
Performance mesurement of multiprocessor
architectures on FPGA(case study: 3D, MPEG-2)

Kais LOUKIL#1, Faten BELLAKHDHAR#2, Niez BRADAI*3, Mohamed ABID#4
#Computer Embedded System, National Engineering School of SFAX, University of SFAX

Soukra city, Sfax 3038, Tunisia
1kais_loukil@yahoo.fr

2belfaten@yahoo.fr
3bradai_niez@yahoo.fr

4mohamed.abid@enis.rnu.tn

Abstract— Nowadays, developers are more and more leaning
towards multiprocessor embedded processors in their systems
designs as they need further performance. In this context, our
work aimed at prototyping several multiprocessor architectural
solutions on FPGA using the Altera development environment
and implementing two multimedia applications: the MPEG-2
decoder and the 3D synthesis.
The MPEG-2 decoder is successfully implemented on a dual-core
architecture allowing the decrease of the execution time from
1.45 sec to 0. 905 sec. Besides, the 3D synthesis implementation on
an architecture consisting of four core processors adhered to the
real time constraints by providing a rate of 27 frames per second.

Keywords-Multiprocessor;Performance; reconfigurable; SoC

I. INTRODUCTION

Multiprocessor devices are driving progressively into
embedded applications. Single-core processors and the
performance imperative of Moore’s Law may be approaching
an upper limit in terms of adding increasing processing power
simply by increasing clock speeds. Consequently, embedded
designers have turned, instead, to multiprocessors in order to
achieve performance gains. Multiprocessor technology offers
opportunities to improve the processing performance and
power efficiency. But in the other hand, it also requires
different programming models from those used for
uniprocessors. The real challenge currently is the ability to
develop the software within a reasonable time scale; the lack of
standards and integrated tools makes the software tasks much
more difficult [3].

There is a great deal of opportunities in the embedded
multi-core market, however, it is evident for most observers
that a major gap currently exists between multi-core silicon and
software enabled to take advantage of the available
performance. In this context, our work consists in prototyping
several multiprocessor architectural solutions by the migration
of single core designs to multiprocessor architectures. This
work will be validated by implementing two multimedia
applications: the MPEG-2 decoder and the 3-D synthesis, on
FPGA using different implementations of the source code.

For each application, we started by implementing the code
on a single standard hardware architecture, then we tried to
transform and rewrite certain functions of the source code in

order to adapt the software to fit these multiprocessor
architectures. This work will be followed by a performance
evaluation of these prototypes including the total execution
time, the surface and power consumption.

As prototyping platform we have used the technology and
the development environment ALTERA, something that has
allowed us to identify, and by the way to overcome and resolve
several limitations of this environment.

This paper is organized into three sections structured as
follows: The first section is dedicated to introduce the state of
the art of multiprocessor processors, evoking the main reasons
of this tendency and presenting some examples of
multiprocessor processors in the embedded market. The second
section provides an overview of the MPEG-2 standard and the
3-D Synthesis; the multimedia applications that served for
prototyping. The third section focuses on the prototypes
validation; it details the different approaches followed
throughout the implementation phase and presents the results
and the performance measurement of our multiprocessor
architectures.

II. STATE OF THE ART

Actually, developers are more and more leaning towards
multi-core embedded processors in their systems design as they
need further performance. In the last 10 years, to meet
performance requirements, processors are faster mainly due to
increasing clock frequencies or more complex architectures.
Running smaller transistors at faster speeds has driven
exponential increases in performance but the challenge is that
each transistor on a chip consumes power and produces heat
and the faster the transistors are clocked, the more heat they
generate [4].

Decreasing a processor’s frequency and voltage leads to an
important reduction of its total power requirements, even small
speed reductions can make a big difference. Semiconductor
manufacturers have figured out that the way forward is to build
processors running at both lower frequencies and voltages, and
additionally to integrate two or more of these processing cores
on a single die [5, 8]. Thus, industry is currently turning from
increased frequency to parallelism. The power efficiency
inherent in dividing work among multiple processor cores on

PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.2, pp. 211-216, 2013

Copyright - IPCO

PC
Typewriter
211

one die allows continuing dramatic increases in performance
while reducing power consumption and heat dissipation. In
fact, multiprocessor processors can execute instructions in
parallel, which means multiple separate instruction threads can
be processed at the same time. Hence, chip companies have
turned to multiprocessor designs in recent years to bring the
power of parallel processing to embedded systems. Currently,
all processor vendors have multiprocessor processors on their
product road maps, and many have already released products.
There are two distinct segments with distinctly different
approaches that have emerged: general-purpose multi-core
processors and application-focused multi-core processors [10].

