
International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.28-36

ISSN 2356-5608

On the Parallelisation of a Dynamic

Programming Algorithm for Solving the 1D

Array Partitioning Problem
Hajer Salhi

#1
, Zaher Mahjoub

#2

Faculty of Sciences of Tunis, University of Tunis El Manar,

University Campus - 2092 Manar II, Tunis, Tunisia

1
hajer.salhy@gmail.com

2
zaher.mahjoub@fst.rnu.tn

Abstract— We address in this paper the 1D array partitioning

problem (1D-APP), a combinatorial optimisation problem (COP)

for which exact polynomial time algorithms are known in the

literature. We particularly consider the parallelisation of the

dynamic programming algorithm of Skiena (DPA-S) which is

structured in a DO loop nest of depth 3. Our approach is based

on a three-phase procedure. The first consists in transforming

the DPA-S into a perfect loop nest (PLN) from which five other

versions are derived by applying the loop interchange technique

(LIT). The second applies a dependency analysis on the initial

PLN permitting the determination of the type of each loop (serial

or parallel). As to the third phase, it applies on the initial PLN

the LIT which leads to versions exhibiting a higher degree of

parallelism. Finally, an experimental study achieved on a

multicore parallel computer permits to validate our theoretical

contribution.

Keywords— Array partitioning, COP, dependency analysis,

dynamic programming, loop interchange, loop nest, multicore

machine, parallelisation.

I. INTRODUCTION

Dynamic programming (DP) is an efficient paradigm for

the design of algorithms solving a large class of combinatorial

optimisation problems (COP). DP algorithms (DPA) have the

particular structure of DO loop nests and are, in most cases, of

polynomial complexity. Such algorithms are also polyhedral

algorithms. Given an input COP, DP adopts a bottom-up

approach leading to first solving subproblems whose solutions

are used to solve subproblems of larger size. The procedure is

then iterated until determining the solution of the input

problem. The key idea is to express, through a recurrence

formula, the solution of the initial problem in terms of the

solutions of its son subproblems [1].

The 1D array partitioning problem (1D-APP) in which we

are interested is in fact an easy COP for which several solving

algorithms are known in the literature, among which we find

the DPA of Skiena [2], denoted henceforth DPA-S. Our aim is

first to design several versions of the original DPA-S, then

study their parallelization by using the standard methodology

for polyhedral algorithms.

The remainder of the paper is organised as follows. In

section II, we first present the 1D-APP then a brief survey on

solving algorithms known in the literature. Section III is

devoted to the study of the (sequential) dynamic programming

algorithm of Skiena (DPA-S). We develop in section IV our

approach for the parallelisation of DPA-S. An experimental

study is described in section V. Finally we conclude our work

in section VI and propose some perspectives.

II. THE 1D ARRAY PARTITIONING PROBLEM

The array partitioning problem (APP) with its diverse 1D

and 2D variants is a COP having several real world

applications such as in data base fragmentation and

distribution, image processing, task scheduling, sparse

scientific computing … [3], [4].

In its standard 1D variant, denoted 1D-APP, the problem

we address may be formulated as follows. Given a list of, say,

n items of costs c1 … cn, and an integer m (<n), the 1D-APP

consists in fragmenting (splitting) the list into m successive i.e.

contiguous fragments (sublists) such that the weight of the

fragment of maximal weight is minimised, the weight of a

fragment being the sum of the costs of the items it involves.

This formulation may also be seen as the problem of

scheduling n non preemptive independent tasks T1 … Tn of

costs c1 … cn, onto m (identical) processors with the

constraint that each processor must receive a subset of

contiguous tasks. The objective is clearly to minimise the

Makespan [2]. It has to be underlined that the same scheduling

problem without the contiguity constraint is a classical hard

COP [5]. But, with this constraint, the problem becomes an

easy COP.

Several algorithms for solving the 1D-APP are known in

the literature [6]. We are interested here on those based on

dynamic programming, namely DPA’s. Four are the mostly

known. The following table recapitulates their complexities.

