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Abstract—This paper deals with the control of chaos exhibited
by an impacting mechanical oscillator of one-degree-of-freedom.
Its mathematical model is represented by an impulsive hybrid
non-autonomous linear dynamics. This dynamics can display
attractive nonlinear phenomena such as bifurcations and chaos.
In this paper, we propose an approach to control chaos. The
proposed strategy is based primarily on the OGY method. First,
we derive an analytical expression of a constrained controlled
Poincaré map where. Its fixed point is identified numerically.
Then we determine the linearized controlled Poincaré map
around this fixed point. Based on this linearized map, we will
design a state feedback controller to stabilize the fixed point and
then to control chaos.

I. INTRODUCTION

It is recognized that chaos occurs frequently in many areas
of science and engineering and in a wide variety of nonlinear
dynamical systems such as nonlinear oscillators [1], [2], impact
mechanical systems [3], [4], [11], [18], [10], [26], walking
robots [5], [6], [7], [8], etc. Nonlinear dynamics of impact
oscillators and their nonlinear behaviors have received consid-
erable theoretical and experimental attentions in the past. Many
mathematical-experimental studies of the impact systems have
been conducted, and a particular interest has been focused on
the analysis and control of chaos and bifurcations [11].More
general studies of multiple-degree-of-freedom impact mechan-
ical oscillators were also conducted [12], [13], [14], [18], [10].
However, almost all these studies focus primarily on one single
impact. In this paper, we will examine a mechanical oscillator
of one-degree-of-freedom with one impact rigid constraint.
This mechanical system is periodically excited by an external
sinusoidal input. This oscillator consists of a mass, coupled
with a spring and a damper, and the mass movement is limited
by the single rigid constraint [15], [16], [17], [19], [26]. This
envisaged impact system is classified as a non-autonomous
impulsive hybrid linear dynamics that can generate chaos and
bifurcations.

The design of an efficient approach to control chaos is a
central point in the field of nonlinear science. In the literature,
many methods and strategies for chaos control in nonlinear
dynamical systems have been proposed [20], [21], [22], [23].
It is known so far that there are an infinite number of unstable
periodic orbits (UPOs) within a chaotic attractor. Moreover,
the trajectory of a system is very often in the vicinity of
each of them. Typically, chaos control was used to stabilize a
desired UPO for some given set of parameters. In the immense
interest to control chaos, Ott et al. [24] made the following two
ideas [9], [20], [23]: (1) controller design for discrete system

model based on the linearization of the Poincaré map, and (2)
using the property of recurrence of chaotic trajectories and
the application of control action at the moments when the
trajectory returns to a neighborhood of the desired state (or
orbit). This method is mainly based on the linearization of the
Poincaré map and it is known as the OGY method.

In this paper, we will use the OGY method to control
chaos exhibited in the impulsive hybrid dynamic linear non-
autonomous mechanical oscillator. We will acquire from this
hybrid dynamics an explicit expression of a constrained con-
trolled Poincaré map. Based on this constrained map, we will
determine an UPO (or a fixed point in the UPO) where its
stability will be analyzed using the linearized Poincaré map.
Based on this linearized map, we will design a state feedback
controller. Relying on the second key of the OGY method, the
designed controller will be applied at the beginning of each
period.

This paper is structured in eight sections. In Section II, the
impulsive hybrid linear dynamics of the impact mechanical
oscillator is given. The periodic and chaotic behaviors of the
impact oscillator are also discussed briefly in this section.
Section III is dedicated for the development of an analytical
expression of the constrained controlled Poincaré map. The
procedure of determination of fixed points based on the con-
strained Poincaré map is addressed in Section IV. Section V
gives the linearized controlled Poincaré map. The problem of
stabilization of an unstable fixed point and so the control of
chaos is treated in Section VI. We present in Section VII some
numerical simulations showing the control of chaos in the
impulsive hybrid dynamics of the impact oscillator. Finally
in Section VIII, some conclusions are noted.

II. IMPULSIVE HYBRID LINEAR DYNAMICS OF THE
IMPACT OSCILLATOR

A. Impact Mechanical Oscillator

We consider in this work a non-smooth dynamical system:
an oscillating mechanical system with impact known as the
impact mechanical oscillator (Figure 1). This impact oscillator
consists of a mass m. This mass is connected to the wall
through both a spring having a stiffness k and with a damping
coefficient c. A second wall introduced as a rigid constraint is
deviated from the mass of a distance d. The mass is excited
periodically via a sinusoidal input u(t) = Umcos(wt) where
w and Um are the excitation frequency and the excitation
amplitude, respectively . Under this oscillating input and from
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Fig. 1. The impact mechanical oscillator with a single rigid constraint.

an initial state at time t0 = 0s, the mechanical system will
oscillate on the horizontal axis x and therefore the mass will
produce impacts with the wall on the left for x = d. At
each impact, the velocity of the mass undergoes a restitution
having a coefficient r. However, the position of the mass is
not changed and no slippage occurs at impact. Let T = 2π

w be
the period of oscillation and τ is the impact time at which the
mass hits the wall.

