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Abstract- The aim of this paper is to design and to apply a fault
tolerant control approach based sliding mode control strategy to
induction motor drives. After giving the induction motor model,
we give also the rotor and stator mechanical faults model; in this
case the sliding mode (nominal control) present a robustness
because it permits to compensate both parametric and load
torque disturbance but can’t reject the mechanical faults effect.
In order to design FTC block an additive control is thus added to
the nominal control this additive control illustrated from the
internal model which is activated automatically as of appearance
of the faults to compensate its effect. Numerical simulations show
the effectiveness of the proposed control scheme.

Keywords- Sliding mode control, robustness, Fault tolerant
control, induction motor, mechanical faults model.

I. INTRODUCTION

As automated systems become more complex, a key
challenge is how to achieve (at worst) graceful degradation in
performance in the event of a fault associated with an
actuator, sensor or component subsystem [1].  Under these
circumstances, it is important for the system to be kept stable
with an acceptable closed loop control performance when
faults occur. Ideally, in applications where continuity of
operation is a key feature, the closed loop system should be
capable of maintaining its pre-specified performance in terms
of quality of service, safety, and stability despite the presence
of faults [2].  This procedure is rendered possible thanks to the
fault tolerant control (FTC) design [3].

Fault tolerance has become an increasingly interesting topic
in the last decade where the automation has become more
complex. The objective is to give solutions that provide fault
accommodation to the most frequent faults and thereby reduce
the costs of handling the faults [4].

Induction motors have dominated the field of
electromechanical energy conversion, featuring 80% of the
motors in use [5]. The applications of induction motors are
widespread. Some induction motors are key elements in
assuring the continuity of the process and production chains of
many industries. A majority of induction motors are used in
electric utility industries, mining industries, petrochemical

industries, and domestic appliances industries. The list of the
industries and applications that induction motors take place in
is rather long. IM’s are also often used in critical applications
such as nuclear plants, aerospace, and military applications,
where the reliability must be of high standards [6].

Several failures can affect electrical motor drives [7] and
can appear on the level of rotor or stator of induction motor
[8]. They can be electric or mechanic.  Their causes very
varied. Indeed, many studies [9-10] showed that each faults
revealed harmonics at specific frequencies in the currents of
the machine. This frequential signature dependent on the
machine structural parameters [5].

Starting from the work presented in [11]   where authors take
the FOC as nominal control in the FTC strategy. In [12]
author’s present the FTC based Backstepping Control. In this
paper we take Sliding Mode Control (SMC) as the nominal
control which is a robust control scheme based on the concept
of changing the controller structure in response to changing
the state of the system in order to obtain a desired response. A
high speed switching control action is used to switch between
different structures and the trajectory of the system is forced
to move along a chosen switching manifold in the state space.
The behavior of the closed loop system is thus determined by
the sliding surface [13].

Our objective in this paper is to design a robust sliding mode
control technique to compensate the load torque and the
parametric disturbances effect. After giving the rotor and/or
stator mechanical faults model in order to design FTC block,
we associated the nominal control with an internal model
which generates an additive term to compensate the faults
effect. The level of the compensation is an indicator of the
faults severity and the nature of the compensation is a help
with the diagnosis.

II. INDUCTION MOTOR MODELING

The setting in the state form of the induction motor model
allows the simulation of this latter. The induction motor model
in the stator direct and quadrature ( qd  ) reference frame is

given by the following state equations:
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With the following expression of field vector f(x):
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The components of this vector are expressed according to the
IM parameters as follows:
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The use of the classical controllers such as the proportional
and integral controller (PI) is insufficient to provide good
speed tracking performance [14]. To overcome these
problems, a robust controller based on the sliding mode
principle is proposed for the speed and flux control.

III. SLIDING MODE CONTROL

Sliding Mode Control (SMC) theory, due to its order
reduction, disturbance rejection, strong robustness, and simple
implementation by means of power converter, is one of the
prospective control methodologies for induction motors [15].

In this case the application of sliding mode control strategy
to induction motor is divided into two steps. First we take the
following equilibrium surface:
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the flux and the speed references.

