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Abstract— A Wireless Sensor Network (WSN) is a type of ad-hoc 

networks. WSN are characterized by severely constrained 

computational and energy resources and an ad-hoc operational 

environment. Due to inherent resource and computing 

constraints, security in sensor networks poses different 

challenges comparing to traditional network computer security. 

To ensure a proper application of security protocols for WSN, it 

is necessary to validate them before their implementation. We 

are interested in testing the robustness of these protocols in a 

hostile environment. This paper presents a new approach to 

generate and execute test cases for robustness using reachability 

properties transformed for robustness test purposes. The testing 

process announces whether secure WSN is robust or not against 

unexpected events. 
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I. INTRODUCTION 

Wireless sensor networks (WSN) are related to ad-hoc 

networks [15]. A WSN is an adaptive embedded system 

composed of small embedded computers (called sensors) that 

communicate wirelessly to perform a particular task. Sensors 

can be deployed in large numbers in hostile conditions and 

their destruction can achieve the desired functionality of the 

WSN. Indeed, the sensors are able to organize themselves 

without predefined infrastructure (Self-organization). These 

collect and transfer some physical data of the ambient 

environment to one or more gateway nodes (called Sinks). 

This transfer is done via a multihop architecture. The sink 

turns the information via satellite or Internet to the computer 

center, so it can analyze data and take action. The 

disadvantages of WSN architecture are sensor limited 

memory, energy supply, processing capacity and wireless 

communication use [3]. Additional resources are also required 

to secure sensors. The code size should be very compact for 

any security solution to avoid memory waste. In other hand, 

the encryption and decryption are not necessarily performed, 

because of energy limitation (Data availability), and packets 

may be lost or damaged due to the wireless communication 

environment (Data confidentiality and integrity). Due to the 

harsh communication, old messages may be relayed. Thus, we 

need to ensure the freshness of each message (Data 

Freshness). 

Sensors are deployed in a hostile environment which 

probably causes the partial or total degradation of the network. 

After deployment, the sensors establish cryptographic keys 

with their neighbors to provide some security services. This 

mechanism protects exchanged messages between sensors. 

Each message must be identified and quantified. In WSN, 

symmetric cryptography is usually used to establish trust. The 

latter reduces energy consumption of sensors. In addition, a 

pre-distributed method is used to load keys into sensors. 

Most of the security mechanisms require the use of 

cryptographic keys shared between the communicating 

parties. Keys have to be installed in sensors to secure 

communications. However, traditional key-distribution 

schemes have the following shortcoming: either a single 

mission key or a set of separate n-1 keys, each being pair wise 

privately shared with another node, have to be installed in 

every sensor node. In pre-distribution key method, a big issue 

is how to load a set of keys (called key ring) into the limited 

memory of each sensor. 

In this work, we are interested on a Localized Encryption 

and Authentication Protocol (LEAP). LEAP is a key 

management protocol considered in WSN [18]. It is a 

deterministic protocol using essentially a master key to derive 

keys between sensors. It reduces the security threat of a 

compromised node on its immediate neighbors. To ensure a 

proper application of security protocols for WSN, it is 

necessary to validate them before their implementation. We 

are interested in testing the robustness of these protocols in a 

hostile environment. Testing is an important validation 

activity [16]. It is a difficult, expensive, time-consuming, 

labor-intensive process and it should be repeated each time an 

implementation is modified [14]. A promising improvement 

of a testing process is to automatically generate tests from 

formal models of specification. Using tools may reduce the 
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cost of the test process [17] [13]. Robustness testing helps 

answering the following question "How does the system react 

against unexpected events?" [12] [5]. Previous works on 

robustness testing can be classified into two categories: the 

first one uses models related to the input domain based on 

fault injection techniques, and dedicated to characterize the 

robustness, such as BALLISTA [9]. The second uses 

behavioral patterns based on the availability of a formal model 

describing the system behavior and some assumptions to 

assess its robustness, such as STRESS [6], Verimag Approach 

[4], Rollet-Fouchal Approach [12], [11]. 

 A security protocol is a sequence of operations that ensure 

data protection. Used with a communication protocol, it 

provides secure delivery of data between two parties. It is 

concerned with properties such as integrity and secrecy. In 

general, the robustness of security protocols is their ability to 

respond correctly against network failures. In this paper, we 

present a new method developed to generate automatically 

robustness test cases. 

