
International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.105-112

ISSN 2356-5608

Parallelization on heterogeneous platforms

Parallelization of polyhedron programs on heterogeneous platforms

Asma DAB
#1

, Yosr SLAMA
#2

#
 Faculty of Sciences of Tunis, University of Tunis El Manar,

University Campus - 2092 Manar II, Tunis, Tunisia

1
asmadab1@yahoo.fr

2
yosr.slama@fst.rnu.tn

Abstract— The polytope model (PM) is a formalism which

allowed systemizing and standardizing automatic parallelization

of nested loops structured programs especially polyhedron

programs (PP). It targeted, during its conception, the

homogeneous (monolithic) parallel machines. The spread of

numerous new parallel and distributed systems (e.g. clusters,

grids, etc.) lead to the adaptation of certain concepts and

approaches of the PM including techniques of scheduling,

mapping and code generation, in order to take into account the

specificities of these heterogeneous platforms. We establish in

this paper a comparative study of several methods for PP

parallelization, thus confirming the usefulness of adapting the

MP for heterogeneous platforms. We also propose an approach

to this adaptation, through two mapping methods, taking into

account the characteristics of the target environment. An

experimental study permits the validation of our contribution

and the evaluation of its practical interest.

Keywords— Heterogeneous platform, Load Balancing,

Mapping, Multicores, Polyhedron programs, Polytope model,

Scheduling, Tiling.

I. INTRODUCTION

In this paper, we investigate the parallelization of programs

called polyhedron programs (PP) which are nested loops:

Each loop’s bounds are affine functions of enclosing loop

indexes. Several approaches have been proposed in literature

for the parallelization of such programs, some of which are

placed in formal mathematics and are called polytope model

(PM). Several approaches, based on the polytope model, have

proven to be effective, but only when targeting machines with

an infinite number of homogeneous processors. Today,

machines are becoming more heterogeneous since the

emergence of clusters and computational grids. Therefore,

even machines which are originally homogeneous, such as

multicores, are in reality heterogeneous when we consider the

different “loads” that could have.

In this paper, in addition to a comparative study of different

methods of parallelization on homogeneous and

heterogeneous platforms known in literature, we propose new

approach based on the PM and targets heterogeneous

platforms. We begin by a state of the art of methods

parallelizing polyhedron programs on homogeneous and

heterogeneous platforms, then, we present the general

principle of PM, after that, we introduce our parallelization

approach for heterogeneous platforms which is detailed on

two methods, and finally, we present an experimental study in

order to validate our propositions on different heterogeneous

platforms.

II. STATE OF ART

We present here some methods of parallelization of loop

nests targeting homogeneous and heterogeneous architectures.

On homogeneous platforms, we quote, as static approaches,

the binary search decision algorithm BSDA [1] and a

technique for partitioning the iteration space called tiling

[2,3,4,5]. This technique allows the partition of iteration space

into tiles. Other methods of parallelizing loop nests have

shown their effectiveness and fit within the PM such as the

method of Feautrier and that of Darte and Vivien [6]. Among

the dynamic approaches, we mention a class of methods called

self-scheduling such as Chunk Self-Scheduling (CSS),

Trapezoid Self-Scheduling (TSS) [7] and Guided Self-

Scheduling (GSS) [8], Successive Dynamic Scheduling (SDS)

[9], and Dynamic Scheduling Policy for SGRIDs [9]. On

heterogeneous platforms, we find static methods as well as

dynamic methods. As static approaches, we cite Adaptive

Cyclic Scheduling ACS [8] suitable for homogeneous and

heterogeneous systems, the Chain Pattern Scheduling CPS

[10], and tiling of a sequence interchangeable loops [11].

Among the dynamic approaches, we quote the code

optimization methods, such as the Multi-loop unrolling [12]

which is improved later by introducing loop Fission and the

Distributed Trapezoid Self-Scheduling DTSS [1]. In fact,

DTSS is an extension of TSS on distributed platforms. The

Dynamic Multi-Phase Scheduling for heterogeneous clusters

DMPS [9] improves self-scheduling methods by adding

synchronizations between the slaves. Based on the principle of

the polytope model, the dynamic parallelization method

proposed in the paper [13] allows the speculative

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.105-112

ISSN 2356-5608

parallelization of programs containing iterative structures but

partially parallel.

