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Abstract—. In this paper, we address the dense-sparse matrix 

product (DSMP) problem i.e. where the first matrix is dense and 

the second is sparse. We first present initial versions of loop nest 

structured algorithms corresponding to the most used sparse 

matrix storing formats i.e. DNS, CSR, CSC and COO. 

Afterwards, we derive several versions obtained by applying loop 

interchange techniques, loop invariant motion and loop unrolling 

on the previous loop nest algorithms. Theoretical multifold 

comparisons are then made between the different designed 

versions. Our contribution is validated through a series of 

experiments achieved on a set of sparse matrices with different 

sizes and densities.  

Keywords— Algorithm complexity; compressed/storage format; 

loop nest optimization; performance evaluation; sparse matrix 

product 

I. INTRODUCTION  

Several scientific applications often use kernels performing 
computations on large size sparse matrices e.g. in semi-
conductors, robotics, image processing, networks and graphs, 
molecular dynamics etc [1], [2], [3], [4], [5], [6]. Most problems 
in these fields reduce to sparse linear algebra kernels [2]. 

Many works have been devoted to the sparse computing 
problem such as Sparse Matrix Product (SMP) [1], [4], [6], 
Sparse Matrix Vector Product (SMVP) [2], [5], [7] and Sparse-
Dense Matrix Product (SDMP) [8], [9], [10], [11]. The 
symmetric case of the SDMP problem i.e. Dense-Sparse matrix 
product (DSMP) where the first is dense and the second is 
sparse is also an important kernel, especially for computing a 
sparse matrix chain product [12], [13] as well for building 
Peano space-filling curves [8]. However, DSMP has not been 
enough studied in literature. To our knowledge, the impact of 
sparse storing formats, matrix access/storing modes and data 
locality have not been studied so far.  

This paper constitutes a symmetric investigation related a 
previous work [9] where we studied SDMP optimization. Let 
us first recall that processing large sparse matrices requires, for 
reasons of space-time complexity reduction, the use of 
compressing (or storing) formats (SCF). These latter may be 
either general i.e. fitting any sparse structure e.g. DNS 
(DeNSe) where both zero and nonzero elements are stored, 
CSR (Compressed Sparse Row), CSC (Compressed Storage 
Column) and COO (COOrdinate)…), or particular such as 

MSR (Modified Storage Row), BND (BaNDed), DIA 
(Diagonal)… , [5] , [6], [7]. 

Our aim here is to determine the best SCF for the DSMP 
i.e. leading to the best performances. For this purpose, we 
derived a series of algorithms corresponding to four SCF’s, 
namely DNS, CSR, CSC and COO.  

The remainder of the paper is organized as follows. In 
section II, a very brief survey on SCF’s is given. Four SCF’s 
being chosen, Section III is devoted to a detailed description of 
two successive sets of algorithms for DSMP where the first 
involves initial loop nest structured algorithms (LNSA), from 
which we derive a second set of LNSA’s by applying specific 
loop nest transformation techniques. Section IV is devoted to 
an experimental study in order to validate our theoretical 
contribution. Finally, we conclude our study and present some 
perspectives in section V. 

II. SPARSE MATRICES AND COMPRESSION FORMATS  

Let us recall that a matrix is called sparse if it has a large 
(resp. weak) number of zero (resp. nonzero) elements [5], [7].  
Let NNZ be the number of nonzero elements. As previously 
mentioned, processing sparse matrices requires using particular 
SCF’s restricted to the nonzero elements.  

A sparse matrix can have various structures according to 
the locations of its nonzero elements. The structure of a sparse 
matrix may be either regular e.g. triangular, diagonal, constant 
band, etc; or irregular (called also general) e.g. variable band, 
random, etc [5], [7], [14]. In this paper, we are interested in 
four most used storage formats namely DNS, CSR, CSC and 
COO. 

We recall that storing a sparse matrix, say B of size N with 
NNZ nonzero elements, the CSR data-structure consists of 
three arrays B, JB and IB i.e. a real array B(1:NNZ) to store 
row-wise the nonzero elements of B, an integer array 
JB(1:NNZ) to store the column positions of the elements in the 
real array B, and finally, a pointer array IB(1:n+1), the i-th 
entry of which points to the beginning of the i-th row in arrays 
B and JB [5] , [7].  

