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Abstract— We address in this paper the 1D array partitioning 

problem (1D-APP), a combinatorial optimisation problem (COP) 

for which exact polynomial time algorithms are known in the 

literature. We particularly consider the parallelisation of the 

dynamic programming algorithm of Skiena (DPA-S) which is 

structured in a DO loop nest of depth 3. Our approach is based 

on a three-phase procedure. The first consists in transforming 

the DPA-S into a perfect loop nest (PLN) from which five other 

versions are derived by applying the loop interchange technique 

(LIT). The second applies a dependency analysis on the initial 

PLN permitting the determination of the type of each loop (serial 

or parallel). As to the third phase, it applies on the initial PLN 

the LIT which leads to versions exhibiting a higher degree of 

parallelism. Finally, an experimental study achieved on a 

multicore parallel computer permits to validate our theoretical 

contribution. 

Keywords— Array partitioning, COP, dependency analysis, 

dynamic programming, loop interchange, loop nest, multicore 
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I. INTRODUCTION 

Dynamic programming (DP) is an efficient paradigm for 

the design of algorithms solving a large class of combinatorial 

optimisation problems (COP). DP algorithms (DPA) have the 

particular structure of DO loop nests and are, in most cases, of 

polynomial complexity. Such algorithms are also polyhedral 

algorithms. Given an input COP, DP adopts a bottom-up 

approach leading to first solving subproblems whose solutions 

are used to solve subproblems of larger size. The procedure is 

then iterated until determining the solution of the input 

problem. The key idea is to express, through a recurrence 

formula, the solution of the initial problem in terms of the 

solutions of its son subproblems [1]. 

The 1D array partitioning problem (1D-APP) in which we 

are interested is in fact an easy COP for which several solving 

algorithms are known in the literature, among which we find 

the DPA of Skiena [2], denoted henceforth DPA-S. Our aim is 

first to design several versions of the original DPA-S, then 

study their parallelization by using the standard methodology 

for polyhedral algorithms. 

The remainder of the paper is organised as follows. In 

section II, we first present the 1D-APP then a brief survey on 

solving algorithms known in the literature. Section III is 

devoted to the study of the (sequential) dynamic programming 

algorithm of Skiena (DPA-S). We develop in section IV our 

approach for the parallelisation of DPA-S. An experimental 

study is described in section V. Finally we conclude our work 

in section VI and propose some perspectives. 

II. THE 1D ARRAY PARTITIONING PROBLEM 

The array partitioning problem (APP) with its diverse 1D 

and 2D variants is a COP having several real world 

applications such as in data base fragmentation and 

distribution, image processing, task scheduling, sparse 

scientific computing … [3], [4]. 

In its standard 1D variant, denoted 1D-APP, the problem 

we address may be formulated as follows. Given a list of, say, 

n items of costs c1 … cn, and an integer m (<n), the 1D-APP 

consists in fragmenting (splitting) the list into m successive i.e. 

contiguous fragments (sublists) such that the weight of the 

fragment of maximal weight is minimised, the weight of a 

fragment being the sum of the costs of the items it involves. 

This formulation may also be seen as the problem of 

scheduling n non preemptive independent tasks T1 … Tn of 

costs c1 … cn, onto m (identical) processors with the 

constraint that each processor must receive a subset of 

contiguous tasks. The objective is clearly to minimise the 

Makespan [2]. It has to be underlined that the same scheduling 

problem without the contiguity constraint is a classical hard 

COP [5]. But, with this constraint, the problem becomes an 

easy COP. 