B. Impulsive Hybrid Non-Autonomous Linear Dynamics

The dynamics of the impact mechanical oscillator is com-
posed of two phases: an oscillation phase and an instantaneous
impact phase. Let z = [ x ẋ ]

T be the state vector where
x and ẋ are the displacement and the velocity components,
respectively. The impulsive hybrid linear non-autonomous dy-
namics of the impact mechanical oscillator is given by:

ż = Az +Bu(t), if z /∈ Γ (1)

z+ = Rz−, if z ∈ Γ (2)

where subscribes + and − denotes just after and just before
the impact phase, respectively.

In (1) and (2), the different matrices are defined as: A =[
0 1

− k
m − c

m

]
, B =

[
0

− 1
m

]
and R =

[
1 0
0 −r

]
.

In fact, linear differential equation (1) describes the non-
autonomous linear dynamics during the swing phase. However,
the algebraic equation (2) offers the impulsive impact during
the impact phase. All these equations form the impulsive
hybrid non-autonomous linear dynamics of the impact mechan-
ical oscillator. In (1) and (2), Γ defines the impact condition
(surface). It is defined by:

Γ =
{
z ∈ ℜ2×1, h(z) = Cz − d = 0

}
, (3)

with C = [ 1 0 ]. In fact, while oscillating, the mass m is
subject to one unilateral constraint defined by h(z) > 0.

C. Periodic and Chaotic Behaviors

The impact mechanical oscillator may generate periodic
and chaotic behavior with respect to parameters of bifurcation
r, d and w [15], [16], [17], [19]. In this paper, we choose
m = 1Kg, k = 1N/m, c = 0N/(m/s), d = 0m, r = 0.8
and Um = −1N . To study the nonlinear dynamics of the
impact mechanical oscillator through bifurcation diagrams, it

is essential to choose a Poincaré section Λ which includes
all intersection points. This Poincaré section Λ should be
transverse to the system trajectory (1)-(3). These points are
then reported in the bifurcation diagrams as a system parameter
changes. Since the dynamics is non-autonomous, the choice of
a suitable Poincaré section Λ is:

Λ = {t ≥ 0, s(t) = t− (n− 1)T = 0, n = 1, 2, . . .} . (4)

Figure 2 gives the bifurcation diagram with respect to the
excitation frequency w. This bifurcation diagram shows the
speed of the mass on the Poincaré section (4). Figure 3 gives
a hybrid limit cycle showing a periodic oscillation of period 1.
This limit cycle shows that the mechanical oscillator undergoes
a single impact in one period T . However, the chaotic attractor
in Figure 4 shows that the impact oscillator can undergo several
impacts during a single period T . In this work, we will not
consider the case of multiple impacts. We will interest only in
the case where there is only one impact during the period T .

Therefore, our main objective is to control chaos in the
impulsive hybrid linear dynamics of the impact mechanical
oscillator. Then, our goal is to transform the chaotic behavior
of the oscillator into a period-1 oscillation. This is will be
done by stabilizing it based on some control approach. Thus,
our strategy to control chaos will be processed according to
the OGY method in two steps:

1) The first step deals with the numerical identification
of an unstable limit cycle (or an unstable periodic
orbit) within a chaotic attractor for some bifurcation
parameter w. This will be done by the design of an
explicit expression of a controlled Poincaré map.

2) The second step lies in the stabilization of this
unstable limit cycle by designing a specific controller
based on the linearization of the controlled Poincaré
map.

Fig. 2. Bifurcation diagram: velocity of the mass as a function of the
excitation frequency w.



Fig. 3. A 1-period nominal limit cycle of the impact oscillator for w =
2.2 rad/s.

Fig. 4. A chaotic attractor of the impact oscillator for w = 2.8 rad/s.