III. GENERAL PRINCIPLE OF THE POLYTOPE MODEL

The polytope model (PM) can be considered as a standard

approach for automatic parallelization. Its mathematical

foundation based on the concept of polyhedral allows it to

include and standardize several techniques of classic loop

nests parallelization [14]. The code generation in the polytope

model assumes the availability of a sufficient number of

processors (one processor for each instruction), named Pmax.

When the number of available processors is less than Pmax,

the iterations are distributed over the processors. The PM

transforms the nest from a source program to a target parallel

program through three steps:

Determination of the source polytope: The source polytope

represents the iteration space of the source program. It needs

to be written in the form of inequalities system satisfying the

index loops (Ax≤b).

Determination of the target polytope: This step consists in

segmenting the source polytope (A,b) in time intervals. This

segmentation can be formulated as an affine transformation of

the source polytope which preserves data dependencies and

checks one or more performance criteria. Once determined,

the transformation (from a scheduling and / or affine mapping)

will be applied to the source polytope giving rise to the target

polytope (AT
-1

,b). This affine transformation is represented by

an invertible matrix T.

Determination of the target program: This last step

generates the target program based on the target polytope.

Two types of parallelism are distinguished: synchronous

parallelism (time loops include space loops) and asynchronous

parallelism (space loops include time loops).

Example 1:

 Let consider the source program (P):

• The Source Polytope of (P): It is represented by the

following inequalities system:

• The scheduling which preserves dependencies and

minimizes the execution time θ (x1, x2) = x1 is

represented by the matrix [1 0]. A valid allocation

that represents the chosen scheduling and minimizes

communications between the processors is Π (x1, x2)

= x1 + x2. Thus, a space-time transformation can be

represented by the square matrix: T = , where

the first line represents θ and the second one

represents Π.

• T is unimodular, its inverse is the matrix: T
-1

 =

. The target polytope is (AT
-1

,b) i.e

Where t and p are the new loop counters respectively

time and space (cf. Fig. 1).

Fig. 1. Iteration space and dependencies of (P) before and after

transformation

• Target Program: The program can be synchronous

(1) or asynchronous (2):

(P)DO x1=0, n

 DO x2=0, n

 A[x1,x2]= A[x1,x2] +

A[x1+1,x2-1]

 ENDDO

(1)DOSER t=0,n

 DOPAR p = t, t+n

 A[t, p-t]=A[t, p-

t]+A[t+1,p-t-1]

 ENDDOPAR

 ENDDOSER

(2)DOPAR p = 0, 2n

 DOSER t=max(0,p-n),min(n,

p)

 A[t, p-t]=A[t, p-

t]+A[t+1,p-t-1]

 ENDDOSER

 ENDDOPAR

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.105-112

ISSN 2356-5608

IV. PARALLELIZATION METHOD FOR HETEROGENEOUS

PLATFORM

 The proposed approach is a static coarse grained

approach derived for the extension of the polytope model to

heterogeneous platforms. The aim of our approach is to

balance distribution of loads among the processors to

minimize the execution time (makespan). Given a target

program resulting from the application of the polytope model,

we apply a preprocessing to the generated code that will be

used later as input to our approach. The approach takes also as

input a description of the heterogeneous platform (speed and

load of each processor). The output is a parallel code well

adapted to the heterogeneity of the target platform. As the last

stage of the PM parallelization allows generating two forms of

target program, namely the synchronous and asynchronous

program, we propose two methods each suites to one of these

program forms: MHSP mapping heuristic for synchronous

program and MHAP mapping heuristic for asynchronous

program. We consider some assumptions which are:

(H1): All The processed program instructions have

the same cost. Thus, we do not consider the case of tasks

heterogeneity.

(H2): The target system is a heterogeneous system

which consists of a fixed number p of processors (P1, P2, ...,

Pp) having different speeds (V1, V2, ..., Vp) and different loads

(number of processes running or waiting to be run on the

processor) (Q1, Q2, ..., Qp).