Several algorithms for solving the 1D-APP are known in 

the literature [6]. We are interested here on those based on 

dynamic programming, namely DPA’s. Four are the mostly 

known. The following table recapitulates their complexities. 
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TABLE 1  

DPA’S FOR SOLVING THE 1D-APP 

Reference Complexity 

Anily & Fergruen, 1991 [7] O(mn²) 

Hansen & Lih., 1992 [8] O(mn²) 

Olstad & Manne 1995 [9] O(m(n-m)) 

(Skiena, 1998) [2] O(mn²) 

It has to be underlined that the algorithm of Skiena (DPA-S) 
has some attracting properties as will be detailed below. We 
may particularly cite its regular structure i.e. a DO loop nest 
and the fact that it solves not only the instance of the original 
problem, denoted P(n,m), but also all the subproblem 
instances P(i,j) for i=2…n-1 and j=2…m-1 thus O(nm) 
subproblems. Furthermore it is the mostly cited and used. 

Concerning the parallelisation of algorithms for solving the 

1D-APP, to our knowledge, no works have been achieved so 

far. 

III. STUDY OF THE DYNAMIC PROGRAMMING ALGORITHM OF 

SKIENA 

A. Original algorithm 

We first describe the original algorithm of Skiena (DPA-S). 

We adopt the task scheduling formulation of the 1D-APP and 

use the following notations: 
• ci : cost of task i, denoted Ti ;  f(i): sum of the costs of the 
first i tasks i.e. c1+… +ci 
• M(i,j) : i=1..n, j=1..m is the makespan obtained by 
scheduling the first i tasks onto j processors. 
• D(i,j) corresponds to the position where begins the j-th 
fragment (i.e. the task subset assigned to processor j) when 
scheduling the first i tasks. 

DPA-S practically consists in determining the m-1 optimal 
splitting indices i1… im-1 such that fragment 1 corresponds to 
the interval [1 i1], fragment 2 to [i1+1  i2], …,  fragment r to 
[ir-1+1  ir] … and fragment m to [im-1+1  n]. 

 
Fig. 1 Fragmentation in the 1D-APP 

DPA-S is in fact based on the following dynamic 

programming recurrence formula:  

M(i,j)=min(max(M(k,j-1), f(i)-f(k)), k=1…i-1) : i=2…n, j=2…m. 

We detail DPA-S below. 

DPA-S 
f(0)=0 
DO i=1,n  

f(i)=f(i-1)+ ci  
M(i,1)= f(i)     

DO i=1,m  
M(1,i)= c1 

ENDDO 

 Initialization 
phase 
 Complexity : 
O(n) 

DO i=2,n                           
DO j=2,m                  

M(i,j)=∞          / statement 1 / 
DO k=1,i-1        

s=max(M(k,j-1), f(i)-f(k)) 
IF (M(i,j) > s) THEN 

 M(i,j)=s ; D(i,j)=k 
ENDIF 

ENDDO  
ENDDO  

ENDDO 

Processing 
phase  
Complexity : 
O(mn²) 

Fig. 2  DPA-S. Original version 

We remark that DPA-S original version involves two parts. 

The first, corresponding to an initialization phase, is a simple 

DO loop and the second, corresponding to the processing 

phase, is a loop nest of depth 3 i.e. involving three loops. 

We’ll restrict our study to this second part. 

Since DPA-S is a non perfect loop nest i.e. the three loops 

are not tightly nested, we’ll proceed to its transformation into 

a perfect loop nest where the loops are tightly nested. 

Let us recall that DPA-S solves, in addition to the original 
problem whose instance is denoted P(n,m), all instances P(i,j) 
for i=2…n-1 and j=2…m-1. 

B. From a non perfect loop nest to a perfect loop nest 

The analysis of perfect loop nests (PLN) being easier than 

that of non perfect loop nests (NPLN), we often proceed to 

transforming a NPLN into a PLN. Several techniques are 

known for this purpose [10]. As far as DPA-S is concerned, 

the transformation is immediate and consists in removing 

statement 1 i.e. “M(i,j)=∞” from the NPLN and including it in 

a outer perfect two-loop nest placed just before the NPLN 

which thus becomes a PLN. We hence get two successive 

PLN’s : a perfect two-loop nest and a perfect three-loop nest 

as detailed below. 

