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ABSTRACT

In this work, We study the local existence of mild
solutions for a class of fractional evolution system
for higher-order semilinear parabolic equations with
nonlocal terms. We provide a fractional model for the
dynamic process of tracer response in aerated and
non-aerated conditions, using the variable t (time) in
considered systems of partial fractional differential
equations is considered in the Caputo sense, and the
variable x (space) in the Riemann-Liouville sense.
Keywords: Reaction-diffusion systems, mild solution,
fractional integrals, Caputo derivatives, Putzer
algorithm, milli torus reactor, mixing.

1 INTRODUCTION

Mixing plays a very important role in different industries
such as chemistry, biochemistry, food,.., and the The flow
behaviour inside the milli torus reactor was modelled
classically by the dispersed plug flow model. Correla-
tions have been proposed to predict gas hold up and
axial dispersion [6]. These can be treated by a methods
involving fractional calculus [2], [8].

IN this work, we study a class of semilinear parabolic
system involving fractional derivatives and models


cDα1

t u + (−∆)m1u = Jβ1
0|t(|v|

p−1v(t)) ,
cDα2

t v + (−∆)m2v = Jβ2
0|t(|u|

q−1u(t)) ,

u(x, 0) = u0(x), v(0, x) = v0(x)
(1)

where (x, t) ∈ RN × R+, p, q > 1, m1,m2 ∈ R∗,
α1, α2 ∈ (0, 1) with m1 6= m2, α1 6= α2 and β1 6= β2.
We denote by cDαi

t ∀i = 1, 2 the Caputo derivative and
Jαi

0|t ∀i = 1, 2 the Riemann-Liouville fractional integrals.
We also, denote by (−∆)mi the infinitesimal generator
of a strongly continuous semigroup e(−∆)mi t that is not

order-preserving.
The m−laplacian (−∆)m has for eigenvalues [3]

λn =
(

nπ

2
− (1−m)π

4

)2m

+ o

(
1
n

)
(2)

The plan of this paper is as follows. In Section 2, we
state some definitions and results needed. section 3 is
devoted to the local existence and uniqueness of mild
solutions for α1 = α2 = 0 in the whole space, while
subsection 4 is on a direct resolution of the homogeneous
system (1) in the interval. Finally we give physical
interpretation and conclusion.

2 PRELIMINARIES

Before proving our main results, we need to recall some
basic definitions and properties.

2.1 Basic definitions (see [2], [8])

Let f be an integrable function on R+, then for
0 < T < ∞ and t ∈ [0, T ], we call

Jα
0|tf(t) : =

1
Γ(α)

t∫
0

f(τ)
(t− τ)1−α

dτ, t > 0, (3)

Jα
t|T f(t) : =

1
Γ(α)

T∫
t

f(τ)
(τ − t)1−α

dτ, t > 0, (4)

J0
0|tf(t) : = f(t)

the left-handed Riemann-Liouville fractional integral
and the right-handed Riemann-Liouville fractional inte-
gral of order α ∈ ]0, 1[, where Γ(α) is the Euler Gamma
function.
The left-handed and right-handed Caputo derivatives
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cDα
0|t and cDα

t|T of order α ∈ ]0, 1[ are defined by

cDα
0|tf(t) : = (Jn−α

0|t Dn)f(t)

=
1

Γ(n− α)
d

dt

t∫
0

fn(τ)
(t− τ)α−n+1

dτ, (5)

cDα
t|T f(t) : = (−1)n(Jn−α

t|T Dn)f(t)

=
(−1)n

Γ(1− α)
d

dt

T∫
t

fn(τ)
(τ − t)α−n+1

dτ , (6)

hence, the following properties:

D1+α
t|T f : = −D.Dα

t|T f, (7)

Dα
0|tJ

α
0|t : = IdLq(0,T ) for all 1 ≤ q ≤ ∞, (8)

D0
0|tf(t) : = f(t), (9)

hold for all t ∈ [0, T ], where T > 0.
We denote by S(t) = e−t(−∆)m

the strongly continuous
semigroup on L2(RN ) generated by (−∆)m.

3 LOCAL EXISTENCE AND UNIQUENESS

We shall establish the existence of a unique local mild
solution by using properties of semigroup

3.1 Local existence
Before giving local existence, we state the definition of a
mild solution of (1) for α1 = α2 = 0.
Definition 1. Let u0, v0 ∈ C0(RN ). Let p, q > 1 , βi ∈
(0, 1) and mi ≥ 1 for i = 1, 2.
A couple (u, v) ∈ C([0, T ], C0(RN ) × C0(RN )) is said to
be a mild solution of the problem (1) if the following
integral equations hold for every T > 0

u(t) = S1(t)u0 +

t∫
0

S1(t− s)Jβ1
0|s(|v|

p−1v)ds, t ∈ [0, T ]

v(t) = S2(t)v0 +

t∫
0

S2(t− s)Jβ2
0|s(|u|

q−1u)ds, t ∈ [0, T ],

where Si(t) := e(−∆)mi t for i = 1, 2 is the strongly
continuous semigroup on L2(RN ) generated by the
Laplacian operator (−∆)mi .