The paper is presented as follows: in the next section, we 

present the Robustness Testing architecture used to generate 

and execute robustness test cases. We present a nominal 

specification of a WSN modeled by a network of timed 

automata. Then, we present the increased specification 

obtained when adding suspension traces. Thereafter, we 

introduce the synchronized product between the increased 

specification and a robustness test purpose. Section 3 presents 

the generation and execution method of robustness test cases. 

Concluding remarks are presented in section 4. 

 

II. TESTING APPROACH 

Let's consider a hostile environment close to a real-life 

scenario. To the best of our knowledge, there is no robustness 

testing for security protocols in the literature. In this paper, we 

develop a new approach to generate automatically robustness 

test cases.  

A. Robustness Testing Architecture 

Formally, we describe the specification of sensors, using 

LEAP under nominal conditions, by timed automata [2]. By 

adding suspension traces, we increase this specification. These 

are useful actions that should be insured by the WSN under 

robustness test in stress conditions. To generate robustness 

test cases, we compute traces satisfying a specific need called 

robustness test purpose (RTP) from the increased 

specification. RTP describes some aspects of operations in the 

presence of unexpected events. The robustness test cases are 

generated from the synchronous product between an increased 

specification and a chosen RTP. Robustness testing 

architecture is presented in Figure1. 

 

 

Figure 1 Robustness testing architecture 

B. Formalisms 

    Sensors of WSN are considered as real-time systems and 

described with Timed Automata (TA), which is a popular 

formalism of real-time systems modeling [1]. It is an extended 

finite state machine led by a set of clocks. As time progresses, 

their values are automatically increased. In the following, we 

use X to denote the set of clocks and G(X) the set of 

conjunctions over simple conditions of the form x ◊ c  where   

x ∈ X , c ∈ ℕ and ◊ ∈ {<, ≤, =, >, ≥}. A clock valuation is a 

function defined as u: X → ℝ+. Let ℝX
 be the set of all clock's 

valuations. u0 (x) = 0 for all x ∈ X. We consider guards and 

valuations as sets of clock's valuations and we note u ∈ I(q) 

means that u satisfies I(q). 

 

Timed Automata : A TA is a tuple (Q, q0 , X , Act, E , I ) 

where : Q is a finite set of locations, q0 is the initial location, X 

is a finite set of clocks, Act = ActIn ∪ ActOut ∪ {τ} is a finite set 

of input actions (denoted by a?), output actions (denoted by a!) 

and unobservable actions ξ , E ⊆ Q × Act × G(X) × 2
X
 × Q is 

the set of edges between locations with actions, a guard and a 

set of clocks to be reset and I : Q → G(X) assigns invariants to 

locations. 

 

Semantic of TA : TA is defined as a labeled transition 

system (S, s0 ,↪) where S ⊆ Q × ℝX
 is the set of states,          

s0 = (q0 , u0 ) is the initial state and ↪ ⊆  S ×( ℝ+ ∪ Act) × S is 

the transition relation such that : (q, u) ↪d
 (q, u + d) if                  

∀ d′, 0 ≤ d′ ≤ d  ⇒  u + d′ ∈ I(q), (q, u) ↪a
 (q, u′ ) if there 

exists  e ∈ E , u′ = [r → 0]u and u′ ∈ I(q′ ) where d ∈ ℝ+,   

u+d maps each clock x in X to the value u(x) + d, and            

[r → 0]u denotes the clock valuation which maps each clock 

in r to 0 and agrees with u over  X \ r. 

 

Network of timed automata NTA: A state of WSN is 

defined by locations of all TA, the clock values, and discrete 

variables. Every TA may fire a transition separately or 

synchronize with another TAs, which leads to a new location. 

Consisting of n sensors modeled by TAs,                            

NTA = {Qi, q
0
i, X, Act, Ei, Ii}. A location vector is a vector  

q= (q1,…, qn). We compose the invariant functions into a 
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common function over location vectors I(q) = ⋀i Ii(qi) and 

we write q [q′i / qi] to denote the vector where the i
th

 element 

q′ of q is replaced by q′i. In the following, we define the 

semantics of NTA. 