 

 
 
 
 
 
DO i=2,n 

DO j=2,m 
M(i,j)=∞ 
DO k=1,i-1 

s=max(M(k,j-1), f(i)-f(k)) 
IF (M(i,j) > s) THEN 

M(i,j)=s ; D(i,j)=k 
ENDIF 

ENDDO 
ENDDO 

ENDDO 
Non perfect 3-loop nest 

 

DO i=2,n  
DO j=2,m 

 M(i,j)=∞  
ENDDO 

ENDDO 
DO i=2,n    / loop L1/ 

DO j=2,m     / Loop L2/  
DO k=1,i-1   / Loop L3/  

s=max(M(k,j-1), f(i)-f(k)) 
IF (M(i,j) > s) THEN 

 M(i,j)=s ; D(i,j)=k 
ENDIF 

ENDDO 
ENDDO 

ENDDO 

Perfect 2-loop and 3-loop nests 

Fig. 3 Transformation: from non perfect loop nest to perfect loop nest 
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Now, consider the new perfect three-loop nest. Its body 

involves logical and arithmetic operations. For sake of 

simplicity and without lost of generality, let c (=O(1)) be its 

cost. The complexity of the nest, denoted C(n,m), may be 

easily computed.  

Indeed, we have C(n,m)=c(m-1)n(n-1)/2=O(mn2). Since 

we obviously have 2 ≤ m ≤ n-1, the complexity order of C(n,m) 

is O(n
2
) in the best case and O(n

3
) in the worst case. 

The new DPA-S version will be called henceforth IJK 

version. It has to be underlined that a well known optimisation 

technique used for nested loops, also called polyhedral 

algorithms, consists in deriving, from an initial version, other 

semantically equivalent versions by applying the loop 

interchange technique (LIT) [11]. Hence, from the initial IJK 

version, we can derive five others i.e. versions JIK, IKJ, JKI, 

KIJ and KJI. However, we must check the validity of the LIT 

before applying it [11], [12]. This important fact is studied in 

section IV. However, since the five versions are valid and for 

sake of clearness, we anticipate their presentation. 

C. Derived versions by loop interchange 

It has to be firstly noticed that, since DPA-S uses two 2D 

arrays i.e. M and D, an important point that has a direct 

impact on the practical efficiency of any among the 6 versions 

is the array access mode i.e. either row-wise (R) or column-

wise (C). 

The following table recapitulates the characteristics of the 6 

versions. Remark that the nest body remains the same in the 

six versions. Only the loop bounds are different. 

TABLE 2  

CHARACTERISTICS OF THE 6 DPA-S VERSIONS 

Version IJK IKJ JIK JKI KIJ KJI 

Loop 
bounds 

L1  2, n  2, n  2, m  2, m 1, n-1 1, n-1 

L2  2, m  1, i-1  2, n  1, n-1 k+1,n 2, m 

L3  1, i-1  2, m  1, i-1  k+1, n 2, m k+1, n 

Access 
mode 

  M(k,j-1) C R C C R R 

M(i,j) R R C C R C 

D(i,j) R R C C R C 

 

Since we have for versions IKJ and KIJ three row-wise 

access modes (R), they will be the best in a C programming 

environment where arrays are stored row-wise. The four other 

versions, particularly the standard IJK one, will be less 

efficient since we have (one to three) conflicts between 

storing mode and access modes.  The experimental study will 

in fact confirm these propositions. 

IV. DEPENDENCY ANALYSIS 

A. Fine grain case 

Dependency analysis (DA) is the most important phase in 

algorithm parallelisation [11], [12]. Given a sequential 

algorithm, we first have to choose the granularity. For perfect 

loop nests, the immediate choice is the fine grain (FG) 

corresponding to the body of the innermost loop. Medium or 

coarse grains (MG, CG) may also be used. However, the fine 

grain leads in general to a higher parallelism degree. We’ll 

begin by choosing the fine grain and see further the medium 

grain where a grain corresponds to the body of the second 

loop.  