The CSC is similar to CSR except that the nonzero 
elements are stored column-wise in the first array, a row index 
is stored for each element, and column pointers are stored. So, 
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CSC is specified by three arrays, denoted B, IB and JB, where 
IB stores the row indices of each nonzero, JB stores the index 
of the elements in B which start a column of the matrix [7].  

As to the COO format, it also consists of three arrays, each 
of which is of size NNZ : an array B of floats containing the 
nonzero elements, an array IB (resp. JB) of integers containing 
their row (resp. column) indices [5]. 

III. THEORETICAL STUDY 

It has to be firstly recalled, that in the SDMP case, denoted 
C=AB where A is sparse and B is dense, the algorithms we 
designed could be easily derived from known algorithms for 
Sparse Matrix Dense Vector Product (SMDVP) algorithms [9]. 
As to the DSMP case (where A is dense and B is sparse) in 
which we are interested, a direct approach will be adopted 
since algorithms for the Dense Matrix Sparse Vector Product 
(DMSVP) are of no use. Let us add that in both SDMP and 
DSMP cases, 2N*NNZ flops are required, NNZ being the 
number of nonzero elements of the sparse matrix and N its size 
[9]. 

A. DNS Format 

Given the standard algorithm, structured in a perfect 3-loop 
nest denoted IJK, for computing the product of two square 
dense matrices, we include some modifications consisting in 
logical tests and scalar replacements [9]. The aim is to avoid 
useless operations and reduce the number of accesses to matrix 
B (see algorithm (a) below). Clearly, five other versions may 
be derived by applying the loop interchange (LI) technique i.e. 
IKJ, KJI, KIJ, JKI, JIK. This transformation has an impact on 
data locality and may modify the loop nest body kernel (see 
Table I, where R is for Row and C for Column) [3], [6], [9].    

Considering the initial version IJK and since the logical test 
is done on element B(k,j), we’ll keep both JKI (see algorithm 
(b) below) and KJI versions and apply loop invariant motion 
technique (LIM) [15] in order to reduce the number of logical 
tests (see algorithm (c) below). Remark that the loop nest body 
kernel is GAXPY-C in version JKI (resp. AXPY-C in version 
KJI).  

 

DNS_IJK  

    DO i=1, N 

          DO j=1, N 

                DO k=1, N  

                       s=B(k,j) 

                       IF (s≠0) THEN 

                                             C(i,j)=C(i,j) + A(i,k)*s                          

                       ENDIF 

                 ENDDO  

           ENDDO 

    ENDDO   

(a) 
 

DNS_JKI 

     DO j=1, N                  / first level / 

           DO k=1, N          / second level /  

                  DO i=1, N    / third level /  

                         s=B(k,j) 

                         IF (s≠0) THEN 

                                               C(i,j)=C(i,j) + A(i,k)*s                      

                        ENDIF 

                  ENDDO  

            ENDDO 

     ENDDO                 

(b) 

 

DNS_JKI_V1  

   DO j=1, N 

         DO k=1, N            / second level / 

                s=B(k,j)          

                IF (s≠0) THEN 

                                       DO i=1, N 

                                              C(i,j)=C(i,j) + A(i,k)*s                         

                                       ENDDO  

                ENDIF  

         ENDDO 

    ENDDO     

(c) 
 

Table I recapitulates a comparative study on the whole 6 
versions including number of accesses, number of tests, access 
mode and body kernel. 

We can notice, from Table I, that both versions KJI_V1 and 
JKI_V1 lead to less accesses and logical tests i.e.  N

2 
(resp. 

NNZ) accesses to B (resp. A) instead of N
3
 (resp. N*NNZ) for 

the four other versions.  

Let us add that the JKI kernel is GAXPY-C i.e. same 
column-wise access for the three matrices whereas the KJI 
kernel is AXPY-C i.e. A and C are accessed column-wise and 
B row-wise. So, in order to reduce cache misses thus improve 
performances, the three matrices have to be processed 
according to their storing mode (i.e. either row-wise such in a 
C environment or column-wise such in a Fortran environment). 
This storing-access mode fitting leads to better data locality 
[16]. 