III. DETERMINATION OF THE CONTROLLED POINCARE
MAP

A controlled Poincaré map is the one with a controller
v which will be designed. Then, to control chaos displayed
in the impulsive hybrid linear dynamics (1)-(3), we will add
the controller v to the excitation input u. Thus, following our
control strategy, the proposed controller v must be constant
during the nth period T , i.e. v(t) = vn for all (n− 1)T ≤ t ≤
nT , with n = 1, 2, . . .. Thus, the impulsive hybrid dynamics
(1)-(2) of the impact mechanical oscillator becomes:

ż = Az +Bu(t) +Bvn, if z /∈ Γ (5)

z+ = Rz−, if z ∈ Γ (6)

To determine the analytical expression of the controlled
Poincaré map, we will consider the Poincare section Λ defined
by (4). From an initial condition z1 = z(t0 = 0), the mass
oscillates before the contact with the impact surface Γ defined
by (3). Here, we assume that the initial condition z1 does not

belong to Γ. We note τ1 the time of impact and z−
1 is the state

vector just before the impact. Accordingly, the state z−
1 will

be passed to the state just after impact z+
1 following (6). Thus,

from this state, the mass will oscillate again until the condition
z2 = z(T ) defined at the instant T . As a result, we obtain a
first cycle that begins with z1 at 0s and ends at T with z2.
During this cycle, the controller v will remain constant. Then
we willl have a first controller v1 for the first cycle. The state
z2 will be used as initial condition for the next cycle, and the
mass m oscillates, and so on. Next in this paper, we use the
following notations for all n = 1, 2, . . .:

• zn is the initial condition for the nth cycle,

• τn is the impact time for the nth cycle,

• z−
n is the state just before impact for the nth cycle,

• z+
n is the state just after impact for the nth cycle,

• vn is the controller applied during the nth cycle, it is
constant between (n− 1)T and nT ,

Hence, from the condition zn and get to the next state
zn+1, the system trajectory goes through three phases: 1st

phase of oscillation ⇒ 2nd phase of impact ⇒ 3rd phase
of oscillation. Because the dynamics during the swing phase
is governed by the linear non-autonomous system (5) with a
sinusoidal input u and a constant controller v, it is easy to
determine an explicit expression of a controlled Poincaré map.
This Poincaré map relates the states zn at the beginning of
each cycle. Then, to determine the expression of the Poincaré
map, we should determine expressions linking the states at the
beginning of each phase to those at the end of this phase. The
solution of the linear differential equations in (5) is defined
by:

z (t) = eA(t−t0)z (t0) + eAt

∫ t

t0

e−AξB (u(ξ) + v) dξ. (7)

As u(t) = Umcos(wt), the state vector z (t) is defined by
the following expression:

z (t) = eA(t−t0)z (t0)
+M

[
wA−1Bsin(wt)−Bcos(wt)

+ eA(t−t0)
(
Bcos(wt0)− wA−1Bsin(wt0)

)]
+
(
eA(t−t0) − I2

)
A−1Bv

(8)

with M = Um

(
A+ w2A−1

)−1
, and I2 is the square

identity matrix.

1st phase: oscillation phase: In this first phase, we have
zn = z ((n− 1)T ). At the instant (n−1)T+τn, the trajectory
undergoes an impact with the state z−

n = z ((n− 1)T + τn).
Hence, according to (8), we obtain the following expression:

z−
n = G1 (τn)zn +H1 (τn) +J 1 (τn) vn, (9)

with G1 (τn) = eAτn , J 1 (τn) =
(
eAτn − I2

)
A−1B, and

H1 (τn) = M
(
wA−1Bsin(wτn)−Bcos(wτn) + eAτnB

)
.

Relying on the impact condition (3), we emphasize that
h(z−

n ) = Cz−
n − d = 0. Thus, in order that an impact occurs,



the initial state zn, the impact time τn and the controller vn
must satisfy the following condition:

Ψ(zn, τn, vn) = G0 (τn) zn +H0 (τn) +J 0 (τn) vn = 0,
(10)

with G0 (τn) = CG1 (τn), H0 (τn) = CH1 (τn) − d, and
J 0 (τn) = CJ 1 (τn).

2nd phase: impact phase: In this instantaneous phase, and
based on algebraic equations (6), the state vector just before
impact z−

n is related to state vector of just after impact z+
n

according to the following expression:

z+
n = Rz−

n . (11)

3rd phase: oscillation phase: From the state z+
n , the

trajectory evolves according to the expression (8). This third
phase ends at time t = nT . Thus, we obtain the state vector
zn+1 as:

zn+1 = G2 (τn)z
+
n +H2 (τn) +J 2 (τn) vn, (12)

with G2 (τn) = eA(T−τn), J 2 (τn) = (G2 (τn)− I2)A−1B,
and
H2 (τn) =

(
eAT − I2

)
MB − G2 (τn)H1 (τn).

