Exponential Synchronization for a class of Nonlinear Dynamical Networks

Houda KHELIFI
ISSAT, Sousse University
houda.khlifi@gmail.com

Abstract—In this paper, the exponential synchronization of a class of chaotic neural networks with delays using the drive-response concept is investigated. Based on the Lyapunov stability method and the Halanay inequality lemma, a delay independent sufficient exponential synchronization condition is derived. This paper is organized as follows. In Section II, we provide a description of chaotic neural networks considered in the work and defines the exponential synchronization problem of the drive-response chaotic neural networks. In Section III we derive a control law to solve the synchronization problem, and a sufficient criterion for the exponential synchronization is established. In Section IV, we present some illustrative examples. Finally, we draw conclusions in Section V.

The following notations are used throughout this paper.

For $x \in \mathbb{R}^n$, let $\|x\| = \left(\sum_{i=1}^{n} x_i^2 \right)^{1/2}$ denote the Euclidian vector norm.

Besides, and for a matrix $A \in \mathbb{R}^{n\times n}$, let $\|A\|$ indicate the norm of A induced by the Euclidean vector norm, i.e.,

$$\|A\| = \left(\lambda_{\text{max}}(A^T A) \right)^{1/2},$$

where $\lambda_{\text{max}}(A)$ represents the maximum eigenvalue of matrix A and T denotes the transpose of a matrix. Note that, for all $(n\times n)$ real symmetric matrix A, one has A is positive definite if and only if all its eigenvalues are positive. Furthermore, for all $x \in \mathbb{R}^n$

$$\lambda_{\text{min}}(A) \|x\|^2 \leq x^T A x \leq \lambda_{\text{max}}(A) \|x\|^2,$$

where $\lambda_{\text{min}}(A)(\lambda_{\text{max}}(A))$ represents the minimum (resp. the maximum) eigenvalue of matrix A.

II. SYSTEMS DESCRIPTION AND SYNCHRONIZATION PROBLEM

A class of the delayed chaotic neural network considered in this paper is described by the following state equations:

$$\begin{align*}
\dot{x}(t) &= -Dx(t) + Ag(x(t)) \\
&+ \sum_{k=1}^{r} W_k g(x(t-\tau_k(t))) + J
\end{align*}$$

(1)
Where \(x(t) \) is the neural state vector, the matrix
\[
D = \text{diag} \{ d_1, d_2, \ldots, d_n \} \text{ and } d_i > 0, \quad A \in \mathbb{R}^{n \times n},
\]
\[
W_k = \begin{pmatrix} w_{ij} \end{pmatrix}_{n \times n}, \quad k = 1, 2, \ldots, r \quad \text{are the connection weight}
\]
\[
\text{matrices, } g_i(x(t)) \in \mathbb{R}^n \text{ denotes the neuron activation function}
\]
with \(g(0) = 0 \), \(J \) is a constant input to set the desired
equilibrium point, and \(\tau_k(t) \) is the constant discrete time delay.

Throughout this paper, we make the following assumptions.

(A1) Each function \(g_i : \mathbb{R} \rightarrow \mathbb{R}, i \in \{1, 2, \ldots, n\} \) is bounded, and satisfies the Lipschitz condition with a Lipschitz constant \(L_i > 0, i.e. |g_i(u) - g_i(v)| \leq L_i |u - v| \) for all \(u, v \in \mathbb{R} \).

(A2) \(\tau_j(t) \geq 0 \) is the delay function for all \(i \leq i \leq n \).

We will consider the euclidean norm in the whole the paper.

Let the chaotic system (1) be the drive system and it’s unidirectionally coupled copy:

\[
\dot{z}(t) = -Dz(t) + Ag(z(t)) + \sum_{k=1}^{r} W_k g(z(t - \tau_k(t))) + J + u(t)
\]

be the response system, where \(u(t) \) denotes external control input that will be appropriately designed for a certain control objective.

Let \(e_i(t) = x_i(t) - z_i(t) \) be the error between the two systems.

\[
e(t) \rightarrow 0, \text{ as } t \rightarrow 0 \text{ means that the drive neural networks and the response neural networks are synchronized.}
\]

Therefore, the error dynamics between (1) and (2) can be expressed by:

\[
\dot{e}(t) = -D(e(t) - z(t)) + Ag(x(t)) - Ag(z(t)) + \sum_{k=1}^{r} W_k (g(x(t-\tau_k(t))) - g(z(t-\tau_k(t)))) + u(t)
\]

Or by the following compact form:

\[
\dot{e}(t) = -De(t) + Ag(e(t)) + Wg(e(t-\tau(t))) - u(t)
\]

