
International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014

ISSN 2356-5608

Robustness testing of secure Wireless Sensor

Networks
Maha NACEUR

#1
, Lilia SFAXI

*2
, Riadh ROBBANA

*3

#
LIP 2 Laboratory

*
University of Carthage

1
 naceur.maha@gmail.com

2 liliasfaxi@gmail.com
3 riadh.robbana@gmail.com

Abstract— A Wireless Sensor Network (WSN) is a type of ad-hoc

networks. WSN are characterized by severely constrained

computational and energy resources and an ad-hoc operational

environment. Due to inherent resource and computing

constraints, security in sensor networks poses different

challenges comparing to traditional network computer security.

To ensure a proper application of security protocols for WSN, it

is necessary to validate them before their implementation. We

are interested in testing the robustness of these protocols in a

hostile environment. This paper presents a new approach to

generate and execute test cases for robustness using reachability

properties transformed for robustness test purposes. The testing

process announces whether secure WSN is robust or not against

unexpected events.

Keywords— Robustness Testing, security protocol, Network of

Timed Automata

I. INTRODUCTION

Wireless sensor networks (WSN) are related to ad-hoc

networks [15]. A WSN is an adaptive embedded system

composed of small embedded computers (called sensors) that

communicate wirelessly to perform a particular task. Sensors

can be deployed in large numbers in hostile conditions and

their destruction can achieve the desired functionality of the

WSN. Indeed, the sensors are able to organize themselves

without predefined infrastructure (Self-organization). These

collect and transfer some physical data of the ambient

environment to one or more gateway nodes (called Sinks).

This transfer is done via a multihop architecture. The sink

turns the information via satellite or Internet to the computer

center, so it can analyze data and take action. The

disadvantages of WSN architecture are sensor limited

memory, energy supply, processing capacity and wireless

communication use [3]. Additional resources are also required

to secure sensors. The code size should be very compact for

any security solution to avoid memory waste. In other hand,

the encryption and decryption are not necessarily performed,

because of energy limitation (Data availability), and packets

may be lost or damaged due to the wireless communication

environment (Data confidentiality and integrity). Due to the

harsh communication, old messages may be relayed. Thus, we

need to ensure the freshness of each message (Data

Freshness).

Sensors are deployed in a hostile environment which

probably causes the partial or total degradation of the network.

After deployment, the sensors establish cryptographic keys

with their neighbors to provide some security services. This

mechanism protects exchanged messages between sensors.

Each message must be identified and quantified. In WSN,

symmetric cryptography is usually used to establish trust. The

latter reduces energy consumption of sensors. In addition, a

pre-distributed method is used to load keys into sensors.

Most of the security mechanisms require the use of

cryptographic keys shared between the communicating

parties. Keys have to be installed in sensors to secure

communications. However, traditional key-distribution

schemes have the following shortcoming: either a single

mission key or a set of separate n-1 keys, each being pair wise

privately shared with another node, have to be installed in

every sensor node. In pre-distribution key method, a big issue

is how to load a set of keys (called key ring) into the limited

memory of each sensor.

In this work, we are interested on a Localized Encryption

and Authentication Protocol (LEAP). LEAP is a key

management protocol considered in WSN [18]. It is a

deterministic protocol using essentially a master key to derive

keys between sensors. It reduces the security threat of a

compromised node on its immediate neighbors. To ensure a

proper application of security protocols for WSN, it is

necessary to validate them before their implementation. We

are interested in testing the robustness of these protocols in a

hostile environment. Testing is an important validation

activity [16]. It is a difficult, expensive, time-consuming,

labor-intensive process and it should be repeated each time an

implementation is modified [14]. A promising improvement

of a testing process is to automatically generate tests from

formal models of specification. Using tools may reduce the

PC
Typewriter

PC
Typewriter

PC
Typewriter
, pp.12-18

PC
Typewriter

PC
Typewriter

mailto:naceur.maha@gmail.com
mailto:liliasfaxi@gmail.com
mailto:riadh.robbana@gmail.com

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014

ISSN 2356-5608

cost of the test process [17] [13]. Robustness testing helps

answering the following question "How does the system react

against unexpected events?" [12] [5]. Previous works on

robustness testing can be classified into two categories: the

first one uses models related to the input domain based on

fault injection techniques, and dedicated to characterize the

robustness, such as BALLISTA [9]. The second uses

behavioral patterns based on the availability of a formal model

describing the system behavior and some assumptions to

assess its robustness, such as STRESS [6], Verimag Approach

[4], Rollet-Fouchal Approach [12], [11].