We calculate the available computing power of each

processor Pi, Ai noted as follows:

Here we add 1 to Qi to avoid division by 0 Qi=0). The total

available computing power of the target system is denoted as

follows:

A. Preprocessing

The target program generated using polytope model

for homogeneous environment can be an imperfect nest

(instruction are not necessary enclosed in the inner loop) and

can have non-affine bounds (min and max). Thus, we propose

a preprocessing step transforming the program into a standard

form in order to facilitate the application of our approach.

Stage 1: Linearization of non-affine bounds

This step transforms input programs containing min

and max bounds to a nest which all bounds are affine using

loop bursting.

Stage 2: Addition of missing space and time loops.

This step ensures that any instruction is included by one or

more space loops. It consists of adding, if necessary, loops

whose lower bound equals the upper bound equal.

B. Adaptation to heterogeneous platform

Starting from a program having undergone

pretreatment phase the goal is to adapt the program to the

heterogeneity of the platform. According to the form of

program (synchronous or asynchronous), we resort to a

specific method of placement of instances iterations on

processors. Here we present two methods MHSP (for

synchronous program) and MHAP (for asynchronous

program).

1) MHSP method

We denote N (t, i) the number of iterations assigned

to processor Pi at time t and N (t,*) the total number of

iterations at time t. For fixed t, the problem is formalized as an

integer linear program whose variables are N (t, i), i = 1 .. p.

The constraints are:

The objectif function is to minimize

The proposed strategy is to duplicate the parallel loop

into two loops: a parallel loop for mapping on parallel

processors and a sequential nested loop allowing each

processor to compute its block of assigned iterations. We give

here the forms of synchronous program before and after

application of MHSP.

Synchronous program before MHSP

DOSER t = Lt , Ut

 DOPAR proc = Lp,Up

 S(t,proc)

 ENDDOPAR

 ENDDOSER

Synchronous program after MHSP

DOSER t = Lt , Ut

 DOPAR proc = 1, p

 DOSER index = start(proc) , end(proc)

 S(t,proc)

 ENDDOSER

 ENDDOPAR
ENDDOSER

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.105-112

ISSN 2356-5608

The bounds of index are introduced to represent the

start and the end of the block assigned to processor proc.

Processors loads are calculated using the load partition

algorithm (A).

Example 2

The following example shows an iteration space

before and after partitioning with MHSP method. The indexes

start and end of blocks assigned to processors are grouped in

Table 1. The platform used contains three processors of P1

(V1 = 1, Q1 = 0), P2 (V2 = 8, Q2 = 1) and P3 (V3 = 6, Q3 =

2) having total power A = 7 (A=A1+A2+A3=1+4+2=7).

Fig. 2. MHSP effect on iteration space

TABLE I. START AND END INDEXES OF BLOCKS ASSIGNED TO PROCESSORS

2) MHAP Method

The problem is formalized as an integer linear

program whose variables are the N (i), i = 1 .. p. The

constraints are:

The objectif function is to minimize

The MHAP approach assigns to each processor a set

of successive iterations, named block, whose size is

proportional to the processor’s computing power. Load

balancing carried out at two levels: the first determines the

assigned block size to each processor and the second adds an

explanation of the choice of the block (taking into account

data locality). When the difference between the time loop

bounds is a constant function f, only the first level is applied.

Otherwise, block choice depends on the sign of f.

The proposed strategy is to duplicate the parallel loop

into two loops: a parallel processor mapping loop and a serial

loop allowing each processor to compute its assigned iteration

block. Below are the source code and the MHAP modified

code.