If the state variables of the drive system are used to drive the response system, then the control input vector with state feedback is designed as follows:

\[
\begin{bmatrix} u_1(t) \\ \vdots \\ u_n(t) \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{n} w_{ij} (x_j(t) - z_j(t)) \\ \vdots \\ \sum_{j=1}^{n} w_{nj} (x_j(t) - z_j(t)) \end{bmatrix}
\]

\[
= \begin{bmatrix} w_{11} & \ldots & w_{1n} \\ \vdots & \ddots & \vdots \\ w_{n1} & \ldots & w_{nn} \end{bmatrix} \begin{bmatrix} x_1(t) - z_1(t) \\ \vdots \\ x_n(t) - z_n(t) \end{bmatrix}
\]

\[= \Omega \begin{bmatrix} e_1(t) \\ \vdots \\ e_n(t) \end{bmatrix}
\]

Where \(\Omega \) is the controller gain matrix and will be appropriately chosen for exponentially synchronizing both drive system and response system. With the control law (5), the error dynamics can be expressed by the following compact form:

\[
\dot{e}(t) = -De(t) + Ag(e(t)) + Wg(e(t-\tau(t))) - \Omega e(t)
\]

\[\text{Definition 1. Systems (1) and (2) are said to be exponentially synchronized if there exist constants } \eta \geq 1 \text{ and } \alpha > 0 \text{ such that for all } t \geq 0 \]

\[
|x_i(t) - z_i(t)| \leq \eta|x_i(0) - z_i(0)| \exp(-\alpha t)
\]

Moreover, the constant \(\alpha \) is defined as the exponential synchronization rate.

III. SYNCHRONIZATION CRITERION

In this section, using the Halanay inequality lemma, we establish a sufficient condition for synchronization of chaotic systems with delays.

\[\text{Lemma 1 (Halanay inequality lemma [20]). Let } \tau \geq 0 \text{ be a constant, and } V(t) \text{ be a non-negative continuous function}
\]
defined for \(-\tau, +\infty \) which satisfies for \(t \geq 0 \)
\[
\dot{V}(t) \leq -pV(t) + q \sup_{t - \tau \leq s \leq t} V(s), \text{ where } p \text{ and } q
\]
are constants. If \(p > q > 0 \), then for \(t > 0 \)
\[
V(t) \leq (\sup_{-\tau \leq s \leq 0} V(s)) \exp(-\delta t), \text{ where } \delta \text{ is a unique positive root of the equation } \delta = p - q \exp(\delta \tau).
\]
Theorem. For these drive-response chaotic neural networks (1) and (2) which satisfy assumptions (A1)-(A2). If the controller gain matrix \(\Omega \) in (5) is real symmetric and positive definite, and satisfies

\[
L(\|A\|+\|W\|)/\min_{1\leq i\leq n}(d_i) + \lambda_{\min}(\Omega) < 1,
\]

where \(L=\max_{1\leq i\leq n}(L_i) \), then the exponential synchronization of systems (1) and (2) is obtained.

Proof. Consider the following continuous function:

\[
V(t)=\frac{1}{2}e(t)^ TE(t)=\frac{1}{2}\|e(t)\|^2 \tag{7}
\]

It can easily be verified that \(V(t) \) is a non-negative function over \([-\tau, +\infty[\) and that it is radially unbounded, i.e.

\[
V(t)\rightarrow +\infty \quad \text{as} \quad \|e\|\rightarrow +\infty.
\]

Using the definition of \(g(e(t-\tau)) \) and assumption (A1) yields

\[
\|g(e(t-\tau))\|^2 = \sum_{i=1}^{n} g_i^2(e_i(t-\tau)) \\
\leq \sum_{i=1}^{n} L_i^2 e_i^2(t-\tau) \\
\leq L^2 \|e(t-\tau)\|^2
\]

And

\[
\|g(e(t))\|^2 \leq L^2 \|e(t)\|^2
\]

Let us evaluate the time derivative of \(V \) along the trajectory of (6) gives:

\[
\dot{V}(t)=-e^TDe(t)+e^TAg(e(t))+e^TWg(e(t-\tau(t)))-e^T\Omega e(t)
\]

\[
\leq -\|D\|\|e\|\|e\| + \|A\|\|g(e(t))\| + \|W\|\|g(e(t-\tau(t))\| - \lambda_{\min}(\Omega)\|\|e\|^2
\]

\[
\leq -\min(d_i)\|e\|^2 + L\|A\|\|e\|^2 + L\|W\|\|e(t-\tau(t))\|^2 - \lambda_{\min}(\Omega)\|e\|^2
\]

\[
\leq -(2\min(d_i) - 2L\|A\| - L\|W\| + 2\lambda_{\min}(\Omega))\frac{1}{2}\|e\|^2 + L\|W\|\|e(t-\tau(t))\|^2
\]

\[
\leq -(2\min(d_i) - 2L\|A\| - L\|W\| + 2\lambda_{\min}(\Omega))\|e\|^2 + \max_{t-\tau\leq s\leq t} V(s)
\]