Theorem 1.
Assume p, q > 1, βi := 1 − γi ∈ (0, 1) and mi ∈ N∗

(i = 1, 2). For each initial data
u0, v0 ∈ C0(RN ) and T = T (u0, v0) > 0 such that
‖u0‖∞, ‖v0‖∞ ≤ A0

2 for A0 > 0 and
max {2C(p, q), 1}T (u0, v0) ≤ 1

2 , there exists a unique
mild solution
(u, v) ∈

{
C

(
[0, Tmax), C0(RN )

)}2 defined on (0, Tmax)
satisfying the alternative:
Either Tmax = +∞

or Tmax < +∞
and limt→Tmax

(
‖u(t)‖L∞(RN ) + ‖v(t)‖L∞(RN )

)
= ∞.

where
Tmax := sup {T > 0 : u is a mild solution to (1)}
in L∞((0, T ), C0(RN )× C0(RN ))[7].

Proof. • By hypothesis ‖u0‖∞, ‖v0‖∞ ≤ A0
2 for A0 > 0.

We consider the set

ET =
{

(u, v) ∈ L∞((0, T ),
{
C0(RN )

}2
); ‖|(u, v)|‖ ≤ 2 A0

}
,

where ‖|(u, v)|‖ = ‖u0‖∞+ ‖v0‖∞, T > 0 , for which will
be precised later and ‖|· |‖ is the norm of ET defined by

‖|(u, v)|‖ = ‖u‖1+‖v‖1 = ‖u‖L∞((0,T )×RN )+‖v‖L∞((0,T )×RN ).

In what follows, we prove that u, v are well defined and
map ET into itself, and are a contraction mapping from
ET into itself provided T is sufficiently small. For that,
we introduce the following notations

‖· ‖∞ := ‖· ‖L∞(RN ), ‖· ‖∞,T := ‖· ‖L∞(0,T )

Consider the mapping Ψ(u, v) = (Ψ1(u, v), Ψ2(u, v)) :
ET → L∞

(
(0, T ),

{
C0(RN )

}2
)

defined by

Ψ1((u, v)) = S1(t)u0 +
1

Γ(1− γ1)

t∫
0

S1(t− s)

s∫
0

(s− σ)−γ1 |v|p−1v(σ) dσ ds (10)

Ψ2((u, v)) = S2(t)v0 +
1

Γ(1− γ2)

t∫
0

S2(t− s)

s∫
0

(s− σ)−γ2 |u|q−1u(σ) dσ ds (11)

For (u, v) ∈ ET and according to the semigroup proper-
ties, we have

‖|Ψ(u, v)|‖ ≤ (‖u0‖∞ + ‖v0‖∞)

+ ‖
t∫

0

t∫
σ

(s− σ)−γ1

Γ(1− γ1)
‖v(σ)‖p

∞ ds dσ‖∞,T

+ ‖
t∫

0

t∫
σ

(s− σ)−γ2

Γ(1− γ2)
‖u(σ)‖q

∞ ds dσ‖∞,T

≤ A0 + 2T (u0, v0)A0, (12)

where

T (u0, v0) = max

{
T 2−γ12p−1Ap−1

0

Γ(3− γ1)
,

T 2−γ22q−1Aq−1
0

Γ(3− γ2)

}
If 2T (u0, v0) ≤ 1, then ‖|Ψ(u, v)|‖ ≤ 2A0 and Ψ(u, v) ∈
ET .
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• It remains to prove that Ψ is a contraction. For that, let
(u1, v1), (u2, v2) ∈ ET , using the following estimate

‖up − vp‖∞ ≤ C(p)‖u− v‖∞
(
‖u‖p−1

∞ + ‖v‖p−1
∞

)
, (13)

for all u, v andp ≥ 1, we have

‖|Ψ(u1, v1)−Ψ(u2, v2)|‖

≤ ‖
t∫

0

s∫
0

(s− σ)−γ1

Γ(1− γ1)
‖Yp‖∞ dσ ds‖∞,T

+ ‖
t∫

0

s∫
0

(s− σ)−γ2

Γ(1− γ2)
‖Yp‖∞ dσ ds‖∞,T

≤ 2C(p, q) T (u0, v0)|‖(u1, v1)− (u2, v2)|‖

≤ 1
2
|‖(u1, v1)− (u2, v2)|‖,

with,
Yp := |v1|p−1v1(σ)− |v2|p−1v2(σ)

and,
Yq := |u1|q−1u1(σ)− |u2|q−1u2(σ)

Thus Ψ is a strict contraction in ET provided that T
satisfy the following condition:

max {2C(p, q), 1}T (u0, v0) ≤
1
2

where C(p, q) = max {C(p), C(q)}. We conclude by the
Banach fixed point theorem that (u, v) ∈ ET is a mild
solution of the problem (1).
The uniqueness of the solution of the problem (1)
holds by the singular Gronwall’s lemma. Hence, by the
Banach fixed point theorem, the system admits a unique
mild solution.

