Numerical simulation of air flow and temperature distribution in air receiver of solar tower

Aoudjera farida^{,*}, Djouimaa sihem¹

Applied physic energetic Laboratory (LPEA), University of Batna. Chahid Boukhlouf Mohamed El Hadi, Batna, Algeria * faridaph89@yahoo.com ¹sihemdjouimaa@univ-batna.dz

Abstract— The large specific surface area of porous media and the tortuous flow path inside the porous media make it a useful material for many industrial applications, especially in applications where the heat transfer is important. The objective of this study is to simulate and analyzes the temperature distribution of the fluid and solid phases in volumetric solar air receivers. The ceramic foams were represented by structures. The numerical simulations were based on the three dimensional Reynolds-averaged Navier–Stokes (RANS) equations. A sensitivity study on the heat transfer coefficient was conducted with the porosity, velocity and as parameters. Based on the numerical simulation results. Sensitivity studies were conducted to analyze the effects of velocity, thickness of porous medium and the thermal conductivity on the temperature fields.

Keywords— Heat transfer, CFD, porous media; volumetric solar receiver; ceramic foams;

I. INTRODUCTION

The solar tower technology is a promising way to generate large amounts of electricity from concentrated solar energy in high solar resource countries such as North Africa and the Middle East, India, Australia and parts of North and South America, countries known to belong to the so-called "sun belt" of the Earth. As Algeria is a large solar potential, its contribution to develop this technology is very high. The solar potential is estimated at 169, 440 tera-watt hours / year (TWh / year) for solar thermal and 13.9 TWH / year for solar photovoltaics. Boughezoul in the north of Algeria is the especially city where the installation of a power plant with a solar tower is expected to produce up to 20 Megawatts by 2030.

Volumetric air receivers have been under development since the 1980s and typically employ porous structures (e.g., honeycombs, porous ceramics) that are irradiated by concentrated sunlight. Air flows through the porous structure and is heated to temperatures between 800 1C and 1000 1C for metals, up to 1200 1C for ceramics, and up to 1500 1C for SiC [1]. The air can then be used to heat a separate working fluid (e.g., for a Rankine steam cycle) [2], chargea storage medium [3], or pass directly into a gas turbine. The two basic applications of volumetric air receivers are (1) open-loop

Copyright IPCO-2017 ISSN 2356-5608 atmospheric receiver system for a Rankine cycle and (2) closed-loop pressurized (windowed) receiver system for a Brayton Cycle.

Studies of the temperature field inside porous media have widely used the local thermal non-equilibrium model (The radiation heat transfer plays a dominant role in the heat transfer when the porous is in a high temperature environment (Zhao et al., 2004). The working temperature of volumetric solar receiver is very high, generally range from ambient temperature to 1000°C or higher. Thus the radiation heat transfer is important. Volumetric solar receivers have been studied for more than two decenies. Flamant et al. (Flamant et al. 1988) and Variot et al. (Variaot et al., 1994) investigated the combined heat transfer in a two-slab selective volumetric solar air receiver made of a multilayer packed bed. Pitz-Paal et al. (Pitz-Paal et al., 1991) numerically investigated the air and wall temperature distribution in a selective solar receiver which consisted of a ceramic foil receiver covered by a matrix of square channels of quartz glass. These volumetric solar receivers used the same selective absorptive concept in which the maximum temperature locates inside of the volumetric solar receiver. However, because of the complexity of the structures, the selective-absorbing volumetric solar receiver has not been studied much more. Researchers then switched to a volumetric solar receiver structure without a semi transparent layer. Fend et al. (Fend et al., 2004) proposed an ideal temperature distribution in the solid phase where the maximum temperature is located inside the absorber. However, experimental data in the literature (Fend et al., 2004) illustrated that the maximum temperature is still located at the front surface of the absorber. [4].