General-purpose multi-core processors represents
processors with multiple, usually homogeneous, cores, in
which any (or all) of the cores may be called upon and used to
provide the processing needs within an application. In contrast,
application-focused multi-core processors provide different
cores for different pieces of an application. For example, one
core may process audio and while another processes video.
Cores may be homogeneous or heterogeneous, depending on
the methodology used in the processor’s design. Note that these
different segments of the embedded multi-core market utilize
very different approaches, and target different kinds of
applications. It is very important for users to understand each
approach, and which one is best suited for their particular
application [6]. The first multi-core CPUs offered to the
embedded market were released in late 2006, in the form of
dual core processors [1]. In 2007, multi-core product portfolios
have been expanded and new suppliers have entered the
market, which is projected to grow significantly.

III. PARALLEL COMPUTER CLASSICAL TAXONOMY

Currently, the most popular nomenclature for the
classification of computer architectures is that proposed by
Flynn that chose not to examine the explicit structure of the
machine, but rather how instructions and data flow run through
it. Specifically, the taxonomy identifies whether there are
single or multiple 'streams' for data and for instructions [7, 9].
The term 'stream' refers to a sequence of either instructions or
data operated on by the computer. Depending on whether there
is one or several of these streams, we have four classes of
computers:

• Single Instruction Stream, Single Data Stream:
SISD

• Multiple Instruction Stream, Single Data Stream:
MISD

• Single Instruction Stream, Multiple Data Stream:
SIMD

• Multiple Instruction Stream, Multiple Data Stream:
MIMD

The Fig. 1 illustrates the differences between the four
classes.

� � � �

� � � �

� � � �

� � � �

�

� ��

�

� �� �

	 ��

�

� ��

�

� ��

	 ��

� � �

� � �

	 � �

� � �

�
 �

� � �

	
 �

Fig. 1 Potential of the 4 classes

IV. APPLICATION EXAMPLES: MPEG-2 STANDARD & THE 3-
D SYNTHESIS

After presenting generalities about the multiprocessor
architectures and enumerating some of their applications in the
embedded domain, we move to detail the theory of MPEG-2
standard and the 3-D synthesis application.

A. MPEG-2 Overview
MPEG-2 is a standard for motion video compression and

decompression defined by the Motion Pictures Expert Group
(MPEG). MPEG-2 extends the basic MPEG-1 to provide
compression support for TV quality transmission of digital
video. The MPEG-1 and MPEG-2 are already being used in
many video applications and their adoption continues to grow
rapidly.

B. 3D-Synthesis overview
A basic 3D_synthesis algorithm takes a 3D object described

as a set of triangles and transforms it into 2-dimensional pixel
representation. All the necessary operations to display a 3D
object reconstitute the graphic pipeline described in Fig. 2.

Fig. 2 The 3D-Synthesis graphic pipeline

The choice of the MPEG-2 decoder and the 3D synthesis

for our study is based on their continuous adoption for many
applications and their real time performance demanding. These
applications are characterized by a computational complexity
which is much costly for a single processor to achieve real-time
performance in software. In this context, our task consists of
designing multiprocessor architectures for both applications to
enhance their performances compared to their single core
implementation and respond to the real-time constraint. In the
next section, we will present the results and the performance
measurement of the implemented multimedia applications,
MPEG2 decoder and 3D synthesis, on multiprocessor
architectures.

PC
Typewriter
212

V. THE MPEG2 DECODER IMPLEMENTATION

A. The MPEG-2 decoder software
The basis of our study is an MPEG-2 decoder purely

software. This decoder, written in C, is available for free
download from the MPEG server.

1) Single-core implementation: The first step is to choose
hardware architecture for the decoder implementation. We used
the standard hardware example design for the NiosII cycloneII
2c35 development board. In the Nios II environment, we
created a software project for the MPEG2 decoder. For all the
prototypes, we used a test bit-stream with 3 pictures and
resolution of 128x128 pixels.

2) Time execution measurement: The major advantage of

measuring with the profiler is that it provides an overview of
the entire application. But in the other hand, it is estimation,
not an exact representation; of where the CPU time is spent.
The most interesting feature of the GNU Profiler is the Call
Hierarchy view Fig. 3. It displays the gmon.out call graph data
in an easy-to-read tree format. In this view, we can follow
easily the function call sequences, which provide greater
insight into the timing and the program behavior.

