that each sabsyst
has the specific desired performances of a chosen reference
model. The validity of this new approach has been illusttate

in a numerical example.
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Figure 2 and Figure 3 show the step reponses of the two
interconnected systems with the obtained decentralizettao
laws, and the step response of the considered reference, The
it appears clearly that the controlled system outputs arg ve
close to the desired reference model output, which illtestra
the validity of the proposed technique.

V. CONCLUSION

In this paper, a decentralized observer design has been de-
veloped. The proposed observer has been exploited to isbtabl
a decentralized control technique by using orthogonal func
tions as an interesting tool of dynamical system approxonat
The main advantage of the proposed technique is its appli-
cability for a large class of interconnected systems withou
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