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.28-36

ISSN 2356-5608

TABLE 1

DPA’S FOR SOLVING THE 1D-APP

Reference Complexity

Anily & Fergruen, 1991 [7] O(mn²)

Hansen & Lih., 1992 [8] O(mn²)

Olstad & Manne 1995 [9] O(m(n-m))

(Skiena, 1998) [2] O(mn²)

It has to be underlined that the algorithm of Skiena (DPA-S)
has some attracting properties as will be detailed below. We
may particularly cite its regular structure i.e. a DO loop nest
and the fact that it solves not only the instance of the original
problem, denoted P(n,m), but also all the subproblem
instances P(i,j) for i=2…n-1 and j=2…m-1 thus O(nm)
subproblems. Furthermore it is the mostly cited and used.

Concerning the parallelisation of algorithms for solving the

1D-APP, to our knowledge, no works have been achieved so

far.

III. STUDY OF THE DYNAMIC PROGRAMMING ALGORITHM OF

SKIENA

A. Original algorithm

We first describe the original algorithm of Skiena (DPA-S).

We adopt the task scheduling formulation of the 1D-APP and

use the following notations:
• ci : cost of task i, denoted Ti ; f(i): sum of the costs of the
first i tasks i.e. c1+… +ci
• M(i,j) : i=1..n, j=1..m is the makespan obtained by
scheduling the first i tasks onto j processors.
• D(i,j) corresponds to the position where begins the j-th
fragment (i.e. the task subset assigned to processor j) when
scheduling the first i tasks.

DPA-S practically consists in determining the m-1 optimal
splitting indices i1… im-1 such that fragment 1 corresponds to
the interval [1 i1], fragment 2 to [i1+1 i2], …, fragment r to
[ir-1+1 ir] … and fragment m to [im-1+1 n].

Fig. 1 Fragmentation in the 1D-APP

DPA-S is in fact based on the following dynamic

programming recurrence formula:

M(i,j)=min(max(M(k,j-1), f(i)-f(k)), k=1…i-1) : i=2…n, j=2…m.

We detail DPA-S below.

DPA-S
f(0)=0
DO i=1,n

f(i)=f(i-1)+ ci
M(i,1)= f(i)

DO i=1,m
M(1,i)= c1

ENDDO

 Initialization
phase
 Complexity :
O(n)

DO i=2,n
DO j=2,m

M(i,j)=∞ / statement 1 /
DO k=1,i-1

s=max(M(k,j-1), f(i)-f(k))
IF (M(i,j) > s) THEN

 M(i,j)=s ; D(i,j)=k
ENDIF

ENDDO
ENDDO

ENDDO

Processing
phase
Complexity :
O(mn²)

Fig. 2 DPA-S. Original version

We remark that DPA-S original version involves two parts.

The first, corresponding to an initialization phase, is a simple

DO loop and the second, corresponding to the processing

phase, is a loop nest of depth 3 i.e. involving three loops.

We’ll restrict our study to this second part.

Since DPA-S is a non perfect loop nest i.e. the three loops

are not tightly nested, we’ll proceed to its transformation into

a perfect loop nest where the loops are tightly nested.

Let us recall that DPA-S solves, in addition to the original
problem whose instance is denoted P(n,m), all instances P(i,j)
for i=2…n-1 and j=2…m-1.

B. From a non perfect loop nest to a perfect loop nest

The analysis of perfect loop nests (PLN) being easier than

that of non perfect loop nests (NPLN), we often proceed to

transforming a NPLN into a PLN. Several techniques are

known for this purpose [10]. As far as DPA-S is concerned,

the transformation is immediate and consists in removing

statement 1 i.e. “M(i,j)=∞” from the NPLN and including it in

a outer perfect two-loop nest placed just before the NPLN

which thus becomes a PLN. We hence get two successive

PLN’s : a perfect two-loop nest and a perfect three-loop nest

as detailed below.