 A security protocol is a sequence of operations that ensure

data protection. Used with a communication protocol, it

provides secure delivery of data between two parties. It is

concerned with properties such as integrity and secrecy. In

general, the robustness of security protocols is their ability to

respond correctly against network failures. In this paper, we

present a new method developed to generate automatically

robustness test cases.

The paper is presented as follows: in the next section, we

present the Robustness Testing architecture used to generate

and execute robustness test cases. We present a nominal

specification of a WSN modeled by a network of timed

automata. Then, we present the increased specification

obtained when adding suspension traces. Thereafter, we

introduce the synchronized product between the increased

specification and a robustness test purpose. Section 3 presents

the generation and execution method of robustness test cases.

Concluding remarks are presented in section 4.

II. TESTING APPROACH

Let's consider a hostile environment close to a real-life

scenario. To the best of our knowledge, there is no robustness

testing for security protocols in the literature. In this paper, we

develop a new approach to generate automatically robustness

test cases.

A. Robustness Testing Architecture

Formally, we describe the specification of sensors, using

LEAP under nominal conditions, by timed automata [2]. By

adding suspension traces, we increase this specification. These

are useful actions that should be insured by the WSN under

robustness test in stress conditions. To generate robustness

test cases, we compute traces satisfying a specific need called

robustness test purpose (RTP) from the increased

specification. RTP describes some aspects of operations in the

presence of unexpected events. The robustness test cases are

generated from the synchronous product between an increased

specification and a chosen RTP. Robustness testing

architecture is presented in Figure1.

Figure 1 Robustness testing architecture

B. Formalisms

 Sensors of WSN are considered as real-time systems and

described with Timed Automata (TA), which is a popular

formalism of real-time systems modeling [1]. It is an extended

finite state machine led by a set of clocks. As time progresses,

their values are automatically increased. In the following, we

use X to denote the set of clocks and G(X) the set of

conjunctions over simple conditions of the form x ◊ c where

x ∈ X , c ∈ ℕ and ◊ ∈ {<, ≤, =, >, ≥}. A clock valuation is a

function defined as u: X → ℝ+. Let ℝX
 be the set of all clock's

valuations. u0 (x) = 0 for all x ∈ X. We consider guards and

valuations as sets of clock's valuations and we note u ∈ I(q)

means that u satisfies I(q).

Timed Automata : A TA is a tuple (Q, q0 , X , Act, E , I)

where : Q is a finite set of locations, q0 is the initial location, X

is a finite set of clocks, Act = ActIn ∪ ActOut ∪ {τ} is a finite set

of input actions (denoted by a?), output actions (denoted by a!)

and unobservable actions ξ , E ⊆ Q × Act × G(X) × 2
X
 × Q is

the set of edges between locations with actions, a guard and a

set of clocks to be reset and I : Q → G(X) assigns invariants to

locations.

Semantic of TA : TA is defined as a labeled transition

system (S, s0 ,↪) where S ⊆ Q × ℝX
 is the set of states,

s0 = (q0 , u0) is the initial state and ↪ ⊆ S ×(ℝ+ ∪ Act) × S is

the transition relation such that : (q, u) ↪d
 (q, u + d) if

∀ d′, 0 ≤ d′ ≤ d ⇒ u + d′ ∈ I(q), (q, u) ↪a
 (q, u′) if there

exists e ∈ E , u′ = [r → 0]u and u′ ∈ I(q′) where d ∈ ℝ+,

u+d maps each clock x in X to the value u(x) + d, and

[r → 0]u denotes the clock valuation which maps each clock

in r to 0 and agrees with u over X \ r.