Load partition algorithm (A)

Input: p processors, {Ai, i=1..p}, N(t,*)

Output: table containing processor loads N[]

Nrest=0

For each processor i do

 N[i]

 end

sort available computing powers in a decreasing order

For each processor i=1:p do

 if Nrest = 0 then stop

 else

a=0

 if i=1 then

 N[1]+=

 Nb=

 else

 for j= 1: i-1 do

 a=a+

 end

 N[i]+ =

 Nb=

 End if

 Nrest=Nrest – Nb

 End if

End

Processor Strat block index End block index

P1 1 1

P2 4 8

P3 2 3

Asynchronous program before MHAP

DOPAR proc= 1 , p

 DOSER t= Lt, Ut

 S(t,proc)

 ENDDOSER

ENDDOPAR

Asynchronous program after MHAP

DOPAR proc= 1 , p

 DOSER index=start (proc) , end(proc)

 DOSER t= Lt, Ut

 S(t,proc)

 ENDDOSER

 ENDDOSER

ENDDOPAR

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.105-112

ISSN 2356-5608

Let Pmax be the maximum number of processors

used in a homogeneous virtual machine. The index bounds are

the beginning and the end of the block assigned to processor

proc which are calculated using the load partition algorithms

(A) and (C).

Example 3

The following example shows an iteration space

before and after partitioning approach MHAP. The indexes

start and end blocks assigned to processors are grouped in the

following table. The platform used consists of P1 (V1 = 1, Q1

= 0), P2 (V2 = 8, Q2 = 1) and P3 (V3 = 6, Q3 = 2) is of total

power A =A1+A2+A3= 7.

Fig. 3. MHAP effect on iteration space

TABLE II. START AND END INDEXES OF BLOCKS ASSIGNED TO

PROCESSORS

V. EXPERIMENTAL STUDY

In this section, we present the target platforms and

the technique used to make them heterogeneous. Then, we

explain the experimental strategy adopted in our work.

Finally, we describe and interpret the experimental results

performed to investigate the performance of the proposed

approaches by comparing them to the classical ones of

parallelization using the polytope model and the GSS

approach. The multi-core processors are still used as

homogeneous environment since the cores have equal speeds.

Given a multi-core machine, we will hide a portion (given as

percentage) of the frequency of one or more cores to create an

inter-core heterogeneity. The new cores frequencies will be

denoted fi (1 <fi <100) meaning that they operate at fi%. The

configuration will be re-presented by a n-uplet of frequencies,

where n is the number of used cores. To test the proposed

approaches, we used three types of multiprocessor machines:

Dual Core Intel Core 2 Duo (denoted M2), a quad Core Intel

i5CPU (denoted M4) and an Intel machine Xeon dual

processor quad Core (M8). On each machine, we considered

different configurations by changing each time cores mask. To

measure the performance of the proposed parallel version V =

{MHSP, MHAP} on a configuration C, we use metrics

and ratio R:

To evaluate our approaches, we implement MHAP

(A_HET), MHSP (S_HET), classical versions (synchronous

(S_HOM) and asynchronous (A_HOM) parallel programs)

and the GSS approach on numerous configurations of three

platforms. The charge equilibrium proposed algorithms of are

tested using matrix vector product MVP and Gauss

Elimination. Here we present some results on four

configurations (a homogeneous configuration (without using

masks) and three configurations of three heterogeneous

machines used).

Load partition algorithm (C)

 Input: p processors, {Ai, i=1..p}, Pmax, Ut, Lt

 Output: table containing processor loads N[]

 For each nested loop do

 f(p)=Ut– Lt

 if f is a constant function then

 Call algorithm partition (A) replacing

N(t,*) with Pmax

 Assign blocks to processors

 Else if

 if f(p) is a positive function then

 Apply a descending sort processors

 Else if f(p) is a negative function then

 Apply an increasing sort processors

 End if

 Call algorithm partition (A) replacing

N(t,*) with Pmax

 Assign blocks to sorted processors

 End if

End for

Processor Start block index End block index

P1 1 3

P2 4 7

P3 8 8

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.105-112

ISSN 2356-5608

A. Validation of MHAP method

To measure the performance of the MHAP version,

we use the metric. The following figure represent some

experiments of PMV parallel program modified with MHAP

on configurations: (100,100) and (100,1) on platform M2,

(100,50,1,100) on platform M4 and (100, 10, 10, 10, 20, 10,

10,30) on platform M8.