DO i=2,n

DO j=2,m
M(i,j)=∞
DO k=1,i-1

s=max(M(k,j-1), f(i)-f(k))
IF (M(i,j) > s) THEN

M(i,j)=s ; D(i,j)=k
ENDIF

ENDDO
ENDDO

ENDDO
Non perfect 3-loop nest

DO i=2,n
DO j=2,m

 M(i,j)=∞
ENDDO

ENDDO
DO i=2,n / loop L1/

DO j=2,m / Loop L2/
DO k=1,i-1 / Loop L3/

s=max(M(k,j-1), f(i)-f(k))
IF (M(i,j) > s) THEN

 M(i,j)=s ; D(i,j)=k
ENDIF

ENDDO
ENDDO

ENDDO

Perfect 2-loop and 3-loop nests

Fig. 3 Transformation: from non perfect loop nest to perfect loop nest

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.28-36

ISSN 2356-5608

Now, consider the new perfect three-loop nest. Its body

involves logical and arithmetic operations. For sake of

simplicity and without lost of generality, let c (=O(1)) be its

cost. The complexity of the nest, denoted C(n,m), may be

easily computed.

Indeed, we have C(n,m)=c(m-1)n(n-1)/2=O(mn2). Since

we obviously have 2 ≤ m ≤ n-1, the complexity order of C(n,m)

is O(n
2
) in the best case and O(n

3
) in the worst case.

The new DPA-S version will be called henceforth IJK

version. It has to be underlined that a well known optimisation

technique used for nested loops, also called polyhedral

algorithms, consists in deriving, from an initial version, other

semantically equivalent versions by applying the loop

interchange technique (LIT) [11]. Hence, from the initial IJK

version, we can derive five others i.e. versions JIK, IKJ, JKI,

KIJ and KJI. However, we must check the validity of the LIT

before applying it [11], [12]. This important fact is studied in

section IV. However, since the five versions are valid and for

sake of clearness, we anticipate their presentation.

C. Derived versions by loop interchange

It has to be firstly noticed that, since DPA-S uses two 2D

arrays i.e. M and D, an important point that has a direct

impact on the practical efficiency of any among the 6 versions

is the array access mode i.e. either row-wise (R) or column-

wise (C).

The following table recapitulates the characteristics of the 6

versions. Remark that the nest body remains the same in the

six versions. Only the loop bounds are different.

TABLE 2

CHARACTERISTICS OF THE 6 DPA-S VERSIONS

Version IJK IKJ JIK JKI KIJ KJI

Loop
bounds

L1 2, n 2, n 2, m 2, m 1, n-1 1, n-1

L2 2, m 1, i-1 2, n 1, n-1 k+1,n 2, m

L3 1, i-1 2, m 1, i-1 k+1, n 2, m k+1, n

Access
mode

 M(k,j-1) C R C C R R

M(i,j) R R C C R C

D(i,j) R R C C R C

Since we have for versions IKJ and KIJ three row-wise

access modes (R), they will be the best in a C programming

environment where arrays are stored row-wise. The four other

versions, particularly the standard IJK one, will be less

efficient since we have (one to three) conflicts between

storing mode and access modes. The experimental study will

in fact confirm these propositions.

IV. DEPENDENCY ANALYSIS

A. Fine grain case

Dependency analysis (DA) is the most important phase in

algorithm parallelisation [11], [12]. Given a sequential

algorithm, we first have to choose the granularity. For perfect

loop nests, the immediate choice is the fine grain (FG)

corresponding to the body of the innermost loop. Medium or

coarse grains (MG, CG) may also be used. However, the fine

grain leads in general to a higher parallelism degree. We’ll

begin by choosing the fine grain and see further the medium

grain where a grain corresponds to the body of the second

loop.

Now, Let T(i,j,k) be the loop nest body of version IJK. The

dependency analysis consists in the determination of eventual

read-write conflicts between two instances T(i1,j1,k1) and

T(i2,j2,k2) if they are simultaneously executed. This analysis

may be done according to the so called Bernstein conditions

[11], [12]. The application of this standard procedure leads to

the following (3,2) dependency distance matrix DDM

involving two dependency distance vectors (DDV) :

We deduce the sign dependency distance matrix SDDM

where a positive (resp. negative) component in the DDM is

replaced by 1 (resp. -1).

Remark that a DDV must be lexicographically positive

(LP) i.e. its first nonzero element must be positive. Since the

(3,2) SDDM has non negative elements, any row permutation

leads to LP columns. We hence conclude the following:

The five versions derived by loop interchange i.e. JIK, IKJ,

JKI, KIJ and KJI are both valid since the SDDM of each of

them which corresponds to a row permutation of the initial

SDDM (associated to version IJK) is LP.