Fig. 3 The call Hierarchy view

After the profiler identifies areas of code that consume lots

of CPU cycles, a performance counter can further analyze these
functions. With the performance counter, we can accurately
measure execution time taken by multiple sections of the code
Fig. 4.

Fig. 4 Performance report for the primary decoder functions

Enabling the host-based file system, the data traveling

between host and target serially through the Altera download
cable takes a lot of time nearby 7.231 sec while the total
decoding time is 0.679 sec. The host-based file system solution
is very expensive in term of time consumption. For the coming
implementations, we just consider the decoding time as the
resulting execution time.

3) Multiprocessor implementations:
a) First approach: Block level parallelism

• Parallelism sources

Given an MPEG stream, the decoding process performs the
five main stages in a sequential order. The only source of
parallelism resides on the layered structure of the MPEG-2 bit-
stream.

 It is a parallelism that exists in the GOP layer, the frame
layer and the different levels within a picture: the slice level,
the macro-block level and the block level. A previous work [2]
presented two parallel implementations of an MPEG-2
decoder; one exploiting parallelism across the GOP (group of
picture) in video sequence and the other exploiting slice
parallelism within a picture. As there is no way to parallelize at
the macroblock layer because macro-block decoding depends
on previous macro-blocks for motion compensation, we choose
to work at the block level which represents the lowest unit of
data at which decoder processes the video stream
independently.

• Scenario

To exploit the independency between blocks calculations,
the idea was to divide the computation within a macro block on
two processor cores working each on the half block number
within a single macro block. The motion_compensation
function is appropriate to apply this idea as it calls the saturate
and fast_idct functions which are time demanding functions
and also process at the block level.

• Results

This dual-core architecture didn’t enhance performance too
much due to the overhead of the communications and data
transfer between the two processors. The Fig. 5 shows the
performance counter reports for single core implementation
and this dual-core implementation. We notice that the time
execution of the motion compensation function was reduced by
nearby 18% and the total time execution (without using the
host) has decreased from 0.679 sec to 0.527 sec. when storing
the output files on the host PC, the global time still almost the
same Fig. 5 because the host file data traveling between host
and target serially through the Altera download cable takes a
lot of time (nearby 7.231 sec).

PC
Typewriter
213

Fig. 5Performance counter reports

b) Second approach: Luminance and chrominance:

• Chrominance and luminance independency

In MPEG-2, RGB pixel information is represented as
luminance and chrominance components where brightness
levels and color information are stored separately. In the 4:2:0
chroma format, a pixel information is represented by a macro-
block formed by six 8x8 blocks; four blocks for the luminance
and two reserved for the chrominance. Our code works on
these blocks independently; indeed, it separates completely
between the luminance calculation and chrominance
calculation throughout the decoding process. Even at the end of
each frame decoding, the resulting luminance and chrominance
data are written in different memory areas.

We can assume that the decoder code can be split into two
codes; one to handle the luminance calculation and the other to
proceed on the chrominance. To assert this assumption, we
removed all the code routines related to the chrominance
calculations, we compared then the luminance output file (.Y)
for each frame with the output files of the original code, we
found out that theses files are identical. The same work was
done to verify the validity of the chrominance files. The
chrominance and luminance independency represents thus a
source of parallelism that we can exploit to decrease the overall
execution time.

• Time measurement

We used the performance counter to measure the decoding
time (without writing the output files on the pc host) which has
decreased nearby 40% of the initial measured time. In Fig. 6,
the first table represents the performance counter report of a
single core decoder and the second table shows the report for
the dual-core decoder.

Fig. 6 Performance counter reports

Even after this decoding time reduction, the global

execution time still too large because of the host file data

option; writing the resulting files on the PC host causes a huge
loss of time.

B. The 3D synthesis implementation:
The basis of our study is a 3D synthesis algorithm written

in C++. Its input is an ASC file that contains the object name,
its vertex coordinates and faces list. This file can be generated
by the 3D Studio Max editor. During the rasterization process,
the algorithm draws the object first on a virtual screen (a
memory zone where the color value for each pixel is stored)
then displays the result to the physical screen.

1) . The 3D synthesis’ call graph analysis:
Our project aims to transform this multimedia application

from a single core design to a multiprocessor architecture. A
good understanding of the software code is necessary to
achieve this purpose. From the function’ call graph Fig. 7, we
can follow the code approach

Fig. 7 The 3-D synthesis functions’ call graph

2) The 3D algorithm profiling:

The profiling of this application is done by the performance
counter. Time consumed by the code principle functions is
shown in the Fig. 8. From the timing result report, we notice
that the functions ensuring the geometric calculations (echelle,
translation, rotation, transformation and calcnormal) are not
time demanding; they consume just 12.5% of the global
execution time while the dessine_poly function consumes an
average of 65% of the global time execution. This time is spent
to achieve the rasterization process that requires heavy
calculations.

