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Abstract— The polytope model (PM) is a formalism which 

allowed systemizing and standardizing automatic parallelization 

of nested loops structured programs especially polyhedron 

programs (PP). It targeted, during its conception, the 

homogeneous (monolithic) parallel machines. The spread of 

numerous new parallel and distributed systems (e.g. clusters, 

grids, etc.) lead to the adaptation of certain concepts and 

approaches of the PM including techniques of scheduling, 

mapping and code generation, in order to take into account the 

specificities of these heterogeneous platforms. We establish in 

this paper a comparative study of several methods for PP 

parallelization, thus confirming the usefulness of adapting the 

MP for heterogeneous platforms. We also propose an approach 

to this adaptation, through two mapping methods, taking into 

account the characteristics of the target environment. An 

experimental study permits the validation of our contribution 

and the evaluation of its practical interest. 
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I. INTRODUCTION 

 

In this paper, we investigate the parallelization of programs 

called polyhedron programs (PP) which are nested loops: 

Each loop’s bounds are affine functions of enclosing loop 

indexes. Several approaches have been proposed in literature 

for the parallelization of such programs, some of which are 

placed in formal mathematics and are called polytope model 

(PM). Several approaches, based on the polytope model, have 

proven to be effective, but only when targeting machines with 

an infinite number of homogeneous processors. Today, 

machines are becoming more heterogeneous since the 

emergence of clusters and computational grids. Therefore, 

even machines which are originally homogeneous, such as 

multicores, are in reality heterogeneous when we consider the 

different “loads” that could have.  

In this paper, in addition to a comparative study of different 

methods of parallelization on homogeneous and 

heterogeneous platforms known in literature, we propose new 

approach based on the PM and targets heterogeneous 

platforms. We begin by a state of the art of methods 

parallelizing polyhedron programs on homogeneous and 

heterogeneous platforms, then, we present the general 

principle of PM, after that, we introduce our parallelization 

approach for heterogeneous platforms which is detailed on 

two methods, and finally, we present an experimental study in 

order to validate our propositions on different heterogeneous 

platforms.     

II. STATE OF ART 

 

We present here some methods of parallelization of loop 

nests targeting homogeneous and heterogeneous architectures. 

On homogeneous platforms, we quote, as static approaches, 

the binary search decision algorithm BSDA [1] and a 

technique for partitioning the iteration space called tiling 

[2,3,4,5]. This technique allows the partition of iteration space 

into tiles. Other methods of parallelizing loop nests have 

shown their effectiveness and fit within the PM such as the 

method of Feautrier and that of Darte and Vivien [6]. Among 

the dynamic approaches, we mention a class of methods called 

self-scheduling such as Chunk Self-Scheduling (CSS), 

Trapezoid Self-Scheduling (TSS) [7] and Guided Self-

Scheduling (GSS) [8], Successive Dynamic Scheduling (SDS) 

[9], and Dynamic Scheduling Policy for SGRIDs [9]. On 

heterogeneous platforms, we find static methods as well as 

dynamic methods. As static approaches, we cite Adaptive 

Cyclic Scheduling ACS [8] suitable for homogeneous and 

heterogeneous systems, the Chain Pattern Scheduling CPS 

[10], and tiling of a sequence interchangeable loops [11]. 

Among the dynamic approaches, we quote the code 

optimization methods, such as the Multi-loop unrolling [12] 

which is improved later by introducing loop Fission and the 

Distributed Trapezoid Self-Scheduling DTSS [1]. In fact, 

DTSS is an extension of TSS on distributed platforms. The 

Dynamic Multi-Phase Scheduling for heterogeneous clusters 

DMPS [9] improves self-scheduling methods by adding 

synchronizations between the slaves. Based on the principle of 

the polytope model, the dynamic parallelization method 

proposed in the paper [13] allows the speculative 
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parallelization of programs containing iterative structures but 

partially parallel. 

III. GENERAL PRINCIPLE OF THE POLYTOPE MODEL 

The polytope model (PM) can be considered as a standard 

approach for automatic parallelization. Its mathematical 

foundation based on the concept of polyhedral allows it to 

include and standardize several techniques of classic loop 

nests parallelization [14]. The code generation in the polytope 

model assumes the availability of a sufficient number of 

processors (one processor for each instruction), named Pmax. 