Network of timed automata NTA: A state of WSN is

defined by locations of all TA, the clock values, and discrete

variables. Every TA may fire a transition separately or

synchronize with another TAs, which leads to a new location.

Consisting of n sensors modeled by TAs,

NTA = {Qi, q
0
i, X, Act, Ei, Ii}. A location vector is a vector

q= (q1,…, qn). We compose the invariant functions into a

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014

ISSN 2356-5608

common function over location vectors I(q) = ⋀i Ii(qi) and

we write q [q′i / qi] to denote the vector where the i
th

 element

q′ of q is replaced by q′i. In the following, we define the

semantics of NTA.

Semantic of NTA: Let SenAi = {Qi, q0i, X, Act, Ei Ii} be a

NTA of WSN. Letq 0= (q
0

1, …, q
0

n) be the initial location

vector. The semantic is defined as a transition system

(SQ, s0, ↪), where SQ = (Q1 ×…×Qn) × ℝX
 is the set of states,

s0 = (q 0, u0) is the initial state and, ↪ ⊆ S×S is the transition

relation defined by :

 (q, u)↪d
 (q, u + d) if ∀ d′, 0 ≤ d′ ≤ d⇒ u+d′∈ I(q)

 (q, u)↪a(q[q′i/qi],u′) if there exists qi↪ gr
q′i,

u ∊ g, u′ = [r → 0]u and u′ ∊ I(q [q′i/qi])

 (q, u)↪a(q[q′j/qj , q′i/qi],u′) if there exists

qi↪c?g
i
r
i q′i , qj↪c!g

j
r
j q′j , u ∊ (gi⋀gj), u′ =[ri⋃rj→ 0]u

and u′ ∊ I(q[q′j/qj , q′i/qi]).

C. Nominal specification of a wireless sensor

network using LEAP

We start first by modeling a sensor using LEAP under

nominal conditions by TA [2], using Uppaal [8] [7]. This tool

allows real-time systems validation [10]. It is designed in

order to check systems such as protocols or multimedia

applications modeled as NTA which is useful for our work.

Indeed, we consider that a WSN is a real-time system

composed of a set of components (sensors). Sensors interact

permanently with each other and with the environment or

human operators, in order to provide services with time

constraints. The external environment stimulates sensors with

input actions, allowing them to react by producing output

actions. During this interaction, a sensor must obey some time

constraints. Nominal conditions are defined to allow a normal

operation of the WSN. In our case, an attacker who sends a

neighbor discovery pushes nodes to send an alert message to

the Base Station (BS). In turn, the BS sends a message to all

nodes to change the individual key. In [18], authors assume a

secure and not compromised BS. Before deployment, the BS

loads key into sensors. The authors in [18], assume that a node

cannot be compromised before a period Tmin. Since the

deployment, the sensors send a message to discover their

neighborhood and establish their pair wise keys. We also note

that the energy is not taken into account which degrades

performance of the sensor network. In our work, we need to

automatically increment integer variables to define the time

progression Tmin and the energy depletion e. These are

considered as clocks. A sensor using LEAP in normal

conditions is modeled with UPPAAL by the TA in Figure 2.

We can move from the initial location idle to WaitAck if we

produce an input action (Hello!) or move from idle to Ack

location if an output action (Hello?) is received with respect to

clock's constraints such as timeout < 20 and e > 30. If the

guard ID == true is satisfied, receivers send an

acknowledgement Acc!, otherwise, they send (alerte!) to the

BS. Once all sensors end their neighborhood discovery (guard

PS == N is satisfied), they move to the Connected location.