Using expressions (9)-(12), the constrained controlled
Poincaré map is expressed as:{

zn+1 = P (zn, τn, vn)
0 = Ψ (zn, τn, vn)

, (13)

with P (zn, τn, vn) = G (τn) zn+H (τn)+J (τn) vn, where
G (τn) = G2 (τn)RG1 (τn), H (τn) = G2 (τn)RH1 (τn) +
H2 (τn),
J (τn) = G2 (τn)RJ 1 (τn) + J 2 (τn), and the matrix
Ψ(zn, τn, vn) is defined in (10).

IV. IDENTIFICATION OF AN UNSTABLE PERIODIC ORBIT

Identification of an unstable periodic orbit (UPO) within
a chaotic attractor for some defined bifurcation parameters
lies in the identification of a fixed point of the constrained
uncontrolled Poincaré map (13), this means for vn = 0,
for all n = 1, 2, . . .. Let z∗ be the fixed point of the
constrained uncontrolled Poincaré map. Then, the fixed must
verify zn+1 = zn = z∗. For the fixed point z∗, there is an
impact time τ∗. Accordingly, for v∗ = 0 and on the basis of
(13), the fixed point z∗ must satisfy the following expressions:

P (z∗, τ∗)− z∗ = 0, (14)

Ψ(z∗, τ∗) = 0 . (15)

Based on expressions of P (z∗, τ∗) and Ψ(z∗, τ∗), we can
show that the impact time τ∗ must satisfy:

G0 (τ∗) (I2 − G (τ∗))
−1 H (τ∗) +H0 (τ∗) = 0, (16)

and the fixed point z∗ is described by the following expression:

z∗ = (I2 − G (τ∗))
−1 H (τ∗) . (17)

Actually τ∗ must be calculated numerically from (16) using
the well-known iterative Newton-Raphson scheme [25]. Once
the time of impact τ∗ is calculated, the fixed point z∗ will be
then computed according to expression (17).

Now we will analyze stability of the fixed point z∗. Then,
in order to achieve this task, we must determine the linearized
controlled Poincaré map around this fixed point.

V. DETERMINATION OF THE LINEARIZED CONTROLLED
POINCARE MAP

Let noting: ∆zn+1 = zn+1 − z∗, ∆zn = zn − z∗,
∆vn = vn − v∗, with v∗ = 0. Using the constrained
controlled Poincaré map (13) and relying on expression (14),
the linearized controlled Poincaré map is defined by:

∆zn+1 = DPzn (z∗, τ∗, v∗)∆zn +DPvn (z∗, τ∗, v∗)∆vn ,
(18)

with DPzn is the Jacobean matrix of the Poincaré map with
respect to zn, and DPvn

is the derivative of the Poincaré
map with respect to the controller vn. These two matrices are
evaluated at the fixed point z∗ and at the impact time τ∗ and
for v∗ = 0. They are defined as:{

DPzn (zn, τn, vn) = ∂P(zn,τn,vn)
∂zn

+ ∂P(zn,τn,vn)
∂τn

∂τn
∂zn

DPvn (zn, τn, vn) = ∂P(zn,τn,vn)
∂vn

+ ∂P(zn,τn,vn)
∂τn

∂τn
∂vn

(19)

By linearizing the second expression in (13) and based on
expression (15), we obtain:{

Ψzn +Ψτn
∂τn
∂zn

= 0

Ψvn +Ψτn
∂τn
∂vn

= 0
, (20)

with Ψzn = ∂Ψ(zn,τn,vn)
∂zn

, Ψτn = ∂Ψ(zn,τn,vn)
∂τn

, and
Ψvn = ∂Ψ(zn,τn,vn)

∂vn
.

Assuming that the quantity Ψτn is nonzero, then using (20),
it follows that: {

∂τn
∂zn

= −Ψzn

Ψτn
∂τn
∂vn

= −Ψvn

Ψτn

(21)

Substitution of these two expressions (21) into (19) yields
to:{

DPzn (zn, τn, vn) = ∂P(zn,τn,vn)
∂zn

− ∂P(zn,τn,vn)
∂τn

Ψzn

Ψτn

DPvn (zn, τn, vn) = ∂P(zn,τn,vn)
∂vn

− ∂P(zn,τn,vn)
∂τn

Ψvn

Ψτn

.

(22)

Stability of the fixed point z∗ will be done by analyzing the
eigenvalues of the Jacobin matrix DPzn (z∗, τ∗, v∗). In fact,
this Jacobin matrix admits two eigenvalues. Depending on the
position of the two eigenvalues with respect to the unit circle,
we can study the stability of the fixed point z∗. Sufficient
condition for stability is that both eigenvalues are inside the
unit circle.