This work has as a principal objective to contribute to master internal flows and heat transfer in porous medium by determining the temperature, pressure and velocity distribution in volumetric solar receiver. The dynamic and heat transfer characteristics between the flowing fluid and surface of ceramic foams are investigated. For that purpose, the flow and the energy balance are solved in the domain with standard CFD tools. The ceramic foam geometry is represented by periodic regular structures formed with packed tetrakaidecahedra. SST turbulent model is used to appropriate the predict simulation. In another working in future, it will be necessary to study a comparison between different turbulent models to confirm Vieser and Menter [5.6]. work in which

4^{ème} Conférence Internationale des Energies Renouvelables (CIER-2016) Proceedings of Engineering and Technology – PET Vol.15, pp.81 - 87

they concluded that the SST model in combination with an optimal wall treatment provides highly accurate results for a wide variety of heat transfer cases. Very important is to see the thermal conductivity influence especially the volumetric receiver performance; we present a comparison between different values of this parameter. Also is presented two row of ceramic foam (λ =155 W/m k) results and compare them with one row's. All simulations done in this work are for instationary and three-dimensional flows. There were realized on an irregular structured grid (generated by the pre-processor *GAMBIT*) with the *FLUENT* software package, which solves the Navier-Stokes equations by using finite volume methods. The results validation is based on the comparison with data provided in Z. Wu et al Z. Wu et a [7]. Work

II. PHYSICS MODELS

A. Geometry

The studied geometry is ceramic foams and can be described as a reticulated structure of open cells with typically 12-14pentagonal or hexagonal faces (Figures 1-2). The following relationships [*Z. Wu et al*] [7] (simplified formulas were used to calculate the volume of the solid phase),

d=2.828 L_s

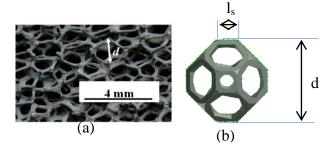
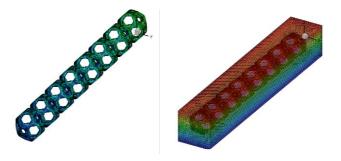



Fig. 1- (a) Photo of ceramic foams, Z. Wu et al [5]. (b) Foams geometry

Our Structure foams is very different than used in Z. Wu et al [7] one (figures 2 and 3)

Fig. 3- Geometry of (Z. Wu et al.) [7].

B. Numerical Simulation

The irregular structured grid is generated by the pre-processor *GAMBIT*. According to this complex geometry, the grid is obtained using the tetra hybrid scheme. A very fine grid for accurately simulation of the intense turbulent flow and heat transfer is require; the final grid used in this paper was approximately 91000 elements (Figures 2.and 4). This grid, which gave us high satisfaction (speed convergence and results qualities), is obtained after several attempting improvements concerning surface foams and volume receiver

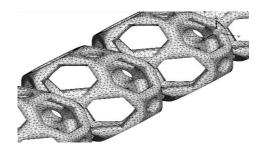
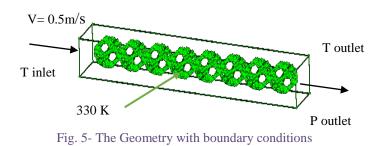


Fig.4- Computational Grid


The natural convection in the ceramic foams is numerically investigated using the commercial computational fluid dynamics software FLUENT (version 6.3), where the SIMPLE algorithm is used to couple the speed and the pressure. Using this approach, the governing equations are solved simultaneously i.e. coupled together. Governing equations for additional scalars will be solved sequentially. For that, we used a control-volume-based technique, which consists of dividing the domain into discrete control volumes using a computational grid, then, integrate the governing equations on the individual control volumes to construct algebraic equations for the discrete dependent variables (unknowns). After that, a linearization for discretized equations and solution is done.

Copyright IPCO-2017 ISSN 2356-5608 4^{ème} Conférence Internationale des Energies Renouvelables (CIER-2016) Proceedings of Engineering and Technology – PET Vol.15, pp.81 - 87

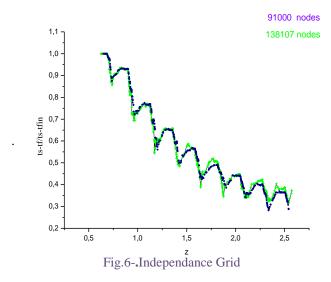
The second order upstream scheme is used because higherorder accuracy is desired.

C. Boundary conditions

The boundary conditions are very important to obtain an exact solution with a rapid convergence, and must be defined to solve the different equations. A velocity-inlet boundary condition with 0.5m/s, and static temperature equal to 300 K are used at inlet. A pressure-outlet boundary condition with zero gauge pressure (relative pressure, with reference pressure of 101,325 Pa) is used at the outlet boundary. All the strut surfaces were defined as non-slip, non-penetrating walls with a constant temperature of 330 K

D. Turbulence model

To choose the turbulence model, it first should be clarified whether or not the flow regime is turbulent. The widely used criterion for distinguishing different flow regimes is the Reynolds number; unfortunately, there are many ways to calculate the Reynolds number for flow in a foam material [7].