Figure 3 presents the sensor network we used in nominal

conditions. This simulation is composed of 4 sensors. One of

them is an attacker. An attacker may pretend to be a neighbor

node, it sends a request for neighbor discovery, requires nodes

to check the key. This can causes exhaustion of batteries by

applying cryptographic functions and/or exhaustion of the

time allotted for the neighbor’s discovery

Figure 2 TA describing a sensor in nominal conditions

Figure 3 NTA of a WSN in nominal conditions

D. Increased Specification

Sensors are deployed in a hostile environment which certainly

causes the partial or total degradation of the network. This is

due to the accumulation of either time or energy depletion. In

this context, we consider that the degradation could be caused

before the Tmin imposed by the authors in [18]. We increase

the nominal specification of a sensor by adding suspension

traces. These are useful actions that should be insured by the

implementation under test. Suspensions traces are defined as

follows:

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014

ISSN 2356-5608

 Deadlock: the system cannot evolve because (e > 0)

is not satisfied, we add a location called DEAD

(guard e == 0) to which the system converges if the

sensor's energy is spent.

 Livelock: the system diverges to an infinite sequence

of actions because the guard (timeout < Tmin) is not

satisfied, we add the location Blocked to which the

system evolves if Tmin runs out.

An increased TA is a tuple A=(QA, q0, X, ActA, EA, IA) where :

QA = Q ⋃{DEAD}⋃{Blocked}, ActA = Act⋃ K is a finite set

of actions with K is a combine action, EA ⊆ QA×ActA×G(X)

×2
X
 ×QA is the set of edges between locations with actions, a

guard and a set of clocks to be reset and IA : QA → G(X)

assigns invariants to locations. The increased specification of

a sensor using LEAP is presented in Figure 4.

An increased NTA is defined as follows: SenAi = {QAi, q
0

i , X,

ActAi, EAi, IAi}, ∀i ∊ [0, n[with n the number of all increased

TA interacting. Figure 5 presents the increased NTA in a

hostile environment.

Figure 4 Increased TA of a sensor in hostile environment

Figure 5 Increased NTA of a WSN in a hostile environment

E. Synchronized Product

1. Robustness test purpose

Informally, the test purpose describes the behavior of the

implementation that the tester intends to test. This phase

allows deriving and selecting execution traces that assimilate

invalid entries, inappropriate entries and acceptable exits [12].

The generation of robustness test cases is done to compute

traces satisfying a specific need called robustness test purpose

RTP from the increased NTA. An RTP corresponds to a

property or a need that the tester wishes to observe on the

implementation under test. Under the robustness test, an RTP

describes some aspects of operations in the hostile

environment. In our approach, RTP is defined as a

reachability property which asks whether a given state

formula Ψ possibly can be satisfied by any reachable location.

In other words: "Is a path starting at the initial state, such as
 , is eventually satisfied along that path?". In UPPAAL [10],

we express properties using E <> and A[] .

RTP is a TA with a final location ”Accept”

describing the behavior accepted by the System Under

Robustness Testing and optionally another final state ”Reject”

describing the behavior rejected by the System Under

Robustness Testing. RTC corresponds to a path starts from

the initial location from Syn and stops in the state “Accept” or

“Reject”. In our work, if all sensors reach the Connected

location, RTP reaches Accept location. Otherwise, it reaches

Reject location. RTP is shown in Figure 6.

Figure 6 Robustness Test Purpose for WSN using LEAP

2. Synchronized product between

increased NTA and an RTP

In the previous sections, we defined formalisms modeling an

increased NTA and RTP of an implementation under test. In

this section, we present the synchronized product between

these. Intuitively, a synchronized product of two transition

systems describing increased NTA and robustness test

purpose is defined as Syn such that all timed words are

recognized by both increased specification and robustness test

purpose transition systems. Let SenA be a transition system

describing the increased NTA and RTP is a transition system

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014

ISSN 2356-5608

describing the robustness test purpose. The synchronized

product is a NTA such as Syn = SenA ⨂ RTP where QSyn =

{(q1, q2) | q1 ∊ QSenA, q2 ∊ QRTP}, q
0
Syn = (q

0
SenA, q

0
RTP),

XSyn = XSenA ⋃ XRTP, ActSyn = ActSenA ⋃ ActRTP , ESyn = ESenA ⋃

ERTP and ISyn = ISenA ⋃ IRTP . The synchronized product is

defined as a transition system (SynQ, s0,↪), where SynQ =

(Q1× Qn ×QRTP) × ℝX
Syn

is the set of states, s0 = ((q0,q), u0)

is the initial state where (q0,q) ∊ QSyn and ↪ ⊆ Syn × Syn.