1. Flux and Speed regulator:

The condition necessary for the system states follow the
trajectory defined by the sliding surfaces is 0iS = which

brings back us to define the rotor flux module and speed
equivalent control in the following way:
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In this case we get:
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The control law which ensures the attractivity is:
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Where 1k and 2k are positive constants. Then from (5) and

(6) we get:
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2. Direct and Quadrature currents regulator:

According to the derivative of the currents surfaces we can
generate the tension on the (d-q) axis.
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Where:
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We ensure the attractive control law by:
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With 3k and 4k are positive constants. Finely we get:
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In this study, the eval block usually is any function of the
following family: sign, relay or linear with saturation. Both
the sign and the relay functions do not perform accurately in a
discrete-time system, resulting in oscillations and undesired
chattering. A linear function (saturation) with a proper gain
provides much better results in reducing oscillations while still
maintaining the properties of sliding mode [15].

3. Stability of the closed loop:

The objective is to steer the currents the flux and the speed to
their desired references. Let de , qe , e and e be the tracking

errors of the currents, the flux and the speed respectively then
the dynamic of the tracking errors are given by:
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From (13) and e and from (14) and e we get respectively:
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From (16) and qe and from (17) and de we get respectively:
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Consider the following Lyapunov function:
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The derivative of V with respect to time is:
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We have at t 0ie and 0ieeval then we take

ii eeeval  where  eeeee qdi ,,,  then the derivative of the

Lyapunov function (20) becomes:
2222
 ekekekekV qqdd 

 (21)

Finely From (21) we see that ( 0V ) the derivative of the
complete Lyapunov function be negative definite this implies
that all the error variables are globally uniformly bounded.

IV. DESIGN OF FAULT TOLERANT CONTROL

1. IM model in presence of faults

In this section we briefly review how the model of the IM
modifies in presence of faults which can be both of
mechanical and electrical nature. With reference to [11], the
faults dealt with in this paper can be summarized in the
following two classes:

• Rotor asymmetries, mainly due to broken bars or dynamic
eccentricity;

• Stator asymmetries, mainly due to static eccentricity.

Following the theory in [16], it turns out that the presence of
stator and rotor faults generates asymmetries in the IM,
yielding some slot harmonics (sinusoidal components) in the
stator currents (see [11]).

   

 

   

 



































]cos

cos[cos

]sin

sin[sin

,2

1
,21

,2

1
,21

iii

n

i
iiisqsq

iii

n

i
iiisdsd

tA

tAtAii

tA

tAtAii

f

f









(22)

Where sdi and sqi denote the stator currents in the  qd 

reference frame. The pulsations of the 12 fn harmonic

components depend on the kind of fault ( 1 is due to the

stator asymmetries,while i2 , fni ,,1 are due to the rotor

asymmetries). The amplitudes iAA , and the phases i,

are unknown, they depend on the stator or rotor faults entity.

The sinusoidal components generated by the presence of the
rotor and stator faults can be modeled by the following
exosystem [11]:

  wSw  
24  fn

w (23)

With: )( ,2,21,21,21 ff nn    is the vector of

the pulsations.
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Where 1 is the pulsation of the harmonic generated by the

stator faults and i2 , fni ,,1 are the pulsations of the

harmonics generated by the rotor faults. The amplitudes and
the phases of the harmonics are unknown; they depend on the
initial state )0(w of the exosystem. Then, the additive

sinusoidal terms in (22) can be as a suitable combination of
the exosystem state, i.e:
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Recalling the current dynamics in the un-faulty operative
condition reported in the previous section, a simple
computation shows that, once the perturbing terms wQd and

wQq are added, by deriving (24) the  qd ii  modify as:
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Bearing in mind the dynamics of the rotor currents in the
normal (i.e., in the absence of faults) operative conditions, it is
also simple to get the IM dynamics after the occurrence of a
fault. As a matter of fact, taking (25) it is readily seen that the
IM model in presence of faults is given by (1) and (2) with an
exogenous input [17].
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In this work the pulsations 1 , i2 , fni ,,1 are assumed to

be unknown. In the presence of faults the IM model becomes:

VDTBuxfx L  )( (27)

2. Control reconfiguration

The principal of this FTC system is presented in the fig.1. In
this figure the compensation term cu resulting from the

equation (30) is known which is useful to compensate the
undesirable terms, which makes it possible to give an
adequate form to the error dynamics, on the basis of which we
calculate the unknown term adu this additive control is added

to the nominal control and setting to compensate the faults
effect (FTC aspect). This additive control results from the
internal model whose role is to reproduce the signal
representing the faults effect (FDI aspect). The faults effects
resulting from a stable autonomous system called exosystem.