Now, Let T(i,j,k) be the loop nest body of version IJK. The 

dependency analysis consists in the determination of eventual 

read-write conflicts between two instances T(i1,j1,k1) and 

T(i2,j2,k2) if they are simultaneously  executed. This analysis 

may be done according to the so called Bernstein conditions 

[11], [12]. The application of this standard procedure leads to 

the following (3,2) dependency distance matrix DDM 

involving two dependency distance vectors (DDV) : 

 

 
We deduce the sign dependency distance matrix SDDM 

where a positive (resp. negative) component in the DDM is 

replaced by 1 (resp. -1). 

 
Remark that a DDV must be lexicographically positive 

(LP) i.e. its first nonzero element must be positive. Since the 

(3,2) SDDM has non negative elements, any row permutation 

leads to LP columns. We hence conclude the following:  

The five versions derived by loop interchange i.e. JIK, IKJ, 

JKI, KIJ and KJI are both valid since the SDDM of each of 

them which corresponds to a row permutation of the initial 

SDDM (associated to version IJK) is LP. 

The SDDM induces two dependency levels : level 1 

(position of the first nonzero element of the first column 

vector) and level 3 (position of the first nonzero element of 

the second column vector). Therefore the I and K loops in 

version IKJ are serial (S) whereas the J loop is parallel (P). 

We hence associate to version IJK the tuple SPS (IJK → SPS).  

As to the other versions, we easily deduce the following: 

IKJ → SSP, JIK → SPS, JKI → SSP, KIJ → SPP, KJI → SPP. 

Therefore the versions exhibiting the highest parallelism are 

KIJ and KJI. 

As an illustrative example, we present below in Fig.4 the 

dependency graph of version IJK for n=5 and m=4. This 

permits to better see the inherent parallelism that is expressed 

the best in versions KIJ and KJI. 
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TABLE 3  

CHARACTERISTICS OF THE SIX VERSIONS – FINE GRAIN CASE 

 
 

We recapitulate after in Table 2 the characteristics of the 6 

versions where the following notations are adopted: 

pmax : maximal degree of parallelism i.e. maximal number 

of parallel iterations in the loop nest 

Topt: parallel execution time (complexity) when pmax 

processors are used    

C: cost of the parallel algorithm i.e. pmax*Topt  

S: speed-up i.e. Tseq/Topt where Tseq is the sequential 

execution time (=c(n(n-1)(m-1)/2) 

E: efficiency i.e. S/pmax  ;  E∞:  limit of E when n → ∞  

Tp: parallel execution time when p < pmax processors are 

used 

Sp, Ep: speed-up and efficiency when p processors are used 

 

Fig. 4  IJK Reduced Dependency graph for n=5, m=4 - Fine grain case 

(Transitive arcs are omitted) 

Remarks. 

• The six parallel algorithms corresponding to the 6 versions 

are both cost-optimal since we have for each 

C=O(Tseq)=O(mn
2
)  i.e. E=O(1) when n → ∞. 

• Although involving only one parallel loop, versions IJK 

and IKJ are asymptotically more efficient since E∞=1 for both, 

whereas E∞ =1/2 for the four others. 

• Versions KIJ and KJI considered the best in sequential (in 

a C environment) exhibit the highest parallelism degree i.e. 

(n-1)(m-1). 

B. Medium grain case 

We now proceed to the study of the medium grain (MG) 

case. Here the grain corresponds to the body of the second 

loop. Considering the 6 versions seen above, we easily deduce 

the following properties for the six induced two-loop nests IJ, 

JI, KI, KJ, JK and IK :   

IJ → SP, JI → SP, KI → SP, KJ → SP, JK → SS, IK→ SS 

We therefore restrict to the first four versions since the 

others involve no parallel loop.  We present below in Fig.5 the 

dependency graphs for n=5, m=4 and recapitulate their 

characteristics in Table 3 where we included the grain size 

(gs). 

 

 
Fig. 5  Reduced Dependency graphs for n=5, m=4 - Medium grain case 

(Transitive arcs are omitted) 
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TABLE 4 

 CHARACTERISTICS OF THE FOUR VERSIONS - MEDIUM GRAIN CASE 

Remarks. 