Consequently, versions KJI (A and C : column-wise access, 
AXPY-C kernel) and JKI (A, B and C : column-wise access, 
GAXPY-C kernel) are better in a Fortran environment. It must 
be emphasized that in a C environment, the best version from a 
data locality point of view is IKJ. Unfortunately, for this latter, 
the LIM technique cannot be applied. To resume, since we 
worked in a C environment (see section IV), we have two 
versions (JKI and KJI) where storing and access modes conflict 
but the number of logical tests (nlt) is minimized, and a third 
version (IKJ) where the two modes fit but the nlt is maximized. 
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B. CSR, CSC and COO versions 

From the initial versions, denoted CSR_JKI, CSC_IJK and 

COO_IK, we derived other versions by apply improving 

techniques such as scalar replacement and loop interchange in 

order to ensure better data locality (see (e), (f) and (g) .  

CSR_JKI     

    DO j=1,N 

          ibj= IB(j); ibj1= IB(j+1)-1 

          DO k=ibj,ibj1 

                 DO i=1,N 

                        C(i,JB(k))= C(i,JB(k))+A(i,j)*B(k) 

                 ENDDO 

           ENDDO   

   ENDDO   (e) 

CSC_IJK   
     DO i=1,N 

           DO j=1,N    

                  jbj= JB(j), jbj1= JB(j+1)-1 

                  DO k=jbj, jbj1               

                         C(i,j)=C(i,j)+A(i,IB(k))*B(k) 

                  ENDDO 

           ENDDO 

     ENDDO                    (f) 

COO_KI     

    DO k=1,NNZ 

           jbk= JB(k), ibk=IB(k) 

           DO i=1,N  

                  C(i,jbk)= C(i,jbk)+ A(i,ibk)*B(k) 

           ENDDO 

   ENDDO             (g) 

Given these three versions, the LI technique permitted to 

derive five other versions i.e. CSR_JIK, CSR_IJK, CSC_JKI, 

CSC_JIK and COO_KI (see Table II). 

Hence, from three initial versions (see Table II), we derived 
18 other i.e. 7 for CSR, 7 for CSC and 3 for COO (see Table 
II). Notice that for any version, the number of accesses to 
matrix A is equal to N*NNZ. It is easy to deduce from 
comparative intra-SCF versions that CSR_IJK_V1, 
CSC_IJK_V1 and COO_IK_V1 would (theoretically) be the 
best in a C environment (row-wise storing). This is due to two 
reasons since they perform (i) 2-3 (out of 3) row accesses to A, 
B, and C and (ii) less accesses to these arrays. We precise that 
in the COO format, we have chosen a row-wise storing for B. 

IV.  EXPERIMENTAL STUDY 

In order to evaluate the practical performances of the 
derived versions and validate our theoretical study, we 
achieved a series of experimentations on a set of randomly 
generated matrices of different sizes and densities. Indeed, we 
have chosen 10 sizes (N) in the range 1000-10000 and 6 
densities (D=5%, 10%, 20%, 30%, 40% and 50%). We think 
that it is not necessary to process larger matrices, since we can 
use block decomposition methods for the DSMP were we 
reduce to submatrices (blocks) of lower sizes.   

We experimented 8 versions of DNS, 7 of CSR, 7 of CSC 
and 3 of COO. We also studied the impact of loop unrolling 
[5], [9], [15], [17], when applied on DOT-R kernel for the two 
formats DNS and CSC. We present in the following excerpts 
of the results obtained for a density of 5% (similar results were 
obtained with the other values). We precise that our 
experiments have been achieved on an i7 work station (3.4 
GHz, 4GB RAM, 64Ko L1 cache, 256 KO L2 cache and 8 MO  