Fig. 4. . Execution time of A_HET and A_HOM on 4 configurations

The parallel program execution time of generated by

the approach MHAP increases with the size N of the problem

(size of the input matrix), a linear way, even sub-linear in

most cases. The MHAP (A_HET) approach resulting program

is faster than the classical approach generated by the classical

approach targeting homogeneous platform (A_HOM). Even

on a homogeneous configuration, the execution time A_HET

is always below those of A_HOM. The MHAP approach

adopts a different block size static distribution, which reduces

the number of cache misses and thus improves the execution

time. To calculate load balancing, we consider the

configuration (100,50,20,30). The available computing

powers are summarized in the following table.

TABLE III. AVAILABLE COMPUTING POWERS IN THE CONFIGURATION

(100,50,20,30)

The ratio of computation time of processors P0 and

P2 (respectively regarded as the slowest and fastest) is: (T

[P2]) / (T [P0]) = 0.999. This calculated ratio is very close to 1

reflecting and thus being very close to the optimal one. This

result is confirmed in all configurations, especially when the

size of matrix N is large enough.

B. MHSP method validation

 We present in this section some results of tests

(MVP) on four configurations: (100,100,100,100), (75,50),

(100,50,1,100) and (1,1,1,100,100,100,100,100). To measure

MHSP version performance, we use therefore the metric

Fig. 5. Execution time of S_HET and S_HOM on 4 configurations

The program resulted from the approach MHSP

(S_HET) is more efficient than that generated by the classical

approach which targeting homogeneous platform (S_HOM).

Even on a homogeneous configuration, the execution time of

S_HET is always below those of S_HOM.

C. Comparison of proposed approaches

We propose here a comparison between the

approaches MHSP and MHAP, by considering MVP. To

compare our approach with an approach from literature, we

choose a dynamic scheduling method belonging to the family

self-scheduling which is Guided Self-Scheduling (GSS). We

tested the three approaches on many configurations but we

limit ourselves to present some representative results. To

compare the approaches with the GSS version, we introduce

two performance metrics denoted relative speed and

 .

 P0 P1 P2 P3

Mask(%) 100 50 20 30

A (Go) 3.33 1.665 0.666 0.999

A (Mo) 3409.92 1704.96 681.984 1022.976

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.105-112

ISSN 2356-5608

Fig. 6. Execution time of S_HET, A_HET and GSS on 4 configurations

We notice that even on a homogeneous

configuration, MHAP approach is the best. This can be

explained by the fact that our approaches affect consecutive

blocks, thus reducing cache misses. We also notice that the

ratio R in most configurations is about 4 (see table 4).

TABLE IV. EXECUTION TIME OF THREE APPROACHES FOR P=4

AND P=8

For p = 8, the GSS method gives better results than

the MHSP approach. This is clear through the relative

acceleration which is in the order of 0.5. We also notice that

MHAP vs GSS relative acceleration is about 2. In fact, this

may be explained by the manner with which the two

approaches calculate block sizes. The GSS approach affects

the blocks in a dynamic way by reducing the size until

reaching an iteration block, while the MHAP approach affects

blocks once for all processors in a fair manner basing on a

valid mapping without using overlap avoiding, and thus

expectations processors. The MHAP approach, although

static, gives better results than those given by the dynamic

approach GSS. We have shown that static load balancing can

be more efficient than dynamic distribution blocks. However,

the GSS approach is more efficient than MHSP.

VI. CONCLUSION

Although a variety of effective methods of

parallelization have been proposed in literature, we found no

method targeting heterogeneous platforms based on the

polytope model. So, we are interested in the parallelization of

loop nests by the polytope model, adapted to heterogeneous

environments. Depending on the form of the parallel program

generated by the polytope model, we developed two

approaches denoted MHAP and MHSP, treating respectively

asynchronous and synchronous cases. The two approaches

take as input the generated code after a preprocessing stage,

the number of processors and their available computing

power. We noticed that even on homogeneous configuration,

the proposed approaches are the best. By comparing the

proposed approaches and comparing each one to the GSS

approach, we have noticed that the MHAP approach

outperforms the GSS approach that is better than MHSP

approach. The way used by MHAP to affect blocks

(asynchronous) gives better results than the MHSP approach.