• The grain size (gs) is constant only in version KI (equal to 

c(m-1)) and varies in the other versions. In versions IJ and JI, 

gs=c(i-1) and increases from c to c(n-1). In version KJ, 

gs=c(n-k) and decreases from c(n-1) to c. 

• The four parallel algorithms corresponding to the 4 

versions are both cost-optimal since  we have for each             

CCCC = O(Tseq)=O(mn2) i.e. E=O(1). 

• Versions IJ, JI and KJ are more efficient since E=1 for 

both, whereas E =1/2 for version KI. 

• As to the coarse grain case where the grain corresponds to 

the body of the first loop, it represents no interest since the 

unique loop of each version is serial. 

V. EXPERIMENTAL STUDY 

A. Introduction 

 We achieved a series of experiments involving two parts: a 

sequential and a parallel. The sequential part covers the 6 

sequential DPA-S versions. As to the parallel part, we 

choosed version KIJ since it was globally the best in 

sequential and exhibits the highest parallelism degree (two 

parallel loops). The target machine we used is a Dell T5400 

quad-core biprocessor (see configuration below). 

Our algorithms were coded in C under Linux. For the 

parallel experiments, we used the shared memory OpenMP 

environment. Concerning the execution times, they are the 

means of several runs. 

TABLE 5 

TARGET MACHINE CONFIGURATION 

Model Dell T5400 

# Proc. 2 

Processor 

Model Intel® Xeon® E5420 

Clock 2.50 GHz 

Bus 1.33 GHz 

# Cores 4 per proc 

Cache L1 
128 Ko (inst) 

128 Ko (data) 

Cache L2 12 Mo 

HD 250 Go 

RAM 4 Go 

OS Ubuntu 11.04 64bits 

B. Sequential Part 

We precise that we chose 14 values for n in the range    

[100 5000] and for each n, 5 to 13 values for m such that        

5 ≤ m ≤ n/2. In fact, we achieved 132 tests for each of the 6 

versions, thus 792 tests.   

Excerpts of the results we obtained are depicted in Table 6 

were we give the execution times, denoted ext (in seconds), 

and the following three ratios:  

r1=ext(IJK)/ext(IKJ),  

r2=ext(IJK)/ext(KJI),  

r3=ext(IKJ)/ext(KIJ). 
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TABLE 6 

 EXECUTION TIMES (S) OF THE 6 VERSIONS 

n m IJK IKJ JIK JKI KIJ KJI r1 r2 r3 

100 

10 0.000066 0.000100 0.000066 0.000072 0.000068 0.000086 0.66 0.97 1.47 

25 0.000174 0.000100 0.000172 0.000186 0.000180 0.000200 1.74 0.97 0.56 

50 0.000362 0.000400 0.000366 0.000392 0.000366 0.000400 0.91 0.99 1.09 

500 

50 0.011000 0.009200 0.010800 0.020700 0.009300 0.020800 1.20 1.18 0.99 

100 0.022300 0.018800 0.022100 0.042500 0.018700 0.042400 1.19 1.19 1.01 

250 0.056000 0.046800 0.056400 0.107900 0.046600 0.108000 1.20 1.20 1.00 

1000 

50 0.047000 0.037000 0.047000 0.087000 0.037000 0.086500 1.27 1.27 1.00 

250 0.241500 0.188500 0.241000 0.452000 0.186500 0.453500 1.28 1.29 1.01 

500 0.486000 0.384000 0.485000 0.910000 0.374500 0.929500 1.27 1.30 1.03 

3000 

50 0.433500 0.345000 0.433500 0.789000 0.334500 0.789000 1.26 1.30 1.03 

500 4.827000 3.534500 4.457500 8.318500 3.498500 9.207000 1.37 1.38 1.01 

1000 10.254000 7.028500 8.933000 16.694000 7.049000 18.837999 1.46 1.45 1.00 

5000 

50 1.207500 1.031500 1.206500 2.194000 0.943500 2.217000 1.17 1.28 1.09 

1000 28.959501 19.848000 24.853500 46.445000 19.639999 53.338501 1.46 1.47 1.01 

2000 58.375999 39.496998 49.752499 93.063004 39.102001 107.197006 1.48 1.49 1.01 

 

 

Fig. 6 Execution time (s) for n=5000 

We remark from Table 6 and Fig.6 that, for n ≥ 500, 

versions IKJ and KJI are better than the standard version IJK, 

thus confirming our previous comments (see section III.C ). 