When the number of available processors is less than Pmax, 

the iterations are distributed over the processors. The PM 

transforms the nest from a source program to a target parallel 

program through three steps: 

Determination of the source polytope: The source polytope 

represents the iteration space of the source program. It needs 

to be written in the form of inequalities system satisfying the 

index loops (Ax≤b). 

Determination of the target polytope: This step consists in 

segmenting the source polytope (A,b) in time intervals. This 

segmentation can be formulated as an affine transformation of 

the source polytope which preserves data dependencies and 

checks one or more performance criteria. Once determined, 

the transformation (from a scheduling and / or affine mapping) 

will be applied to the source polytope giving rise to the target 

polytope (AT
-1

,b). This affine transformation is represented by 

an invertible matrix T. 

Determination of the target program: This last step 

generates the target program based on the target polytope. 

Two types of parallelism are distinguished: synchronous 

parallelism (time loops include space loops) and asynchronous 

parallelism (space loops include time loops). 

Example 1: 

   Let consider the source program (P): 

 

 

 

 

 

 

 

 

 

• The Source Polytope of (P): It is represented by the 

following inequalities system: 

 

• The scheduling which preserves dependencies and 

minimizes the execution time θ (x1, x2) = x1 is 

represented by the matrix [1 0]. A valid allocation 

that represents the chosen scheduling and minimizes 

communications between the processors is Π (x1, x2) 

= x1 + x2. Thus, a space-time transformation can be 

represented by the square matrix:  T = , where 

the first line represents θ and the second one 

represents Π.   

• T is unimodular, its inverse is the matrix: T
-1

 = 

. The target polytope is (AT
-1

,b) i.e          

  

   

Where t and p are the new loop counters respectively 

time and space (cf. Fig. 1). 

 

Fig. 1. Iteration space and dependencies of (P) before and after 

transformation 

• Target Program: The program can be synchronous 

(1) or asynchronous (2): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(P)DO x1=0, n 

    DO x2=0, n 

       A[x1,x2]= A[x1,x2] + 

A[x1+1,x2-1]  

     ENDDO 

(1)DOSER t=0,n                        

    DOPAR p = t, t+n             

     A[t, p-t]=A[t, p-         

t]+A[t+1,p-t-1] 

    ENDDOPAR 

  ENDDOSER 

 

(2)DOPAR p = 0, 2n                          

    DOSER t=max(0,p-n),min( n, 

p) 

 A[t, p-t]=A[t, p-

t]+A[t+1,p-t-1] 

    ENDDOSER 

   ENDDOPAR 

 



International Conference on Automation, Control, Engineering and Computer Science (ACECS'14) 

Proceedings - Copyright IPCO-2014, pp.105-112 

ISSN 2356-5608 

 

 
IV. PARALLELIZATION METHOD FOR HETEROGENEOUS 

PLATFORM 

    The proposed approach is a static coarse grained 

approach derived for the extension of the polytope model to 

heterogeneous platforms. The aim of our approach is to 

balance distribution of loads among the processors to 

minimize the execution time (makespan). Given a target 

program resulting from the application of the polytope model, 

we apply a preprocessing to the generated code that will be 

used later as input to our approach. The approach takes also as 

input a description of the heterogeneous platform (speed and 

load of each processor). The output is a parallel code well 

adapted to the heterogeneity of the target platform. As the last 

stage of the PM parallelization allows generating two forms of 

target program, namely the synchronous and asynchronous 

program, we propose two methods each suites to one of these 

program forms: MHSP mapping heuristic for synchronous 

program and MHAP mapping heuristic for asynchronous 

program. We consider some assumptions which are: 

(H1): All The processed program instructions have 

the same cost. Thus, we do not consider the case of tasks 

heterogeneity. 

(H2): The target system is a heterogeneous system 

which consists of a fixed number p of processors (P1, P2, ..., 

Pp) having different speeds (V1, V2, ..., Vp) and different loads 

(number of processes running or waiting to be run on the 

processor) (Q1, Q2, ..., Qp).  

We calculate the available computing power of each 

processor Pi, Ai noted as follows:  

 

Here we add 1 to Qi to avoid division by 0 Qi=0). The total 

available computing power of the target system is denoted as 

follows:  

 

A.  Preprocessing 

The target program generated using polytope model 

for homogeneous environment can be an imperfect nest 

(instruction are not necessary enclosed in the inner loop) and 

can have non-affine bounds (min and max). Thus, we propose 

a preprocessing step transforming the program into a standard 

form in order to facilitate the application of our approach. 