The SDDM induces two dependency levels : level 1

(position of the first nonzero element of the first column

vector) and level 3 (position of the first nonzero element of

the second column vector). Therefore the I and K loops in

version IKJ are serial (S) whereas the J loop is parallel (P).

We hence associate to version IJK the tuple SPS (IJK → SPS).

As to the other versions, we easily deduce the following:

IKJ → SSP, JIK → SPS, JKI → SSP, KIJ → SPP, KJI → SPP.

Therefore the versions exhibiting the highest parallelism are

KIJ and KJI.

As an illustrative example, we present below in Fig.4 the

dependency graph of version IJK for n=5 and m=4. This

permits to better see the inherent parallelism that is expressed

the best in versions KIJ and KJI.

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.28-36

ISSN 2356-5608

TABLE 3

CHARACTERISTICS OF THE SIX VERSIONS – FINE GRAIN CASE

We recapitulate after in Table 2 the characteristics of the 6

versions where the following notations are adopted:

pmax : maximal degree of parallelism i.e. maximal number

of parallel iterations in the loop nest

Topt: parallel execution time (complexity) when pmax

processors are used

C: cost of the parallel algorithm i.e. pmax*Topt

S: speed-up i.e. Tseq/Topt where Tseq is the sequential

execution time (=c(n(n-1)(m-1)/2)

E: efficiency i.e. S/pmax ; E∞: limit of E when n → ∞

Tp: parallel execution time when p < pmax processors are

used

Sp, Ep: speed-up and efficiency when p processors are used

Fig. 4 IJK Reduced Dependency graph for n=5, m=4 - Fine grain case

(Transitive arcs are omitted)

Remarks.

• The six parallel algorithms corresponding to the 6 versions

are both cost-optimal since we have for each

C=O(Tseq)=O(mn
2
) i.e. E=O(1) when n → ∞.

• Although involving only one parallel loop, versions IJK

and IKJ are asymptotically more efficient since E∞=1 for both,

whereas E∞ =1/2 for the four others.

• Versions KIJ and KJI considered the best in sequential (in

a C environment) exhibit the highest parallelism degree i.e.

(n-1)(m-1).

B. Medium grain case

We now proceed to the study of the medium grain (MG)

case. Here the grain corresponds to the body of the second

loop. Considering the 6 versions seen above, we easily deduce

the following properties for the six induced two-loop nests IJ,

JI, KI, KJ, JK and IK :

IJ → SP, JI → SP, KI → SP, KJ → SP, JK → SS, IK→ SS

We therefore restrict to the first four versions since the

others involve no parallel loop. We present below in Fig.5 the

dependency graphs for n=5, m=4 and recapitulate their

characteristics in Table 3 where we included the grain size

(gs).

Fig. 5 Reduced Dependency graphs for n=5, m=4 - Medium grain case

(Transitive arcs are omitted)

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.28-36

ISSN 2356-5608

TABLE 4

 CHARACTERISTICS OF THE FOUR VERSIONS - MEDIUM GRAIN CASE

Remarks.

• The grain size (gs) is constant only in version KI (equal to

c(m-1)) and varies in the other versions. In versions IJ and JI,

gs=c(i-1) and increases from c to c(n-1). In version KJ,

gs=c(n-k) and decreases from c(n-1) to c.

• The four parallel algorithms corresponding to the 4

versions are both cost-optimal since we have for each

CCCC = O(Tseq)=O(mn2) i.e. E=O(1).

• Versions IJ, JI and KJ are more efficient since E=1 for

both, whereas E =1/2 for version KI.

• As to the coarse grain case where the grain corresponds to

the body of the first loop, it represents no interest since the

unique loop of each version is serial.

V. EXPERIMENTAL STUDY

A. Introduction

 We achieved a series of experiments involving two parts: a

sequential and a parallel. The sequential part covers the 6

sequential DPA-S versions. As to the parallel part, we

choosed version KIJ since it was globally the best in

sequential and exhibits the highest parallelism degree (two

parallel loops). The target machine we used is a Dell T5400

quad-core biprocessor (see configuration below).