 

Semantic of NTA: Let SenAi = {Qi, q0i, X, Act, Ei Ii} be a 

NTA of WSN. Letq 0= (q
0

1, …, q
0

n ) be the initial location 

vector. The semantic is defined as a transition system         

(SQ, s0, ↪), where SQ = (Q1 ×…×Qn) × ℝX
 is the set of states, 

s0 = (q 0, u0) is the initial state and, ↪ ⊆ S×S is the transition 

relation defined by :  

 (q, u)↪d
 (q, u + d) if ∀ d′, 0 ≤ d′ ≤ d⇒ u+d′∈ I(q) 

 (q, u)↪a(q[q′i/qi],u′) if there exists qi↪ gr 
q′i,          

u ∊ g, u′  = [r → 0]u and u′ ∊ I(q [q′i/qi]) 

 (q, u)↪a(q[q′j/qj , q′i/qi],u′)  if there exists        

qi↪c?g
i
r
i  q′i , qj↪c!g

j
r
j  q′j ,  u ∊ (gi⋀gj), u′ =[ri⋃rj→ 0]u 

and  u′ ∊ I(q[q′j/qj , q′i/qi]). 
 

C. Nominal specification of a wireless sensor 

network using LEAP 

We start first by modeling a sensor using LEAP under 

nominal conditions by TA [2], using Uppaal [8] [7]. This tool 

allows real-time systems validation [10]. It is designed in 

order to check systems such as protocols or multimedia 

applications modeled as NTA which is useful for our work. 

Indeed, we consider that a WSN is a real-time system 

composed of a set of components (sensors). Sensors interact 

permanently with each other and with the environment or 

human operators, in order to provide services with time 

constraints. The external environment stimulates sensors with 

input actions, allowing them to react by producing output 

actions. During this interaction, a sensor must obey some time 

constraints. Nominal conditions are defined to allow a normal 

operation of the WSN. In our case, an attacker who sends a 

neighbor discovery pushes nodes to send an alert message to 

the Base Station (BS). In turn, the BS sends a message to all 

nodes to change the individual key. In [18], authors assume a 

secure and not compromised BS. Before deployment, the BS 

loads key into sensors. The authors in [18], assume that a node 

cannot be compromised before a period Tmin. Since the 

deployment, the sensors send a message to discover their 

neighborhood and establish their pair wise keys. We also note 

that the energy is not taken into account which degrades 

performance of the sensor network. In our work, we need to 

automatically increment integer variables to define the time 

progression Tmin and the energy depletion e. These are 

considered as clocks. A sensor using LEAP in normal 

conditions is modeled with UPPAAL by the TA in Figure 2. 

We can move from the initial location idle to WaitAck if we 

produce an input action (Hello!) or move from idle to Ack 

location if an output action (Hello?) is received with respect to 

clock's constraints such as timeout < 20 and    e > 30. If the 

guard ID == true is satisfied, receivers send an 

acknowledgement Acc!, otherwise, they send (alerte!) to the 

BS. Once all sensors end their neighborhood discovery (guard 

PS == N is satisfied), they move to the Connected location. 

Figure 3 presents the sensor network we used in nominal 

conditions. This simulation is composed of 4 sensors. One of 

them is an attacker. An attacker may pretend to be a neighbor 

node, it sends a request for neighbor discovery, requires nodes 

to check the key. This can causes exhaustion of batteries by 

applying cryptographic functions and/or exhaustion of the 

time allotted for the neighbor’s discovery 

 

 
Figure 2 TA describing a sensor in nominal conditions 

 
Figure 3 NTA of a WSN in nominal conditions 

D. Increased Specification 

Sensors are deployed in a hostile environment which certainly 

causes the partial or total degradation of the network. This is 

due to the accumulation of either time or energy depletion. In 

this context, we consider that the degradation could be caused 

before the Tmin imposed by the authors in [18]. We increase 

the nominal specification of a sensor by adding suspension 

traces. These are useful actions that should be insured by the 

implementation under test. Suspensions traces are defined as 

follows: 
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 Deadlock: the system cannot evolve because (e > 0) 

is not satisfied, we add a location called DEAD 

(guard e == 0) to which the system converges if the 

sensor's energy is spent. 