Stage 1: Linearization of non-affine bounds  

This step transforms input programs containing min 

and max bounds to a nest which all bounds are affine using 

loop bursting. 

Stage 2: Addition of missing space and time loops. 

This step ensures that any instruction is included by one or 

more space loops. It consists of adding, if necessary, loops 

whose lower bound equals the upper bound equal. 

B. Adaptation to heterogeneous platform 

Starting from a program having undergone 

pretreatment phase the goal is to adapt the program to the 

heterogeneity of the platform. According to the form of 

program (synchronous or asynchronous), we resort to a 

specific method of placement of instances iterations on 

processors. Here we present two methods MHSP (for 

synchronous program) and MHAP (for asynchronous 

program). 

1)  MHSP method 

We denote N (t, i) the number of iterations assigned 

to processor Pi at time t and N (t,*) the total number of 

iterations at time t. For fixed t, the problem is formalized as an 

integer linear program whose variables are N (t, i), i = 1 .. p. 

The constraints are: 

 

The objectif function is to minimize 

  

The proposed strategy is to duplicate the parallel loop 

into two loops: a parallel loop for mapping on parallel 

processors and a sequential nested loop allowing each 

processor to compute its block of assigned iterations. We give 

here the forms of synchronous program before and after 

application of MHSP.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Synchronous program before  MHSP 

DOSER t = Lt , Ut   

     DOPAR  proc = Lp,Up    

        S(t,proc) 

      ENDDOPAR  

 ENDDOSER  

Synchronous program after MHSP 

 

DOSER t = Lt , Ut   

  DOPAR  proc = 1, p    

    DOSER index = start(proc) , end(proc)   

          S(t,proc) 

    ENDDOSER 

  ENDDOPAR  
ENDDOSER  
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The bounds of index are introduced to represent the 

start and the end of the block assigned to processor proc. 

Processors loads are calculated using the load partition 

algorithm (A).  

 

 

Example 2 

The following example shows an iteration space 

before and after partitioning with MHSP method. The indexes 

start and end of blocks assigned to processors are grouped in 

Table 1. The platform used contains three processors of P1 

(V1 = 1, Q1 = 0), P2 (V2 = 8, Q2 = 1) and P3 (V3 = 6, Q3 = 

2) having total power A = 7 (A=A1+A2+A3=1+4+2=7). 

 

 

Fig. 2. MHSP effect on iteration space 

 
TABLE I.  START AND END INDEXES OF BLOCKS ASSIGNED TO PROCESSORS  

2) MHAP Method 

The problem is formalized as an integer linear 

program whose variables are the N (i), i = 1 .. p. The 

constraints are: 

 

The objectif  function is to minimize 

 

The MHAP approach assigns to each processor a set 

of successive iterations, named block, whose size is 

proportional to the processor’s computing power. Load 

balancing carried out at two levels: the first determines the 

assigned block size to each processor and the second adds an 

explanation of the choice of the block (taking into account 

data locality). When the difference between the time loop 

bounds is a constant function f, only the first level is applied. 

Otherwise, block choice depends on the sign of f. 

The proposed strategy is to duplicate the parallel loop 

into two loops: a parallel processor mapping loop and a serial 

loop allowing each processor to compute its assigned iteration 

block. Below are the source code and the MHAP modified 

code. 

 

 

 

 

 

Load partition algorithm (A)  

Input: p processors, {Ai, i=1..p}, N(t,*) 

Output: table containing processor loads N[ ] 

Nrest=0 

For each processor i do  

                N[i]   

 end 

sort available computing powers in a decreasing order 

For each processor i=1:p do   

      if Nrest = 0 then stop 

      else 

a=0  

            if i=1 then 

                N[1]+=   

                 Nb=  

             else 

                    for  j= 1: i-1 do 

                             a=a+  

                     end 

                     N[i]+ =  

                     Nb=  

               End if 

                Nrest=Nrest – Nb 

         End if 

End 

Processor Strat block index End  block index 

P1 1 1 

P2 4 8 

P3 2 3 

 

Asynchronous program before  MHAP 

DOPAR  proc= 1 , p   

  DOSER  t= Lt, Ut     

    S(t,proc) 

  ENDDOSER 

ENDDOPAR  

 

Asynchronous program after  MHAP 

DOPAR  proc= 1 , p   

 DOSER  index=start (proc) , end(proc)    

    DOSER  t= Lt, Ut     

     S(t,proc) 

   ENDDOSER 

 ENDDOSER 

ENDDOPAR  
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Let Pmax be the maximum number of processors 

used in a homogeneous virtual machine. The index bounds are 

the beginning and the end of the block assigned to processor 

proc which are calculated using the load partition algorithms 

(A) and (C).  