Our algorithms were coded in C under Linux. For the

parallel experiments, we used the shared memory OpenMP

environment. Concerning the execution times, they are the

means of several runs.

TABLE 5

TARGET MACHINE CONFIGURATION

Model Dell T5400

Proc. 2

Processor

Model Intel® Xeon® E5420

Clock 2.50 GHz

Bus 1.33 GHz

Cores 4 per proc

Cache L1
128 Ko (inst)

128 Ko (data)

Cache L2 12 Mo

HD 250 Go

RAM 4 Go

OS Ubuntu 11.04 64bits

B. Sequential Part

We precise that we chose 14 values for n in the range

[100 5000] and for each n, 5 to 13 values for m such that

5 ≤ m ≤ n/2. In fact, we achieved 132 tests for each of the 6

versions, thus 792 tests.

Excerpts of the results we obtained are depicted in Table 6

were we give the execution times, denoted ext (in seconds),

and the following three ratios:

r1=ext(IJK)/ext(IKJ),

r2=ext(IJK)/ext(KJI),

r3=ext(IKJ)/ext(KIJ).

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.28-36

ISSN 2356-5608

TABLE 6

 EXECUTION TIMES (S) OF THE 6 VERSIONS

n m IJK IKJ JIK JKI KIJ KJI r1 r2 r3

100

10 0.000066 0.000100 0.000066 0.000072 0.000068 0.000086 0.66 0.97 1.47

25 0.000174 0.000100 0.000172 0.000186 0.000180 0.000200 1.74 0.97 0.56

50 0.000362 0.000400 0.000366 0.000392 0.000366 0.000400 0.91 0.99 1.09

500

50 0.011000 0.009200 0.010800 0.020700 0.009300 0.020800 1.20 1.18 0.99

100 0.022300 0.018800 0.022100 0.042500 0.018700 0.042400 1.19 1.19 1.01

250 0.056000 0.046800 0.056400 0.107900 0.046600 0.108000 1.20 1.20 1.00

1000

50 0.047000 0.037000 0.047000 0.087000 0.037000 0.086500 1.27 1.27 1.00

250 0.241500 0.188500 0.241000 0.452000 0.186500 0.453500 1.28 1.29 1.01

500 0.486000 0.384000 0.485000 0.910000 0.374500 0.929500 1.27 1.30 1.03

3000

50 0.433500 0.345000 0.433500 0.789000 0.334500 0.789000 1.26 1.30 1.03

500 4.827000 3.534500 4.457500 8.318500 3.498500 9.207000 1.37 1.38 1.01

1000 10.254000 7.028500 8.933000 16.694000 7.049000 18.837999 1.46 1.45 1.00

5000

50 1.207500 1.031500 1.206500 2.194000 0.943500 2.217000 1.17 1.28 1.09

1000 28.959501 19.848000 24.853500 46.445000 19.639999 53.338501 1.46 1.47 1.01

2000 58.375999 39.496998 49.752499 93.063004 39.102001 107.197006 1.48 1.49 1.01

Fig. 6 Execution time (s) for n=5000

We remark from Table 6 and Fig.6 that, for n ≥ 500,

versions IKJ and KJI are better than the standard version IJK,

thus confirming our previous comments (see section III.C).

This is due to the 3 row-wise accesses and the row-wise

storing. On the other hand, versions JKI and KJI are the worst

since we have 3 column-wise accesses in the first and two in

the second. We have to add that version KIJ is up to almost

1.5 time faster than the standard version IJK (see ratio r2).

To better clarify the performances of each version, we give in

Table 7 the rank ratio for each i.e. the number of cases (%) for

which a given version is first ranked, second ranked…. For

instance, version KIJ (resp. IKJ) was ranked first in 81.06%

(resp. 18.94%) of the 132 tested cases and ranked second in

7.58% (resp. 67.42%) of the 132 cases.