This is due to the 3 row-wise accesses and the row-wise 

storing. On the other hand, versions JKI and KJI are the worst 

since we have 3 column-wise accesses in the first and two in 

the second. We have to add that version KIJ is up to almost 

1.5 time faster than the standard version IJK (see ratio r2). 

To better clarify the performances of each version, we give in 

Table 7 the rank ratio for each i.e. the number of cases (%) for 

which a given version is first ranked, second ranked…. For 

instance, version KIJ (resp. IKJ) was ranked first in 81.06% 

(resp. 18.94%) of the 132 tested cases and ranked second in 

7.58% (resp. 67.42%) of the 132 cases. 

TABLE 7  

RANKING OF THE SIX VERSIONS 

Rank IJK IKJ JIK JKI KIJ KJI 

1 9.85 18.94 6.82 0 81.06 1.52 

2 6.06 67.42 12.88 0 7.58 0 

3 48.48 2.27 57.58 0.76 6.06 0.00 

4 35.61 9.09 22.73 1.52 4.55 0.00 

5 0 1.52 0 65.15 0 53.79 

6 0 0.76 0 32.58 0.76 44.70 

We remark that KIJ is the best in most cases, followed by 

IKJ, and KJI was the last in more cases (44.70%) than the 

others. 

We conclude this section by underlying that the standard 

version IJK is outperformed by versions KIJ then IKJ. Thus 

we have better using version KIJ.  

C. Parallel Part 

Since version KIJ is the best in sequential and exhibits the 

highest parallelism degree (2 parallel loops), we chose it in 

this parallel experimentations part. We precise that, in 

addition to the choice of the values of n and m (see section 

V.B above), we chose 4 values for p (number of processors) 

i.e. 2, 4, 6, 8. In addition to the execution times, we give the 

speed-ups and efficiencies (%). Excerpts of the results we 

obtained are given below. Remark that 132*4 = 8 tests have 

been achieved. 
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TABLE 8  

EXECUTION TIME (S) 

 p 

n m 
1 2 4 6 8 

Execution Times (s) 

100 

10 0.0000680 0.0001000 0.0000240 0.0000183 0.0000125 

25 0.0001800 0.0001750 0.0000600 0.0000383 0.0000313 

50 0.0003660 0.0003500 0.0001720 0.0000783 0.0000644 

500 

50 0.0093000 0.0064500 0.0040720 0.0026100 0.0023889 

100 0.0187000 0.0122500 0.0086160 0.0049533 0.0050015 

250 0.0465999 0.0302500 0.0220240 0.0128967 0.0104342 

1000 

50 0.0370000 0.0241250 0.0169000 0.0098000 0.0094825 

250 0.1864999 0.1160000 0.0882800 0.0547917 0.0415964 

500 0.3745000 0.2305000 0.1776600 0.1022750 0.0894732 

3000 

50 0.3345000 0.2252500 0.1474800 0.0987083 0.0764814 

500 3.4985001 2.3602500 1.4798001 1.0406334 0.8041461 

1000 7.0489997 4.8397498 2.9900601 2.4920998 1.6201014 

5000 

50 0.9434999 0.5453750 0.4385400 0.2799917 0.2376551 

1000 19.6399999 12.6201248 8.7922400 6.5241333 4.3135986 

2000 39.1020011 25.2596264 17.5527197 13.1734416 9.8327878 

 