As a perspective, we tend to experiment our method on real

heterogeneous platforms such as clusters, grids, etc. A future

prospect can be to integrate our approaches within automatic

parallelizing for polyhedron programs targeting heterogeneous

platforms.

REFERENCES

[1] A.T. Chronopoulos, S. Penmatsa, J. Xu and S. Ali.

Distributed loop-scheduling schemes for heterogeneous

computer systems. Concurrency and Computation : Practice

and Experience. 771-785. 2006.

[2] A. Buttari, J. Langou, J. kurzak. Parallel tiled QR

factorization for multicore architecture, Concurrency and

Computation Practice and experience in Wiley Interscience.

20:1573–1590. 2008.

 [3] M. Athanasaki, E. Koukis and N. Koziris. Scheduling

of Tiled Nested Loop onto a Cluster with a Fixed Number of

SMP Nodes. In 12th Euromicro Conference on Parallel,

Distributed and Network-Based Processing (PDP'04). A

Coruna, Spain. 2004.

[4] P. Boulet, J. Dongarra, Y. Robert and F. Vivien. Static

Tiling for Heterogeneous Computing Platforms. Parallel

Computing. 25(5):547-568. 1999.

[5] A. Großlinger. Some Experiments on Tiling Loop

Programs for Shared Memory Multicore Architectures. In

Programming Models for Ubiquitous Parallelism in Dagstuhl

Seminar Proceedings. Germany. 2008.

[6] C. Lengauer. Loop parallelization in the polytope

model. In Proceedings of the International Conference on

Concurrency Theory, LNCS 715. 398–416. Hildesheim. 1993.

N S_HET A_ HET GSS R

p=4 ; (100,100,1,1)

5000 1.737 0.472 0.908 0.523 1.923 3.680

10000 0.906 0.316 0.665 0.734 2.105 2.867

14000 1.737 0.472 0.908 0.523 1.923 3.680

p=8 ; (100,10,10,10,20,10,10,30)

21000 9.234 2.156 3.637 0.394 1.687 4.283

26000 13.869 3.155 5.449 0.393 1.727 4.396

31000 19.371 4.393 7.766 0.401 1.768 4.410

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.105-112

ISSN 2356-5608

[7] T. H. Tzen and L. M. Ni. Trapezoid self-scheduling: A

practical scheduling scheme for parallel compilers. IEEE

Transactions on Parallel and Distributed Systems. 4(1):87–98.

1993.

[8] F. M. Ciorba, T. Andronikos, and G. Papakonstantinou.

Adaptive cyclic scheduling of nested loops. In 7th Hellenic

European Research on Computer Mathematics and its

Applications (HERCMA’05). 2005.

[9] F. M. Ciorba. Algorithms Design for the Parallelization

of Nested Loops. Phd thesis. National Technical University

of Athens, School of Electrical and Computer Engineering,

Department of Informatics and Computer Technology.

Athens. 2006.

[10] F. M. Ciorba, T. Andronikos, I. Drositis, G.

Papakonstantinou, and P. Tsanakas. Reducing the

communication cost via chain pattern scheduling. In 4th IEEE

Conference on Network Computing and Applications

(NCA’05).186–196. Cambridge, Massachusetts, USA. 2005.

[11] N. Ahmed, N. Mateev and K. Pingali. Tiling

imperfectly-nested loop nests. In Proceeding Supercomputing

'00 Proceedings of the 2000 ACM/IEEE conference on

Supercomputing (CDROM) IEEE Computer Society.

Washington, DC, USA. 2000.

[12] Y. M. Lam, J.G.F. Coutinho, W. Luk P.H.W. Leong.

Optimising Multi-loop programs for heterogeneous computing

systems. In Proc Southern Programmable Logic Conference

(SPL). 129 – 134. Sao Carlos. 2009.

 [13] B. Pradelle, P. Clauss, Vers la parallélisation

dynamique dans le modèle polyédrique. ICPS/LSIIT –

Strasbourg university. 2009.

[14] Y .Slama. Etude de la parallélisation des nids de

boucles par le modèle polyédrique, Phd thesis, Faculty of

sciences of Tunis. Tunisia. 1999.