The Reynolds number, which is based on the mean cell size and the superficial velocity $R_e = \rho u d / \eta$, ranges from 129 to 323 .is used with the SST k- ω model in this study for all the computing cases. The Reynolds number is based on the pore diameter and average pore velocity, instead of the mean cell size and superficial velocity. Hens setting boundary conditions for a CFD simulation it is often necessary to estimate the turbulence intensity on the inlets. The turbulence intensity, I is defined as the ratio of the root-mean-square of the velocity fluctuations, u to the mean flow velocity, \mathcal{U}_{avg} for internal flows, the turbulence intensity at the inlets is totally dependent on the upstream history of the flow. If the flow upstream is underdeveloped and undisturbed, we can use a low turbulence intensity. If the flow is fully developed, the turbulence intensity may be as high as a few percent. The turbulence intensity at the core of a fully-developed duct flow can be estimated from the following formula derived from an empirical correlation for pipe flows [8].

Copyright IPCO-2017 ISSN 2356-5608

$$I = \frac{u'}{u_{avg}} = 0.16 \left(\text{Re}_{D_H} \right)^{-1/8}$$
(1)

111. RESULTS AND DISCUSSION

The effect of the grid on the results is studied for two elements of grids; (91000) and (138107) (Fig 6). The superposition of temperature profiles with the two elements shows clearly that there is a small difference between the values. In order to reduce the calculation time the first grid is selected to conduct the various simulations.

Figs .7 and 8 shows the static temperature profile and distribution in the porous medium; it is clear that the temperature increases along the flow direction

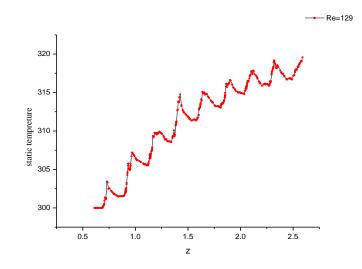


Fig. 7- Static temperature profile

4^{ème} Conférence Internationale des Energies Renouvelables (CIER-2016) Proceedings of Engineering and Technology – PET Vol.15, pp.81 - 87

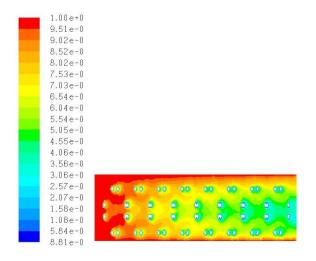


Fig.8- The temperature distribution along tthe flow direction.

Fig. 9 gives the dimensionless temperature distribution along the flow direction, which is defined as $(T_s-T_f)/(T_s-T_{f,in})$. T_s , T_f and T_{fin} are respectively solid temperature, Fluid temperature (air), and inlet fluid temperature, with different Reynolds numbers. According to Z. Wu et al [7]. the fluid temperature exponentially increases along the flow direction, and the exponent decreases with the Reynolds number. The turbulent diffusion favores the heat transfert.

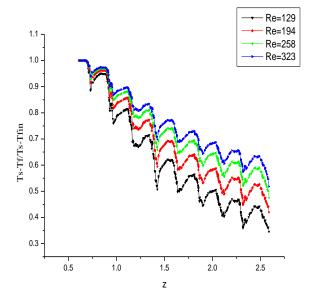


Fig. 9- Dimensionless Temperature Profiles with different Reynolds number

It illustrates that the static pressure is linearly decreasing along the flow direction, which is presented in Fig 10 for different temperature values T_s and T_f and affirmed by (Zhiyong wu, Cyril Caliot et al 2010). [1].

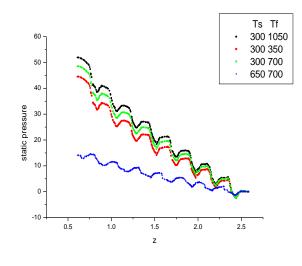


Fig. 10- Static pressure profiles.

Fig. 11 shows the mean velocity distribution along the flow direction. The fluid accelerates in the region of thermal non-equilibrium because the density of air decreases with temperature [7]. We can Remark that the geometry foams proposed causes a large variation in velocity in comparing our results with other works. This variation generates a high gradients inside the bulk porous medium, which causes an important heat transfer, see also fig. 9.