 
Fig. 7 Execution time (s) for n=5000 

TABLE 9  

SPEED-UP AND EFFICIENCY 

 p 

n m 
2 4 6 8 2 4 6 8 

Speed-up Efficiency (%) 

100 

10 0.68 2.83 3.71 5.30 34.00 70.83 61.82 66.30 

25 1.03 3.00 4.70 5.09 51.43 75.00 78.26 63.68 

50 1.05 2.13 4.67 5.55 52.29 53.20 77.87 69.32 

500 

50 1.44 2.28 3.56 3.83 72.09 57.10 59.39 47.91 

100 1.53 2.17 3.78 3.47 76.33 54.26 62.92 43.32 

250 1.54 2.12 3.61 3.29 77.02 52.90 60.22 41.14 

1000 

50 1.53 2.19 3.78 3.74 76.68 54.73 62.93 46.70 

250 1.61 2.11 3.40 3.49 80.39 52.81 56.73 43.57 

500 1.62 2.11 3.66 3.49 81.24 52.70 61.03 43.63 

3000 

50 1.49 2.27 3.39 3.35 74.25 56.70 56.48 41.82 

500 1.48 2.36 3.36 3.41 74.11 59.10 56.03 42.60 

1000 1.46 2.36 2.83 3.44 72.82 58.94 47.14 42.99 

5000 

50 1.73 2.15 3.37 3.37 86.50 53.79 56.16 42.17 

1000 1.55 2.23 2.97 3.41 77.81 55.84 50.17 42.81 

2000 1.55 2.23 2.92 3.41 77.40 55.69 49.47 42.60 

 
Fig. 8 Speed-up for n=5000 

 
Fig. 9 Efficiency for n=5000 

Remarks. 

• The parallelization is beneficial since for fixed n and m, 

the execution time decreases for increasing p (Table 8 and 

Fig.7 ),(except for very few and non significant cases not 

exceeding 2.73% of the cases, 2 may be seen in Table 8).  
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• The best value for the speed-up (resp. efficiency) is 5.55 

(resp. 86.50%) and is reached for the tuple n=100, m=50, p=8 

(resp. n=5000, m=50, p=2).   

• The speed-up as well as the efficiency do not always 

follow uniform and classical behaviours i.e. an increasing one 

for the speed-up and a decreasing one for the efficiency when 

n, m are fixed and p increases. This may be seen in Table 9 

where the results written in bold italic correspond to uniform 

behaviours. As to the non uniform case, we notice that the 

speed-up often increases from p=2 to p=6, then decreases for 

p=8 (see underlined results in Table 9 and Fig.8). As to the 

efficiency, it follows an alternative behaviour (decrease-

increase-decrease… or increase-decrease-increase…, see 

underlined results in Table 9 and Fig.9). Notice in addition 

that these uniform/non uniform behaviours do not occur for 

the same tuples (m,n,p) as far as speed-up and  efficiency are 

concerned.   

• The non uniform behaviours seen for the speed-up and the 

efficiency, though not exceptional in practice, may be due to 

combined reasons related to both the target machine 

architecture and the parallel program. We may particularly 

cite the eventual increase of cache misses and inter-core 

communication amounts induced by changes in the program 

parameters particularly p. 

VI. CONCLUSION 

In the study developed in this paper and addressing a 

particular dynamic programming algorithm (DPA) for solving 

the 1D array partitioning problem, we presented first a series 

of different versions of the DPA. We then described a 

parallelization procedure of the previous algorithms. A set of 

experimentations could validate the contribution and precise 

its practical interest. However, several interesting points 

remain to be seen, particularly: 

• Study the problem of the determination of several optimal 

solutions for the 1D-APP and establish comparison criteria 

between them.  Interesting preliminary results based on the 

use of the different versions of the DPA have been obtained so 

far. 

• Achieve a series of experiments targeting a massively 

parallel computer in order to evaluate the scalability of the 

parallel algorithm and their behaviour when a large number of 

processors are used. 

•  Extend the parallelization approach to a heterogeneous 

environment i.e. where the available processors have different 

speeds. 
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