 

Example 3 

The following example shows an iteration space 

before and after partitioning approach MHAP. The indexes 

start and end blocks assigned to processors are grouped in the 

following table. The platform used consists of P1 (V1 = 1, Q1 

= 0), P2 (V2 = 8, Q2 = 1) and P3 (V3 = 6, Q3 = 2) is of total 

power A =A1+A2+A3= 7. 

 

    

Fig. 3. MHAP effect on iteration space 

 

TABLE II. START AND END INDEXES OF BLOCKS ASSIGNED TO 

PROCESSORS 

 
 
 
 

V. EXPERIMENTAL STUDY 

In this section, we present the target platforms and 

the technique used to make them heterogeneous. Then, we 

explain the experimental strategy adopted in our work. 

Finally, we describe and interpret the experimental results 

performed to investigate the performance of the proposed 

approaches by comparing them to the classical ones of 

parallelization using the polytope model and the GSS 

approach. The multi-core processors are still used as 

homogeneous environment since the cores have equal speeds. 

Given a multi-core machine, we will hide a portion (given as 

percentage) of the frequency of one or more cores to create an 

inter-core heterogeneity. The new cores frequencies will be 

denoted fi (1 <fi <100) meaning that they operate at fi%. The 

configuration will be re-presented by a n-uplet of frequencies, 

where n is the number of used cores. To test the proposed 

approaches, we used three types of multiprocessor machines: 

Dual Core Intel Core 2 Duo (denoted M2), a quad Core Intel 

i5CPU (denoted M4) and an Intel machine Xeon dual 

processor quad Core (M8). On each machine, we considered 

different configurations by changing each time cores mask. To 

measure the performance of the proposed parallel version V = 

{MHSP, MHAP} on a configuration C, we use metrics  

and ratio R: 

 

 

 

 

To evaluate our approaches, we implement MHAP 

(A_HET), MHSP (S_HET), classical versions (synchronous 

(S_HOM) and asynchronous (A_HOM) parallel programs) 

and the GSS approach on numerous configurations of three 

platforms. The charge equilibrium  proposed algorithms of are 

tested using matrix vector product MVP and Gauss 

Elimination. Here we present some results on four 

configurations (a homogeneous configuration (without using 

masks) and three configurations of three heterogeneous 

machines used). 

Load partition algorithm (C)  

 Input: p processors, {Ai, i=1..p},  Pmax,  Ut,  Lt 

 Output: table containing processor loads N[ ] 

 For  each nested loop  do 

      f(p)=Ut– Lt 

     if f  is a constant function then 

             Call algorithm partition (A)  replacing  

N(t,*) with Pmax   

             Assign blocks to processors 

      Else if 

           if  f(p) is a positive function  then 

                    Apply a descending sort processors 

           Else if  f(p) is a negative function then    

                    Apply an increasing sort processors 

           End if 

             Call algorithm partition (A)  replacing 

N(t,*) with  Pmax  

               Assign blocks  to sorted processors   

     End if 

End for 

Processor Start block index End block index 

P1 1 3 

P2 4 7 

P3 8 8 
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A. Validation of MHAP method 

To measure the performance of the MHAP version, 

we use the metric. The following figure represent some 

experiments of PMV parallel program modified with MHAP 

on configurations: (100,100) and (100,1) on platform M2, 

(100,50,1,100) on platform M4 and (100, 10, 10, 10, 20, 10, 

10,30) on platform M8. 

 

 

Fig. 4. . Execution time of A_HET and A_HOM on 4 configurations 

The parallel program execution time of generated by 

the approach MHAP increases with the size N of the problem 

(size of the input matrix), a linear way, even sub-linear in 

most cases. The MHAP (A_HET) approach resulting program 

is faster than the classical approach generated by the classical 

approach targeting homogeneous platform (A_HOM). Even 

on a homogeneous configuration, the execution time A_HET 

is always below those of A_HOM. The MHAP approach 

adopts a different block size static distribution, which reduces 

the number of cache misses and thus improves the execution 

time. To calculate load balancing, we consider the 

configuration (100,50,20,30). The available computing 

powers are summarized in the following table. 