TABLE I.      DNS RECAPITULATION TABLE 

Version 

A B C 

Kernel Initial version V1 Access 
mode 

Initial version V1 
Access mode 

Access 
mode #Access #Access #Access #Test #Access #Test 

IJK N*NNZ N*NNZ R N³ N³ N³ N³ C R DOT-R 

JIK N*NNZ N*NNZ R N³ N³ N³ N³ C C DOT-C 

KIJ N*NNZ N*NNZ C N³ N³ N³ N³ R R AXPY-R 

KJI N*NNZ NNZ C N³ N³ N² N² R C AXPY-C 

IKJ N*NNZ N*NNZ R N³ N³ N³ N³ R R GAXPY-R 

JKI N*NNZ NNZ C N³ N³ N² N² C C GAXPY-C 

 
TABLE II.       SCF’S COMPARISON 

Format Version 

A B C 

Kernel 
MA

a
 

Initial version (#Access) V1 (#Access) 
MA

a
 MA

a
 

IB JB B IB JB B 

CSR 

JKI C 2N*NNZ N*NNZ N*NNZ 2N NNZ N*NNZ R C AXPY-C 

JIK C 2N*NNZ N*NNZ N*NNZ 2N N*NNZ N*NNZ R R AXPY-R 

IJK R 2N*NNZ N*NNZ N*NNZ 2N² N*NNZ N*NNZ R R GAXPY-R 

CSC 

IJK R N*NNZ 2N*NNZ N*NNZ N*NNZ 2N² N*NNZ C R DOT-R 

JIK R N*NNZ 2N*NNZ N*NNZ N*NNZ 2N N*NNZ C C DOT-C 

JKI C N*NNZ 2N*NNZ N*NNZ NNZ 2N NNZ C C GAXPY-C 

COO 
IK R N*NNZ 2N*NNZ N*NNZ N*NNZ N*NNZ N*NNZ R R GAXPY-R 

KI C N*NNZ 2N*NNZ N*NNZ NNZ NNZ NNZ R C AXPY-C 

a. AM : Access mode (Row/Column)  
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Fig. 1. Running times for DNS versions 

Fig. 2. Running times for CSR versions 

Fig. 3. Running times for CSC versions 

 

Fig. 4. Running times for COO versions 

L3 cache) under openSUSE OS. Our algorithms were coded in C. 

A. Intra-algorithm Comparison 

1) DNS 

Despite its GAXPY-C kernel, JKI_V1 version offers 

minimal runtime (see Table I and Fig. 1). This is mainly due to 

the minimization of the number of logical tests (N
2
) after loop 

invariant motion (LIM) from loop level 3 to loop level 2. 

Remark that for any density and any N, IKJ is about 62-85% 

better than IJK in average. Moreover, JKI_V1 is about 35-75% 

faster than JKI. In fact, this rate tends towards 32% when N 

and D increase. Thus we can conclude that the observed 

improvement is essentially due to LIM. Notice in addition that 

IKJ version whose kernel is GAXPY-R., is not among the best 

versions (it is ranked 4th to 6th in 60% of the tests) in spite of 

its efficient data locality (row-wise storing in a C environment, 

row-wise accesses). 

2) CSR  

 The experimentations (see Fig. 2) confirm the theoretical 

results (see Table II). Indeed, IJK_V1 is the best since the 

GAXPY-R kernel reduced cache misses. Thus, we have data 

locality optimisation combined with code motion where we 

minimized access to IB i.e. 2N*NNZ to 2N
2
.We should 

however mention that the other versions, namely JIK_V1 and 

JKI_V1, uses less accesses to IB i.e. 2N but they are not the 

best since data locality has a more important impact that code 

motion in this case. 

3) CSC   
The best results were obtained with IJK_V1. This may be 

due to the reduced number of accesses to arrays JB and B as 

previously mentioned (see Table II). Moreover, matrices A 

and C are accessed row-wise (see Fig. 3). 

4) COO  

  IK is the best since it adopts a row-wise access to the 

matrices i.e. GAXPY-R (see Table II and Fig. 4). 

B. Loop unrolling technique  

Given a (normalized) DO loop, loop unrolling (LpU) 
consists in first choosing an integer u (called LpU factor), 
duplicating the  loop body u times, then iterating  the loop with 
a step equal to u (instead of 1) [9]. It is well known that LpU 
reduces cache misses [5]. Thus, we applied it by choosing 
values for u in the range [2 32] and obtained interesting results. 
Indeed, the LpU technique has improved the algorithms on 
which it was applied (see Fig. 5 and 6). As a matter of fact, 
about an 8% improvement (in average) could be reached with 
u=4 for version COO_IK (GAXPY-R kernel, see Table III and 
Fig. 6). We precise that the parameter ratio used below is 
defined as follows :  