TABLE 7

RANKING OF THE SIX VERSIONS

Rank IJK IKJ JIK JKI KIJ KJI

1 9.85 18.94 6.82 0 81.06 1.52

2 6.06 67.42 12.88 0 7.58 0

3 48.48 2.27 57.58 0.76 6.06 0.00

4 35.61 9.09 22.73 1.52 4.55 0.00

5 0 1.52 0 65.15 0 53.79

6 0 0.76 0 32.58 0.76 44.70

We remark that KIJ is the best in most cases, followed by

IKJ, and KJI was the last in more cases (44.70%) than the

others.

We conclude this section by underlying that the standard

version IJK is outperformed by versions KIJ then IKJ. Thus

we have better using version KIJ.

C. Parallel Part

Since version KIJ is the best in sequential and exhibits the

highest parallelism degree (2 parallel loops), we chose it in

this parallel experimentations part. We precise that, in

addition to the choice of the values of n and m (see section

V.B above), we chose 4 values for p (number of processors)

i.e. 2, 4, 6, 8. In addition to the execution times, we give the

speed-ups and efficiencies (%). Excerpts of the results we

obtained are given below. Remark that 132*4 = 8 tests have

been achieved.

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.28-36

ISSN 2356-5608

TABLE 8

EXECUTION TIME (S)

 p

n m
1 2 4 6 8

Execution Times (s)

100

10 0.0000680 0.0001000 0.0000240 0.0000183 0.0000125

25 0.0001800 0.0001750 0.0000600 0.0000383 0.0000313

50 0.0003660 0.0003500 0.0001720 0.0000783 0.0000644

500

50 0.0093000 0.0064500 0.0040720 0.0026100 0.0023889

100 0.0187000 0.0122500 0.0086160 0.0049533 0.0050015

250 0.0465999 0.0302500 0.0220240 0.0128967 0.0104342

1000

50 0.0370000 0.0241250 0.0169000 0.0098000 0.0094825

250 0.1864999 0.1160000 0.0882800 0.0547917 0.0415964

500 0.3745000 0.2305000 0.1776600 0.1022750 0.0894732

3000

50 0.3345000 0.2252500 0.1474800 0.0987083 0.0764814

500 3.4985001 2.3602500 1.4798001 1.0406334 0.8041461

1000 7.0489997 4.8397498 2.9900601 2.4920998 1.6201014

5000

50 0.9434999 0.5453750 0.4385400 0.2799917 0.2376551

1000 19.6399999 12.6201248 8.7922400 6.5241333 4.3135986

2000 39.1020011 25.2596264 17.5527197 13.1734416 9.8327878

Fig. 7 Execution time (s) for n=5000

TABLE 9

SPEED-UP AND EFFICIENCY

 p

n m
2 4 6 8 2 4 6 8

Speed-up Efficiency (%)

100

10 0.68 2.83 3.71 5.30 34.00 70.83 61.82 66.30

25 1.03 3.00 4.70 5.09 51.43 75.00 78.26 63.68

50 1.05 2.13 4.67 5.55 52.29 53.20 77.87 69.32

500

50 1.44 2.28 3.56 3.83 72.09 57.10 59.39 47.91

100 1.53 2.17 3.78 3.47 76.33 54.26 62.92 43.32

250 1.54 2.12 3.61 3.29 77.02 52.90 60.22 41.14

1000

50 1.53 2.19 3.78 3.74 76.68 54.73 62.93 46.70

250 1.61 2.11 3.40 3.49 80.39 52.81 56.73 43.57

500 1.62 2.11 3.66 3.49 81.24 52.70 61.03 43.63

3000

50 1.49 2.27 3.39 3.35 74.25 56.70 56.48 41.82

500 1.48 2.36 3.36 3.41 74.11 59.10 56.03 42.60

1000 1.46 2.36 2.83 3.44 72.82 58.94 47.14 42.99

5000

50 1.73 2.15 3.37 3.37 86.50 53.79 56.16 42.17

1000 1.55 2.23 2.97 3.41 77.81 55.84 50.17 42.81

2000 1.55 2.23 2.92 3.41 77.40 55.69 49.47 42.60

Fig. 8 Speed-up for n=5000

Fig. 9 Efficiency for n=5000

Remarks.

• The parallelization is beneficial since for fixed n and m,

the execution time decreases for increasing p (Table 8 and

Fig.7),(except for very few and non significant cases not

exceeding 2.73% of the cases, 2 may be seen in Table 8).