 
TABLE III. AVAILABLE COMPUTING POWERS IN THE CONFIGURATION 

(100,50,20,30) 

 

The ratio of computation time of processors P0 and 

P2 (respectively regarded as the slowest and fastest) is: (T 

[P2]) / (T [P0]) = 0.999. This calculated ratio is very close to 1 

reflecting and thus being very close to the optimal one. This 

result is confirmed in all configurations, especially when the 

size of matrix N is large enough. 

B. MHSP method validation 

     We present in this section some results of tests 

(MVP) on four configurations: (100,100,100,100), (75,50), 

(100,50,1,100) and (1,1,1,100,100,100,100,100). To measure 

MHSP version performance, we use therefore the metric  

 

Fig. 5. Execution time of S_HET and S_HOM on 4 configurations 

The program resulted from the approach MHSP 

(S_HET) is more efficient than that generated by the classical 

approach which targeting homogeneous platform (S_HOM). 

Even on a homogeneous configuration, the execution time of 

S_HET is always below those of S_HOM. 

C.  Comparison of proposed approaches  

We propose here a comparison between the 

approaches MHSP and MHAP, by considering MVP. To 

compare our approach with an approach from literature, we 

choose a dynamic scheduling method belonging to the family 

self-scheduling which is Guided Self-Scheduling (GSS). We 

tested the three approaches on many configurations but we 

limit ourselves to present some representative results. To 

compare the approaches with the GSS version, we introduce 

two performance metrics denoted relative speed  and 

 . 

 

 

 P0 P1 P2 P3 

Mask(%) 100 50 20 30 

A (Go) 3.33 1.665 0.666 0.999 

A (Mo) 3409.92 1704.96 681.984 1022.976 
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Fig. 6. Execution time of  S_HET, A_HET and GSS on 4 configurations 

We notice that even on a homogeneous 

configuration, MHAP approach is the best. This can be 

explained by the fact that our approaches affect consecutive 

blocks, thus reducing cache misses. We also notice that the 

ratio R in most configurations is about 4 (see table 4). 

 
TABLE IV.  EXECUTION TIME OF THREE APPROACHES FOR P=4 

AND P=8 

 

For p = 8, the GSS method gives better results than 

the MHSP approach. This is clear through the relative 

acceleration which is in the order of 0.5. We also notice that 

MHAP vs GSS relative acceleration is about 2. In fact, this 

may be explained by the manner with which the two 

approaches calculate block sizes. The GSS approach affects 

the blocks in a dynamic way by reducing the size until 

reaching an iteration block, while the MHAP approach affects 

blocks once for all processors in a fair manner basing on a 

valid mapping without using overlap avoiding, and thus 

expectations processors. The MHAP approach, although 

static, gives better results than those given by the dynamic 

approach GSS. We have shown that static load balancing can 

be more efficient than dynamic distribution blocks. However, 

the GSS approach is more efficient than MHSP. 

 

VI. CONCLUSION 

Although a variety of effective methods of 

parallelization have been proposed in literature, we found no 

method targeting heterogeneous platforms based on the 

polytope model. So, we are interested in the parallelization of 

loop nests by the polytope model, adapted to heterogeneous 

environments. Depending on the form of the parallel program 

generated by the polytope model, we developed two 

approaches denoted MHAP and MHSP, treating respectively 

asynchronous and synchronous cases. The two approaches 

take as input the generated code after a preprocessing stage, 

the number of processors and their available computing 

power. We noticed that even on homogeneous configuration, 

the proposed approaches are the best. By comparing the 

proposed approaches and comparing each one to the GSS 

approach, we have noticed that the MHAP approach 

outperforms the GSS approach that is better than MHSP 

approach. The way used by MHAP to affect blocks 

(asynchronous) gives better results than the MHSP approach. 

As a perspective, we tend to experiment our method on real 

heterogeneous platforms such as clusters, grids, etc. A future 

prospect can be to integrate our approaches within automatic 

parallelizing for polyhedron programs targeting heterogeneous 

platforms. 
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