Fig. 8 Performance counter report for the 3-D synthesis algorithm

The global execution time for 360 pictures (the rotation

angle varies from 0 to 359 degrees) is 43.38 seconds which is

PC
Typewriter
214

nearby 8 frames per second. Real-time applications of the 3-D
synthesis need to respond immediately to user input, and
generally need to produce frame rates of at least 20 frames per
second (and preferably 60 fps or more). The resulting rate is
lower than the average (20frame/sec); the 3D synthesis
algorithm performance must be enhanced.

As dessine_poly function is the most time consuming, we
should focus on it to figure out if there is any parallelism that
may be exploited to decrease its execution time.

3) First multiprocessor architecture approach:
a) Dessine_poly function analysis:

The dessine_poly function works on the shading process;
for each visible polygon, it calls first the scanG function to
interpolate the color intensity between polygon summits then it
calls the hilinG function to accomplish the horizontal
interpolation of the color intensity. Finally each calculated
color value is stored in the appropriate offset within the virtual
screen. This function is called as many times as the number of
visible polygon faces within the object. The treatment of this
function could be done by two processor cores or more; each
one will handle a part of the object polygons.

b) Scenario:
The idea consists in using dual core architecture to

implement the 3D synthesis application. The code for each
processor is basically the same as the single core approach, just
when it comes to the dessine_poly function, the first processor
will operate on the half object polygons and the second will
achieve the rest of polygons’ treatment. The display process is
dedicated to the first processor. This processor is responsible
for displaying the 3-dimensional object on the VGA monitor
each time the virtual screen is completely filled up. Because of
the need for mutual communication between processors, a
shared memory is used to play the role of a message buffer. At
the beginning, the first processor sends the virtual screen
address to the second processor; consequently, both processors
are able to access concurrently that memory zone in order to
fill it up with appropriate data.

c) Time measurement:
From the performance counter report Fig. 9, we notice that

the global execution time has decreased to 31% (from 43.38
sec to 30.036 sec); time consumed by the dessine_poly
function was reduced by 15.221 sec. This dual core approach
has carried out a rate of 12 frames per second, but this rate still
lower then what is needed.

Fig. 9 Performance counter report for the first dual core approach

4) Second multiprocessor approach:

This approach takes advantage of the rotation animation
while the object display. Like it is previously explained, within
the while the same calculations are repeated for each angle
incrementation to give the animation effects to the displayed
object. This approach was implemented in a first attempt using
the dual core architecture. This time, the code won’t be split;
each processor will execute the entire algorithm independently
then the display process will be carried out in an alternative
way. The first processor executes the algorithm and displays
the object just for the even angles while the second proceeds
similarly on the odd angles. The display process is organized
by exchanging messages between the processors. This mutual
communication is established through a message buffer whose
access is protected by a Mutex core. By passing messages, the
processors display the object successively in the right order,
consequently the object rotation will speed up and global
execution time will decrease.

This approach was also applied using three and four core
processors. The Table I summarizes the results of the different
implementations for the display of 360 frames. With the rate of
27 frames per second, the architecture including four core
processors adheres to the real-time constraint that was
estimated to 25 frames per second.

TABLE I. THE IMPLEMENTATION RESULTS USING DIFFERENT
MULTIPROCESSOR ARCHITECTURES

Core
processor
number

The global execution time
The frame

rate per
second sec Clock- cycle

1 43.3803 9543669362 8.29
2 24.1558 5314268946 14.90
3 17.6867 3891072802 20.36
4 12.9599 2851179707 27.79

From the previous results, we can notice that the rate of the
total execution time reduction is not the same for the different
hardware architectures. Rising the number of processor cores,
the total time reduction decreases gradually. In fact, adding
more CPUs can geometrically increase the traffic on the shared
memory-CPU path and thus decrease the availability of the
shared memory to the processors.

5) Performance evaluation:
Throughout this section, we proposed different parallelizing

approaches that ground essentially on the code profiling
information and parallelism sources.

The multiprocessor execution mode applied for most
multiprocessor architectures is the SIMD machine as all the
processors execute the same instruction (code) but with
different data. Table II summarizes the results of the different
implementations achieved during our work. This table shows
the total execution time, the surface and the power
consumption of each prototype.