The synchronized product is shown in Figure 7.

Figure 7 Synchronized product

III. GENERATION OF ROBUSTNESS TEST CASES

A. Robustness Test Case

A robustness test case RTC is represented by a timed word of

the NTA corresponding to the synchronized product between

increased Specification and a chosen RTP.

Computation sequence: A computation sequence is a finite

sequence of pairs (si, i) where si = ((qi , q) ui) with ui ∊ I(qi)

and i is the observation clock value. Let C be a set of

configurations over Syn. A computation sequence is defined

as follows = (s0, 0) ⇝ (s1, 1) ⇝…⇝(sn, n). CS(Syn) is the

set of computation sequences.

Timed Word: A timed word is a finite sequence of timed

actions. A timed action is a pair a where a ∊ ActSyn and

 ∊ℝ+, meaning that action a takes place when the observation

clock is equal to . A timed word is a sequence

 = a1 1 a2 2 … an n where ai is an action and i is a value of

the observation clock. We notice that i ≤ i+1. Let L(Syn) be

the set of timed words of Syn,

 = a1 1 a2 2 … an n ∊ L(Syn)

⇔
 = (s0, 0) ⇝ (s1, 1) ⇝…⇝(sn, n)

We write (s0, 0)⇝ (sn, n). Let be a timed word and

a ∊ Act, ∊ℝ+ such that n ≤ , then we denote by .a the

timed word obtained by adding a to and we have .a =

a1 1 a2 2 … an n a .

B. Robustness Relation

Sensor Network Under Robustness Test (SNURT) is the

implementation under test of a WSN. SNURT is modeled by a

NTA such that:

 ACT
SYN

IN ⊆ ACT
SNURT

IN

 ACT
SYN

OUT ⊆ ACT
SNURT

OUT

Let SNURT can be an implementation of the synchronous

product. The robustness relation is defined as follows:

SNURT RoBuST Syn

≡

∀ ∊ CS(Syn) ⇔ OUT(SNURT,) ⊆OUT(Syn,)

Test cases can be generated with respect to the robustness

relation.

C. Generation and Execution of RTCs

The generation and execution of the test is carried out at the

same time. During the generation of test cases:

 if a path reaches Accept, then we conclude that the

system is ROBUST

 if a path reaches Reject, then we conclude that the

system is NOTROBUST.

We check reachability properties described as follows:

 A[]RTP.Accept meaning "for all paths on SNURT,

RTP reaches the state Accept". If this property is

satisfied, then we conclude that SNURT is ROBUST.

 E <> RTP.Reject meaning "Does there exist a path

on SNURT in which RTP reaches the state Reject". If

this property is satisfied, then we conclude that

SNURT is NOTROBUST.

Let be an observation. It is a sequence of input and output

actions that are either executed or produced by SNURT, and

followed with its occurrence time. The tester operates as

follows: Given an observation recorded on SNURT, we

compute the set of input and output timed actions that can be

taken by SNURT after observing . The SNURT is

NOTROBUST if an output action is in Reject. It is ROBUST if

an output action is in Accept. The robustness test continues

and the observation is updated by concatenating the timed

action taken by SNURT. Figure 8 illustrates a simulation trace

in which an RTC is generated where SNURT is NOTROBUST

and Figure 9 shows an RTC where SNURT is ROBUST.