 Livelock: the system diverges to an infinite sequence 

of actions because the guard (timeout < Tmin) is not 

satisfied, we add the location Blocked to which the 

system evolves if Tmin runs out. 

An increased TA is a tuple A=(QA, q0, X, ActA, EA, IA) where : 

QA = Q ⋃{DEAD}⋃{Blocked}, ActA = Act⋃ K  is a finite set 

of actions with K is a combine action, EA ⊆ QA×ActA×G(X) 

×2
X
 ×QA is the set of edges between locations with actions, a 

guard and a set of clocks to be reset and IA : QA → G(X) 

assigns invariants to locations. The increased specification of 

a sensor using LEAP is presented in Figure 4.  

An increased NTA is defined as follows: SenAi = {QAi, q
0

i , X,  

ActAi, EAi, IAi}, ∀i ∊ [0, n[ with n the number of all increased 

TA interacting. Figure 5 presents the increased NTA in a 

hostile environment.  

Figure 4 Increased TA of a sensor in hostile environment 

 
Figure 5 Increased NTA of a WSN in a hostile environment 

E. Synchronized Product 

1. Robustness test purpose 

Informally, the test purpose describes the behavior of the 

implementation that the tester intends to test. This phase 

allows deriving and selecting execution traces that assimilate 

invalid entries, inappropriate entries and acceptable exits [12]. 

The generation of robustness test cases is done to compute 

traces satisfying a specific need called robustness test purpose 

RTP from the increased NTA. An RTP corresponds to a 

property or a need that the tester wishes to observe on the 

implementation under test. Under the robustness test, an RTP 

describes some aspects of operations in the hostile 

environment. In our approach, RTP is defined as a 

reachability property which asks whether a given state 

formula Ψ possibly can be satisfied by any reachable location. 

In other words: "Is a path starting at the initial state, such as 
 , is eventually satisfied along that path?". In UPPAAL [10], 

we express properties using E <>   and A[]  .  

 

RTP is a TA with a final location ”Accept” 

describing the behavior accepted by the System Under 

Robustness Testing and optionally another final state ”Reject” 

describing the behavior rejected by the System Under 

Robustness Testing.  RTC corresponds to a path starts from 

the initial location from Syn and stops in the state “Accept” or 

“Reject”. In our work, if all sensors reach the Connected 

location, RTP reaches Accept location. Otherwise, it reaches 

Reject location. RTP is shown in Figure 6. 

            

 
Figure 6 Robustness Test Purpose for WSN using LEAP 

2. Synchronized product between 

increased NTA and an RTP 

In the previous sections, we defined formalisms modeling an 

increased NTA and RTP of an implementation under test. In 

this section, we present the synchronized product between 

these. Intuitively, a synchronized product of two transition 

systems describing increased NTA and robustness test 

purpose is defined as Syn such that all timed words are 

recognized by both increased specification and robustness test 

purpose transition systems. Let SenA be a transition system 

describing the increased NTA and RTP is a transition system 
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describing the robustness test purpose. The synchronized 

product is a NTA such as Syn = SenA ⨂ RTP where QSyn = 

{(q1, q2) | q1 ∊ QSenA, q2 ∊ QRTP}, q
0
Syn = (q

0
SenA, q

0
RTP),         

XSyn = XSenA ⋃ XRTP, ActSyn = ActSenA ⋃ ActRTP , ESyn = ESenA ⋃ 

ERTP and ISyn = ISenA ⋃ IRTP . The synchronized product is 

defined as a transition system       (SynQ, s0,↪), where SynQ = 

(Q1× Qn ×QRTP ) × ℝX
Syn

 
is the set of states, s0 = ((q0,q), u0) 

is the initial state where   (q0,q) ∊ QSyn and ↪ ⊆ Syn × Syn. 

The synchronized product is shown in Figure 7. 

 

 

Figure 7 Synchronized product 

 

III. GENERATION OF ROBUSTNESS TEST CASES 

A. Robustness Test Case 

A robustness test case RTC is represented by a timed word of 

the NTA corresponding to the synchronized product between 

increased Specification and a chosen RTP. 

 

Computation sequence: A computation sequence is a finite 

sequence of pairs (si, i) where si = ((qi , q) ui) with ui ∊ I(qi) 

and  i is the observation clock value. Let C be a set of 

configurations over Syn. A computation sequence is defined 

as follows   = (s0,  0) ⇝ (s1,  1) ⇝…⇝( sn,  n). CS(Syn) is the 

set of computation sequences. 