TABLE II. COMPARATIVE TABLE OF THE DIFFERENT PROTOTYPES

PC
Typewriter
215

Several factories contribute in defining the performance of
a given hardware architecture. In fact, the memory location
(on-chip or off-chip memory) and its type (SSRAM, SDRAM
or flash memory) influence greatly the architecture
performance as they represent the main factors that determine
the memory’s access latency. As it is shown in table II, there is
a huge difference between the performances of the architecture
using the SSRAM memory and the one using the SDRAM
memory.

Besides, increasing the number of core processors within a
design rise in return the total logic elements and the power
consumption. In our case, we kept the same frequency for all
the prototypes; thus additional processors will increase
consequently the power consumption.

The table shows also the performance enhancement
(execution time) brought by the multiprocessor architectures
for both applications. These improvements are relative to the
parallelism sources (partial or total, fine- or coarse - grained
parallelism) exploited for each approach.

As a conclusion, we can confirm that the hardware
architecture choice depends tightly on the application
constraints such as the rapidity, the die surface, the power
consumption, the frequency, etc. The combination of optimized
hardware architecture with well developed software fitting the
design is primordial to achieve better performances.

VI. CONCLUSION

Faced with the race for high frequency processors,
disadvantages inherent to the high consumption, heat release
and technological limitations led as consequence to the
adoption of the multiprocessor architecture solutions. Such
trend requires a design methodology on one hand and a
development environment, on the other. In this context our
work has dealt with a topical subject consisting in prototyping
multiprocessor architectures on reconfigurable technology
FPGA.

Given the current state, there is a little work in this
direction. Consequently, we were brought to seek practical
hardware and software solutions, according to the possibilities
offered by the Altera platform, to succeed these
implementations.

Throughout prototyping, we focused both on hardware and
software aspects. First we define the hardware architecture that
matches the parallelism approaches. Then, thanks to the Nios II
IDE, we went by all the necessary software development tasks
for these designs and showed the key issues to establish the
communications between processors in such architectures.
We can resume that the entire work stages allowed us to
control almost all hardware and software steps to design, and
test the implementation of single and multiprocessor systems
on a reconfigurable target device using the ALTERA
development environment.

The MPEG-2 decoder was successfully implemented on a
dual-core architecture allowing the decrease of the execution
time from 1.45 sec to 0. 905 sec. Besides, the 3-D synthesis
implementation on an architecture consisting of four core
processors adhered to the real time constraints by providing a
rate of 27 frames per second.

References

[1] Eric Heikkila , J. Eric Gulliksen. White paper on: “Multi-core
computing in embedded applications: Global Market Opportunity and
Requirements Analysis”. Venture Development Corporation. August
2007.

[2] Angelos Bilas, Jason Fritts, Jaswinder Pal Singh “Real-Time Parallel
MPEG-2 Decoding in Software” 11th International Parallel Processing
Symposium 1997

[3] E. O. Kosorukov and M. G. Furugyan “Some algorithms for resource
allocation in multiprocessor systems“ Moscow University
Computational Mathematics and Cybernetics Volume 33, Number 4,
2009

[4] Vahid Kazempour, Alexandra Fedorova and Pouya Alagheband
“ Performance Implications of Cache Affinity on Multicore Processors”
Euro-Par 2008 – Parallel Processing Lecture Notes in Computer
Science, 2008, Volume 5168/2008,

[5] Göhringer, D., Becker, J. “High performance reconfigurable multi-
processor-based computing on FPGAs” international Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum, IPDPSW
2010 ATLANTA (Georgia) USA.

[6] ��������	�
� �
� � ���bner, M.; Benz, M.; Becker, J “A Design
Methodology for Application Partitioning and Architecture
Development of Reconfigurable Multiprocessor Systems-on-Chip”

[7] Yuan Xie; “Processor Architecture Design Using 3D Integration
Technology” VLSI Design, 2010. VLSID '10. 23rd International
Conference

[8] Wolf, W. Jerraya, A.A. Martin, G. “Multiprocessor System-on-Chip
(MPSoC) Technology” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions 2008 Volume: 27 Issue: 10

[9] Salih, M.H.; Arshad, M.R.; “Design and implementation of embedded
multiprocessor architecture using FPGA “ Industrial Electronics &
Applications (ISIEA), 2010 IEEE Symposium on

[10] Brandenburg, B.B.; Calandrino, J.M.; Block, A.; Leontyev,
H.; Anderson, J.H. “Real-Time Synchronization on Multiprocessors:
To Block or Not to Block, to Suspend or Spin?” Real-Time and
Embedded Technology and Applications Symposium, 2008. RTAS '08.
IEEE

PC
Typewriter
216