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014

ISSN 2356-5608

Figure 8 NOT ROBUST RTC

Figure 9 ROBUST RTC

IV. CONCLUSIONS

We have introduced a new method to generate and execute

robustness test cases. We focus on security protocols for

wireless sensor networks. Since sensors are deployed in a

hostile environment, we applied our method to demonstrate if

WSN is still ROBUST, even with unexpected events. We used

the network of timed automata as formalism to model a

nominal specification of WSN. Then, we presented an

increased specification describing the behavior of a nominal

one in a hostile environment. The tester uses a robustness test

purpose which is created from a reachability property.

Robustness test cases are generated from the increased

specification when RTP reaches states REJECT or ACCEPT.

After applying the robustness relation, we can infer if an

implementation under test of a wireless sensors network using

a security protocol is ROBUST or NOT. In our research, we

test the robustness of security protocols in a hostile

environment. We are primarily interested in systems using

security requirements such as confidentiality and integrity of

exchanged data. We are planning to test the non-interference

property in component based systems. In order to ensure that

this type of system is robust to unexpected events, the data

exchanged must respond to non-interference property.

Therefore, confidentiality and integrity must be ensured

throughout the communication process.

REFERENCES

[1] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for real-time

systems. In LICS, pages 414_425, 1990.
[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical

Computer Science, 126(2):183 _ 235, 1994.

[3] D. Culler, D. Estrin, and M. Srivastava. Guest editors' introduction:
Overview of sensor networks. Computer, 37(8):41_49, Aug.

[4] J.-C. Fernandez, L. Mounier, and C. Pachon. A model-based approach

for robustness testing. In Proceedings of the 17th IFIP TC6/WG 6.1
international conference on Testing of Communicating Systems,

TestCom'05, pages 333_348, Berlin, Heidelberg, 2005. Springer-

Verlag.
[5] Y. Fu and O. Koné. Security and robustness by protocol testing.

Systems Journal, IEEE, PP(99):1, 2012.

[6] A. Helmy and D. Estrin. Simulation-based 'stress' testing case study: A
multicast routing protocol. In Sixth International Symposium on

Modeling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS '98, pages 36_43, 1998.
[7] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and

A. Skou. Online testing of real-time systems using uppaal. In

International workshop on formal approches to testing of software co-
located with IEEE conference on automates software engineering, 2004.

[8] A. Hessel, K. G. Larsen, B. Nielsen, P. Pettersson, and A. Skou. Time-

optimal real-time test case generation using uppaal. In In FATES.03,
pages 114_130. Springer.Verlag, 2003.

[9] P. Koopman, K. DeVale, and J. DeVale. Interface robustness testing:

Experiences and lessons learned from the ballista project, 2008.
[10] K. G. Larsen, M. Mikucionis, and B. Nielsen. Online testing of real-

time systems using uppaal. In Proceedings of the 4th international

conference on Formal Approaches to Software Testing, FATES'04,
pages 79_94, Berlin, Heidelberg, 2005. Springer-Verlag.

[11] A. Rollet. Testing robustness of real time embedded systems.
[12] A. Rollet and H. Fouchal. Testing protocol robustness. T.; Heyer, G. &

Unger, H. (Eds.), Innovative Internet Community Systems, volume

2877 of Lecture Notes in Computer Science, pages 201_215. Springer
Berlin Heidelberg, 2003.

[13] A. Shahrokni and R. Feldt. Robustest: A framework for automated

testing of software robustness. In Software Engineering Conference
(APSEC), 2011 18th Asia Paci_c, pages 171 _178, dec. 2011.

[14] J. Springintveld, F. Vaandrager, and P. R. D'Argenio. Testing timed

automata. In IN B. JONSSON AND J. PARROW (EDS.), PROC.
FTRTFT'96, LNCS 1135, pages 130_147. Springer, 1996.

[15] J. Stankovic. Wireless sensor networks. Computer, 41(10):92_95, Oct.

[16] M. Timmer, E. Brinksma, and M. Stoelinga. Model-based testing.
[17] J. Tretmans and A. Belinfante. Automatic testing with formal methods,

2000.

[18] S. Zhu. Leap: Efficient security mechanisms for large-scale distributed
sensor networks. pages 62_72. ACM Press, 2003.