It is noted that for a chaotic attractor or chaotic behavior
of the impact mechanical oscillator, its impulsive hybrid dy-
namics exhibits period-1 unstable limit cycles. Then, after the
detection of an unstable fixed point of the unstable limit cycle
within the chaotic attractor; our objective is to control chaos
by stabilizing the unstable fixed point.



VI. STABILIZATION OF THE FIXED POINT

Stabilization of a fixed point z∗ which was previously
determined allows to have a period-1 unstable limit cycle for
the impact mechanical oscillator. Thus, we seek to determine
the appropriate controller ∆vn = vn − v∗, with v∗ = 0 to
stabilize the linearized Poincaré map (18). Then we will adopt
a state feedback controller as follows:

∆vn = K∆zn , (23)

where K is the matrix gain of the controller vn.

By defining a Lyapunov function:

V (∆zn) = ∆zn
TS∆zn, (24)

with S = ST > 0, then the linearized controlled Poincaré map
(18) is asymptotically stable if the following Linear Matrix
Inequality (LMI) is satisfied:[ S DP∗

zn
+DP∗

vnQ(
DP∗

zn
+DP∗

vn
Q
)T S

]
> 0 , (25)

with DP∗
zn

= DPzn (z∗, τ∗, v∗), DP∗
vn

=
DPvn (z∗, τ∗, v∗), and Q = KS.

The gain K of the state feedback controller (23) is then
defined by

K = QS−1. (26)

Therefore, by applying the control law

vn = K (zn − z∗) , (27)

in the impulsive hybrid linear dynamics (5)-(6), the fixed point
z∗ and hence the corresponding unstable limit cycle will be
stabilized. Accordingly, the erratic chaotic behavior of the
impact mechanical oscillator will be controlled.

VII. EFFECTIVENESS OF THE DEVELOPED CONTROLLER:
NUMERICAL SIMULATIONS

In this section, we propose to apply the controller vn
to verify its effectiveness in controlling chaos exhibited in
the impulsive hybrid dynamics of the impacting mechanical
oscillator. Then, relying on Section IV, we have identified
the following fixed point z∗ = [ 0.0083 0.2982 ]

T of
some unstable limit cycle within the chaotic attractor of
Figure 4. The corresponding impact time is τ∗ = 2.2146s.
The eigenvalues of the Jacobian matrix of the constrained
Poincaré map are found to be −0.2043 and −3.7295. Because
one of these two eigenvalues is outside the unit circle, the
identified fixed point (the UPO) is unstable. Stabilization
occurs through the controller state feedback (27). Using the
LMI in (25), the gain K of the controller vn is calculated to
be: K = [ 0.4121 −0.4291 ].

Using the impulsive hybrid linear non-autonomous dy-
namics (5)-(6) with the controller (27), Figure 5 shows the
controlled period-1 hybrid limit cycle. In this figure, the
solid circle is the fixed point z∗ of the unstable limit cycle.
Obviously, the fixed point of limit cycle is located very near
(in the neighborhood) of the impact surface. Figure 6 shows
the temporal evolution of the state vector of the mass. In
this figure, solid circles reveal the states of the mass at
the beginning of each period T . This plot shows that the

chaotic behavior of the impact mechanical oscillator will be
transformed to a period-1 trajectory just after 12 seconds.
This figure is plotted for an initial condition different to the
unstable fixed point. In Figure 7, the time variation of the
control law vn is displayed. It is obvious that when the chaotic
behavior of the impact mechanical oscillator is controlled, the
value of the controller becomes very low and remains constant
around 8.10−4N . In addition, the maximum value of vn is
approximately about 0.5N .

VIII. CONCLUSIONS

In this paper, we proposed an approach to control chaos
exhibited in the impulsive hybrid linear dynamics of an impact
mechanical oscillator. Our control strategy is chiefly based on
the OGY method, which is based on the linearized Poincaré
map. Thus, we have constructed an explicit expression of
a constrained controlled Poincaré map. Based on this map,
we identified its fixed point. In addition, we determined the
linearized controlled Poincaré map. Based on this linearized

Fig. 5. Controlled limit cycle of the impact oscillator for w = 2.8 rad/s.

Fig. 6. Temporal evolution of the states (the position x and the velocity ẋ)
of the mass.



Fig. 7. Temporal evolution of the control law v.

map, we designed a state feedback controller to stabilize the
unstable fixed point. We have demonstrated the effectiveness
of our designed controller in the control of chaos in the im-
pulsive hybrid linear non-autonomous dynamics of the impact
oscillator.
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