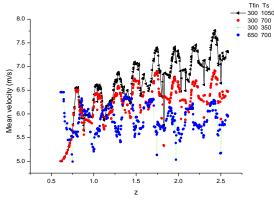


Fig. 11- Velocity Profile.

Copyright IPCO-2017 ISSN 2356-5608 In order to see the influence of the density of foams we propose to compare two ranges of twos Fig 12 and 13 with thickness of 4 and 8 mm respectively.

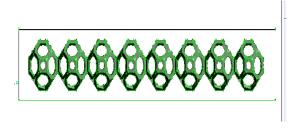
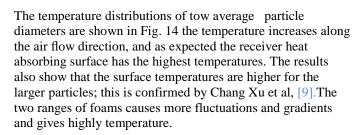



Fig. 12-geometry for y = 4mm

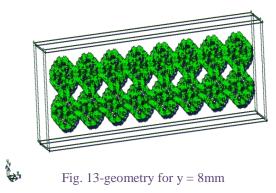


Fig.15 shows the static temperature for different conductivities, (0.65,0.70,1.07) The samples named, SP2, SP4, were prepared using , 1:49, 1:24, mass ratio of DC249TM silicone resin and SiC (Xiuwen Wu et al)) [10] it is observed that the conductivity increases more over the temperature increases, the material plays an important role for the temperature distribution .,

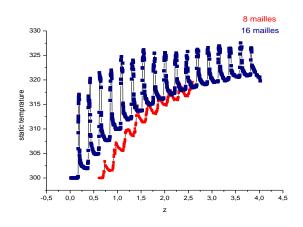
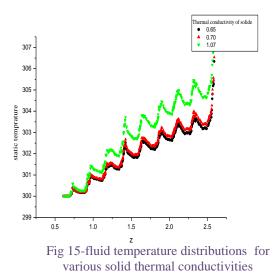



Fig. 14- Profile of temperature of tow thickness

VI. Conclusion

In this study, an instationary turbulent air flow in ceramic foams was performed by using the fluent software.

• The effects of the geometric parameter and the walls temperature on the air flow in the porous medium are investigated.

A sensitivity study was conducted to study the effect of the inlet velocity, porosity, and thermal conductivity.

• The static pressure linearly decreases along the flow direction. The mean velocity increases in the entrance zone. And presents large fluctuations through out the entire porous medium.

- The mean fluid temperature increases along the flow direction,
- The thermal conductivity of the solid phase of the absorber material is important to the performance of the volumetric solar air receiver, the material plays an important role for the temperature distribution
- The surface temperatures are higher for the larger particles

REFERENCES

[1] Avila-Marin AL. Volumetric receivers in solar thermal power plants with central receiver system technology: a review. Solar Energy 2011;85 (5):891–910.

[2] Hennecke K, Schwarzbozi P, Alexopoulos S, Gottsche J, Hoffschmidt B, Beuter M, et al. Solar power tower Julich: the first test and demonstration plant for open volumetric receiver technology in Germany, in SolarPACES, Las Vegas, NV; March 4–7, 2008.

[3] Zunft S, Hanel M, Kruger M, Dreissigacker V, Gohring F, Wahl E. Julich solar power tower-experimental evaluation of the storage subsystem and performance calculation. Journal of Solar Energy Engineering-Transactions of the ASME 2011;133:3.

[4] Zhiyong Wua,, Cyril Caliot, Gilles Flamant, Zhifeng Wang; Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers ;Solar Energy 85 (2011) 2374–2385

[5] F.R. Menter, M. Kuntz, R. Langtry, Ten years of industrial experience with the SST turbulence model, Turbul. Heat Mass Transfer 4 (2003) 2003.

[6] W. Vieser, T. Esch, F. Menter, Heat transfer predictions using advanced twoequation turbulence models, CFX Validation Report, 2002.

[7] ZhiyongWua,b, Cyril Caliot b, Gilles Flamant b , ZhifengWanga, Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances

[8] ttps://www.sharcnet.ca/Software/Fluent6/html/ug/node217.htm

[9] Chang Xu , Zhe Song , Lea-der Chen , Yuan ZhenNumerical investigation on porous media heattransfer in a solartowerreceiver ,RenewableEnergy 36(2011)1138-1144

[10] Xiuwen Wu, Hongwen Ma, Xiaochao Chen 1, Zhanbing Li 1, Jie Li, Thermal Conductivity and Microstructure Properties of Porous SiC Ceramic Derived from Silicon Carbide Powder *New Journal of Glass and Ceramics*, 2013, 3, 43-47