3.2 Resolution of Homogeneous system

We are interesting on a direct resolution of system (1) in
(−1, 1)×R+ without second member, which corresponds
to the system

cDα1
t u + (−∆)m1u = 0

cDα2
t v + (−∆)m2v = 0 ,

u(x, 0) = u0(x), v(0, x) = v0(x)
(14)

The system (14) can be written as follows(
u(α)

v(α)

)
= A

(
u
v

)
(15)

where, u(α) and v(α) stands for the caputo derivative,
and A is the 2× 2 matrix defined by(

(−∆)m1 0
0 (−∆)m2

)
Theorem 2.
Let λ1, λ2 two distinct eigenvalues of matrix A.

For u0 > 0, v0 > 0, the system (14) has the explicit
solutions(

u
v

)
=

eλ
1/α
1 tM0 +

(
eλ

1/α
1 t − eλ

1/α
2 t

)
λ

1/α
1 − λ

1/α
2

M1


×

(
u0

v0

)
(16)

For the proof, we need the following results
Theorem (Putzer Algorithm for finding eAt)[5]
Let λ1, λ2, · · ·λN be the (not necessarily distinct) eigen-
values of the matrix A. Then

eAt =
N−1∑
k=0

pk+1(t)Mk, (17)

where M0 := I ,

Mk :=
k∏

i=1

(A− λiI), (18)

for 1 ≤ k ≤ N and the vector function p defined by

p(t) =


p1(t)
p2(t)
· · ·

pN (t)

 ,

for t ∈ R, is the solution of the IVP

p′ =


λ1 0 0 . . . 0
1 λ2 0 · · · 0
0 1 λ3 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 λN

 p, p(0) =


1
0
0
...
0

 .

Corollary 1 ( see [1] ).
Let λ be a parameter, the Mittag Leffler functions can
be written explicitly in terms of exponential functions as
follow

Eα(λ
d

dx
) = e

λ
1
α d

1
α

dx
1
α

=
1
π

∞∫
−∞

esξA(β)
N (ξ, λ

1
Nα ) dξ, .

where
1
α

= nβ, 0 < β ≤ 1,

and the function A(α)
N (ξ, λ) is given by

A(α)
N (ξ, λ) = −1

ξ

∞∫
−∞

AN (τ, λ)W (−α, 0; τ(−ξ)−α) dτ.

where the functions AN (τ, λ) and W (−α, 0;−λαt−α) are
represented by

AN (τ, λ) =



∞∫
0

cos(rξ + (−1)
N+1

2 λNrN ) dr N = 2k + 1

1
Nλ

∞∫
0

e−r cos( 1
λ r

1
N ξ)

r1− 1
N

dr N = 4k + 2

1
Nλ

∞∫
0

er cos( 1
λ r

1
N ξ)

r1− 1
N

dr N = 4k
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and,

1
t
W (−α, 0;−λαt−α) =

1
2πi

c+i∞∫
c−i∞

e−λαs−α

est ds

Proof of Theorem 2.
The proof is carried out in very much the same way as
the direct proof of Theorem 3.2. in [1]. By writing solu-
tions of (14) in terms of elementary function (exponential
functions), we use Putzer algorithm for writing eAλ.
Let λ1, λ2 be the two distinct eigenvalues of the matrix A.
Then we can write eAλ as given in (17), and for k = 1, 2
the functions pk are given by the relations

p1(λ) = eλ1λ (19)

pi(λ) = eλiλ

t∫
0

e−λiτpi−1(τ) dτ, i = 1, 2. (20)

Applying the Laplace transform on both sides of equa-
tions of system (15), we get(

u
v

)
= L−1

{
sα−1

sαI −A

} (
u0

v0

)
(21)

= Eα(Atα)
(

u0

v0

)
(22)

The Putzer algorithm for an exponential matrix etA, and
corollary 1, give(

u
v

)
= eA

1
α t

(
u0

v0

)
= (p1(t)M0 + p2(t)M1)

(
u0

v0

)
(23)

where for the eigenvalues λ1, λ2 of A, we have

p1(t) = eλ1t, p2(t) =
1

λ1 − λ2

(
eλ1t − eλ2t

)
. (24)

Then, from (23) and (24), we get (16).

4 PHYSICAL INTERPRETATIONS AND CON-
CLUSIONS

A physical meaning of (14) by taking u, v : as tracer
concentrations at different times in the work of [6],
cited above. So, the residence time distribution (RTD)
was (classically) an important parameter characterizing
the flow pattern of the mixing and the flow pattern
occurring inside the reactor, but only axial dispersion
were considered, and the radial one were neglected.
However, the presence of term (−∆)m, m ∈ N∗ [4] can
compensate this, in terms that the corresponding evolu-
tion processes are not order-preserving, which motivated
as to construct for given model solutions (physically con-
centrations) that may be exits all the time by resolving
directly the system (14) in many phases in the torus
reactor even to have concentrations with no lack. Thus
fractional model is a new and power model for studying
evolution processes at different times without absence of
memory.
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