 

Timed Word: A timed word is a finite sequence of timed 

actions. A timed action is a  pair a where a ∊ ActSyn and          

  ∊ℝ+, meaning that action a takes place when the observation 

clock is equal to  . A timed word is a sequence                        

  = a1 1 a2 2 … an n where ai is an action and  i is a value of 

the observation clock. We notice that  i ≤  i+1. Let L(Syn) be 

the set of timed words of Syn,  

 

 

  = a1 1 a2 2 … an n ∊ L(Syn)  

⇔  
  = (s0,  0) ⇝ (s1,  1) ⇝…⇝( sn,  n) 

We write (s0,  0)⇝  (sn,  n).  Let   be a timed word and   

a ∊ Act,   ∊ℝ+ such that  n ≤  , then we denote by  .a  the 

timed word obtained by adding a  to   and we have  .a = 

a1 1 a2 2 … an n  a . 
 

B. Robustness Relation 

Sensor Network Under Robustness Test (SNURT) is the 

implementation under test of a WSN. SNURT is modeled by a 

NTA such that: 

 ACT
SYN

IN ⊆ ACT
SNURT

IN 

 ACT
SYN

OUT ⊆ ACT
SNURT

OUT 

Let SNURT can be an implementation of the synchronous 

product. The robustness relation is defined as follows: 

 

SNURT RoBuST Syn  

≡  

∀  ∊ CS(Syn) ⇔ OUT(SNURT, ) ⊆OUT(Syn, ) 

 

Test cases can be generated with respect to the robustness 

relation. 

 

C. Generation and Execution of RTCs 

The generation and execution of the test is carried out at the 

same time. During the generation of test cases: 

 if a path reaches Accept, then we conclude that the 

system is ROBUST 

 if a path reaches Reject, then we conclude that the 

system is NOTROBUST. 

We check reachability properties described as follows: 

 A[]RTP.Accept meaning "for all paths on SNURT, 

RTP reaches the state Accept". If this property is 

satisfied, then we conclude that SNURT is ROBUST. 

 E <> RTP.Reject meaning "Does there exist a path 

on SNURT in which RTP reaches the state Reject". If 

this property is satisfied, then we conclude that 

SNURT is NOTROBUST. 

Let   be an observation. It is a sequence of input and output 

actions that are either executed or produced by SNURT, and 

followed with its occurrence time. The tester operates as 

follows: Given   an observation recorded on SNURT, we 

compute the set of input and output timed actions that can be 

taken by SNURT after observing  . The SNURT is 

NOTROBUST if an output action is in Reject. It is ROBUST if 

an output action is in Accept. The robustness test continues 

and the observation   is updated by concatenating the timed 

action taken by SNURT. Figure 8 illustrates a simulation trace 

in which an RTC is generated where SNURT is NOTROBUST 

and Figure 9 shows an RTC where SNURT is ROBUST. 
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Figure 8 NOT ROBUST RTC 

 
Figure 9 ROBUST RTC 

IV. CONCLUSIONS 

We have introduced a new method to generate and execute 

robustness test cases. We focus on security protocols for 

wireless sensor networks. Since sensors are deployed in a 

hostile environment, we applied our method to demonstrate if 

WSN is still ROBUST, even with unexpected events. We used 

the network of timed automata as formalism to model a 

nominal specification of WSN. Then, we presented an 

increased specification describing the behavior of a nominal 

one in a hostile environment. The tester uses a robustness test 

purpose which is created from a reachability property. 

Robustness test cases are generated from the increased 

specification when RTP reaches states REJECT or ACCEPT. 

After applying the robustness relation, we can infer if an 

implementation under test of a wireless sensors network using 

a security protocol is ROBUST or NOT. In our research, we 

test the robustness of security protocols in a hostile 

environment. We are primarily interested in systems using 

security requirements such as confidentiality and integrity of 

exchanged data. We are planning to test the non-interference 

property in component based systems. In order to ensure that 

this type of system is robust to unexpected events, the data 

exchanged must respond to non-interference property. 

Therefore, confidentiality and integrity must be ensured 

throughout the communication process. 
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