The load torque is compensated by the nominal control. For
this (27) becomes:

VBuxfx  )( (28)

The new control law is expressed by:
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Where:
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On the basis of which we calculate the unknown term adu with

the expression which we retained from (26) and from the
nominal control (7) and (11).

The instantaneous difference between the state derivative of
the system and the reference becomes:
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Let us notice that the first two equations do not depend on the
variables 53 and xx .

 in the third equation if 00 31  xx

 in the fourth equation if 00 42  xx

In the continuation, for the determination of adu let us

consider the subsystem:
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Whose dynamics results from the system (31)

 
































wubxk

wubxk

x

x
x

wSw

qad

dad

2226

1115

2

1
~

~
~






 

(33)

From system (33) we can write it in a matrix form:

wuBxHx ad 
~

)~(~ (34)
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In this case for the determination of the internal model we
introduce a resent implicit fault tolerant control approach
which does not rest on the resolution of the Sylvester equation
proposed in [11]. The internal model takes then this form [12]:

Fig.1 The proposed faults tolerant control structure.

FIGURE.2 FAULTS TOLERANT CONTROL STRUCTURE.
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Then adu is chosen like [11]:

 1~
Buad (37)

Consider the systems (34) and the additive term given by (37)
in this case we have:

)()~(~ wxHx   (38)

The new error variable is considered:

)( we   (39)

Its derivative compared to time takes this form:

   wSxNSwe   )~( (40)

The equations describing the dynamics of the errors in closed
loop are thus:
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It is necessary to find the expression of )~(xN which cancels

the error of observation of the faults e and makes it possible at
the same time to reject their effect for it cancels also x~ .

That is to say the Lyapunov function of the system (41):
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After develop of calculatesV becomes:

)~(~~~~ xNexexAxV TTTT  (43)

In this case the )~(xN choice is given by:
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Finally V is written:
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The system (41) becomes:
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The objective of the control is achieved by adopting the
procedure suggested and we able to compensate the faults
effect on the system ( 0x ) and to reproduce ( 0e ) thanks
to the internal model.

V. SIMULATION RESULTS

In Fig.2 we start the simulation by a load torque equal to the
nominal torque and with a variation of 50% in Rr and Rs, we
introduce after that the effect of stator fault at t =0.6 sec.

For Fig.3 we consider the same situation (Fig.2) but in this
case we introduce at t=0.6 sec the effect of stator and rotor
faults.

From these simulations we can noticed that SMC (nominal
control) which we synthesized present a robustness compared
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Fig.4 Simulations of the FTC approach (in the presence of stator fault).
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to the parametric and the load torque disturbance, but proves
to be insufficient in the event of fault. This is checked by
simulations represented above when the internal model is not
active.

For the Fig.4 and Fig.5 we simulate the global closed loop
system with the robust FTC approach.  The FTC approach
(when the internal model is active) which we synthesized
rejects the effect of the load torque, the parametric
disturbances and also the faults effect.

VI. CONCLUSION

In this paper we present the application of a FTC approach
based sliding mode control to induction motors. In un-faulty
condition the sliding mode controller permits to steer the flux
and the speed variables to their desired references and to reject
the parametric and the load torque disturbances, however the
presence of rotor and/or stator mechanical faults degraded the
performances of the induction motor. In order to compensate
the faults effect a robust FTC approach can be designed
starting with generating from the internal model state, an
additive term wish we add to the nominal control (SMC) to
compensate the faults effect. The simulation results show the
robustness and the effectiveness of the proposed control
scheme.
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APPENDIX
RATED DATA OF THE SIMULATED INDUCTION MOTOR

Rated Values Power 1.08           KW
Voltage 220/380 V

Frequency 50              Hz
np 2

Rated parameters Rs 10 
Rr 6.3 
Ls 0.4642       H
Lr 0.4612       H
M 0.4212       H
J 0.02           Kg.m2

f 0

RATED DATA OF THE SIMULATED INDUCTION
MOTOR

Fig.5 Simulations of the FTC approach (in the presence of
stator and rotor faults).
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