Applying Lemma 1 to (8), it can be shown that if

\[
L(\|A\|+\|W\|)/\min_{1\leq i\leq n}(d_i) + \lambda_{\min}(\Omega) < 1
\]

Then

\[
V(t) \leq (\sup_{-\tau\leq s\leq 0} V(s)) \exp(-\delta t) \tag{9}
\]

Where

\[
\delta = (2\min(d_i) - 2L\|A\| - L\|W\| + 2\lambda_{\min}(\Omega)) - L\|W\|\exp(\delta t)
\]

Therefore, \(V(e(t)) \) converges to zero exponentially, which in turn implies that \(e(t) \) also converges globally and exponentially to zero with a convergence rate of \(\delta/2 \). Therefore, every trajectory \(z_i(t) \) of (2) must synchronize exponentially toward the \(x_i(t) \) with a convergence rate of \(\delta/2 \).

IV. APPLICATION

Example 1. Consider a delayed neural network as below:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} =
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix} +
\begin{bmatrix}
2 & -0.1 \\
-5 & 4.5
\end{bmatrix}
\begin{bmatrix}
x_1(t-1) \\
x_2(t-1)
\end{bmatrix}
\]

\[
= g_1(x_1(t)) + [g_2(x_1(t-1)) + g_2(x_2(t-1))]
\]

where \(d_i=1 \) \(T \), \(g_i(x_i)=\tanh(x_i) \).

\[
A=\begin{bmatrix}
2 & -0.1 \\
-5 & 4.5
\end{bmatrix}
\]

\[
W =\begin{bmatrix}
-1.5 & -0.5 \\
-0.2 & -4
\end{bmatrix}
\]

The system satisfies assumptions (A1) with \(L_1=L_2=1 \).

\[
\|A\|=6.9099 \quad \text{and} \quad \|W\|=4.0522 . \quad \text{Fig.1 shows the chaotic behavior of the system (11) with the initial condition}
\]

\[
\begin{bmatrix}
x_1(s) \\
x_2(s)
\end{bmatrix} =\begin{bmatrix}
0.4 \\
0.6
\end{bmatrix}
\]
(11) and (12) have been synchronized with an exponential convergence rate of 0.0792.

The system satisfies assumptions (A1) with $L_1= L_2=1$.

$\|A\|=20.1589$ and $\|W\|=1.5439$. Fig. 3 shows the chaotic behavior of the system with the initial condition $[x_1(s) \ x_2(s)]=[0.1 \ 0.1]$ for $-1 \leq s \leq 0$. The response chaotic neural network is designed as follows:

$$
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} =

\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix} +

\begin{bmatrix}
1+\frac{\pi}{4} & 20 \\
0.1 & 1+\frac{\pi}{4}
\end{bmatrix}
\begin{bmatrix}
g_1(x_1(t)) \\
g_2(x_2(t))
\end{bmatrix}

+ \begin{bmatrix}
-\sqrt{\frac{\pi}{4}} & 1.3 \\
0.1 & -\sqrt{\frac{\pi}{4}} & 1.3
\end{bmatrix}
\begin{bmatrix}
g_1(x_1(t-1)) \\
g_2(x_2(t-1))
\end{bmatrix} + u(t)
$$

If the controller gain matrix in (5) is chosen as

$$
\Omega = \begin{bmatrix} 24 & -6 \\ -6 & 40 \end{bmatrix}
$$

with eigenvalues $\lambda_{\text{min}}(\Omega)=22$ and $\lambda_{\text{max}}(\Omega)=42$, then the following inequality:

$$
21.7029 = \lambda_{\text{min}}(\|A\| + \|W\|) + \lambda_{\text{min}}(\Omega) + \lambda_{\text{max}}(\Omega) = 23.1569
$$

is satisfied. It follows from the main theorem that the systems (13) and (14) have been synchronized with an exponential convergence rate of 0.3889.
This paper has presented a new sufficient condition to solve the exponential synchronization of a class of delayed chaotic neural networks. The proposed sufficient condition is derived primarily by the Halanay inequality lemma rather than through the use of the Lyapunov functional. The result has indicated that the real symmetric and positive definite controller gain matrix Ω is designed to achieve synchronization.

REFERENCES

[1] Vel Tech Dr. RR & Dr. SR, Hybrid synchronization of liu and lü chaotic systems via adaptive control, International Journal of Advanced Information Technology (IJAIT) Vol. 1, No. 6, December 2011.