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.28-36

ISSN 2356-5608

• The best value for the speed-up (resp. efficiency) is 5.55

(resp. 86.50%) and is reached for the tuple n=100, m=50, p=8

(resp. n=5000, m=50, p=2).

• The speed-up as well as the efficiency do not always

follow uniform and classical behaviours i.e. an increasing one

for the speed-up and a decreasing one for the efficiency when

n, m are fixed and p increases. This may be seen in Table 9

where the results written in bold italic correspond to uniform

behaviours. As to the non uniform case, we notice that the

speed-up often increases from p=2 to p=6, then decreases for

p=8 (see underlined results in Table 9 and Fig.8). As to the

efficiency, it follows an alternative behaviour (decrease-

increase-decrease… or increase-decrease-increase…, see

underlined results in Table 9 and Fig.9). Notice in addition

that these uniform/non uniform behaviours do not occur for

the same tuples (m,n,p) as far as speed-up and efficiency are

concerned.

• The non uniform behaviours seen for the speed-up and the

efficiency, though not exceptional in practice, may be due to

combined reasons related to both the target machine

architecture and the parallel program. We may particularly

cite the eventual increase of cache misses and inter-core

communication amounts induced by changes in the program

parameters particularly p.

VI. CONCLUSION

In the study developed in this paper and addressing a

particular dynamic programming algorithm (DPA) for solving

the 1D array partitioning problem, we presented first a series

of different versions of the DPA. We then described a

parallelization procedure of the previous algorithms. A set of

experimentations could validate the contribution and precise

its practical interest. However, several interesting points

remain to be seen, particularly:

• Study the problem of the determination of several optimal

solutions for the 1D-APP and establish comparison criteria

between them. Interesting preliminary results based on the

use of the different versions of the DPA have been obtained so

far.

• Achieve a series of experiments targeting a massively

parallel computer in order to evaluate the scalability of the

parallel algorithm and their behaviour when a large number of

processors are used.

• Extend the parallelization approach to a heterogeneous

environment i.e. where the available processors have different

speeds.

REFERENCES

[1] T. Cormen, C. Leiserson, R. Rivest. & C. Stein. Introduction à

l’algorithmique, Paris, Dunod, 2002.

[2] S. Skiena, The Algorithm design manual, New York, Springer, 2008.

[3] O. Hamdi, “Etude de la distribution sur système à grand échelle de

calcul numérique traitant des matrices creuses compressées”, Doctoral

thesis, Univ. of Tunis El Manar, Tunis, Tunisia, 2010.

[4] T.F. Zurek, “Optimization of partitioned temporal joins”, Doctoral

thesis, Univ. of Edinburgh. Scotland, 1997.

[5] T. N'takpé, “Ordonnancement de tâches parallèles sur plates-formes

hétérogènes partagées”, Doctoral thesis, University of Henri Poincaré -

Nancy1, France, 2009.

[6] S. Khanna, S. Muthukrishnan & S. Skiena, “Efficient array

partitioning”, in Proc. of the 24th International Colloquium on

Automata, Languages and Programming, Bologna, Italy, 1997, pp.

616-626.

[7] S. Anily & A. Fergruen, “Structured partitioning problems”,

Operations Research, Vol. 39(1), pp. 130-149, 1991.

[8] P. Hansen, & K.W. Lih, “Improved algorithms for partitioning

problems in parallel, pipelined and distributed computing”, IEEE

Transactions on Computers, Vol. 41(6), pp. 769-771, 1992.

[9] B. Olstad & F. Manne, “Efficient partitioning of sequences”. IEEE

Transactions on Computers. Vol. 44(11), pp.1322-1326, 1995.

[10] A. Legrand & Y. Robert, Algorithmique Parallèle, Paris. Dunod, 2003.

[11] M.Cosnard, & D. Trystram, Algorithmes et architectures parallèles,

Paris, InterEditions, 1993.

[12] B. Ben Mabrouk, H. Hasni & Z. Mahjoub, “Parallélisation de

l’algorithme de la programmation dynamique pour la résolution du

problème de produit d’une chaîne de matrices”, in Proc RenPar’09,

Toulouse, France, 2009.