ratio=(1- run. time with unrolling /run. time without 
unrolling)*100 

 Concerning DNS, for version DNS_IJK_V1 (DOT-R 

kernel), there is not a unique optimal LpU factor. As a matter 

of fact, in 33.33% of tests, optimality is obtained with u=16 

(see Table VI and Fig. 5). 
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We can see that DNS_IJK_V1 version with unrolling 
which is more efficient than without (see Fig. 5) still remains 
less efficient than DNS_JKI_V1. Moreover, JKI_V1 is about 6 
times faster than IJK_V1 with unrolling for D=5%. This 
improvement factor decreases in fact when D increases for 
fixed N (it reaches 1.5 for D=50% and any N). 

Regarding CSR, for CSR_IJK_V1 (GAXPY-R kernel), the 
optimal unrolling factor is u=16 and induces, in average, a 10% 
improvement (see Table IV and Fig. 6).  

As for CSC, CSC_IJK_V1 (DOT-R kernel) induced about 
a 43-46% improvement (in average). This was obtained with 
u=24 (see Table V and Fig. 6). 

TABLE III.     UNROLLING IMPROVEMENT RATIOS (% ) FOR COO VERSIONS 

(DENSITY=5%) 

N u=2 u=4 u=8 u=12 u=16 u=20 

1000 0.00 0.00 0.00 0.00 0.00 0.00 

2000 0.00 50.00 50.00 50.00 50.00 50.00 

3000 0.00 14.29 0.00 0.00 0.00 0.00 

4000 5.56 11.11 11.11 5.56 11.11 11.11 

5000 5.71 8.57 5.71 5.71 5.71 5.71 

6000 4.92 8.20 6.56 6.56 6.56 6.56 

7000 5.10 9.18 7.14 6.12 6.12 6.12 

8000 6.21 9.66 7.59 6.90 6.21 6.21 

9000 5.42 8.37 7.39 6.40 6.40 6.40 

10000 5.32 8.51 7.45 6.38 6.03 6.03 

TABLE IV. UNROLLING IMPROVEMENT RATIOS (%) FOR CSR VERSIONS 

(DENSITY=5%) 

 

 

 

 

 

 

TABLE V. UNROLLING IMPROVEMENT RATIOS (%) FOR CSC VERSIONS 

(DENSITY=5%) 
 

N u=2 u=4 u=8 u=12 u=16 u=20 u=24 u=28 

1000 10.20 30.61 42.86 38.78 35.71 34.69 30.61 24.49 

2000 13.40 30.93 40.21 40.72 42.53 41.24 40.89 35.31 

3000 13.06 30.63 39.64 40.54 42.91 42.43 42.94 39.26 

4000 13.21 29.92 38.84 39.81 42.26 41.98 42.30 40.87 

5000 12.50 29.77 38.61 39.87 41.95 41.79 42.14 41.07 

6000 12.45 29.83 38.68 40.09 42.26 42.15 42.53 41.86 

7000 12.14 29.69 38.61 39.89 42.70 42.91 43.17 42.77 

8000 12.46 30.59 39.69 40.79 43.45 43.45 43.82 43.50 

9000 12.62 30.70 39.85 40.95 43.52 43.58 43.96 43.81 

10000 12.27 30.52 39.53 40.85 43.21 43.29 43.68 43.60 

TABLE VI. UNROLLING IMPROVEMENT RATIOS (% ) FOR DNS VERSIONS 

N D u=4 u=8 u=12 u=16 u=20 u=24 

1000 

5% 

-3.50 3.00 3.25 4.00 3.75 1.75 

2000 5.52 12.73 7.52 14.89 14.61 13.59 

3000 8.79 7.22 14.98 15.60 15.47 14.79 

4000 13.05 13.89 14.44 15.12 14.90 14.12 

5000 15.03 13.02 13.49 14.27 14.18 13.62 

6000 9.48 12.54 12.96 13.87 13.36 13.14 

7000 10.13 12.70 13.18 14.29 13.98 15.70 

8000 36.34 37.68 37.92 38.31 38.06 37.67 

9000 17.98 19.98 20.02 20.81 20.74 20.49 

10000 14.72 16.38 16.73 17.36 17.14 16.64 

1000 

50% 

6.45 5.55 7.36 6.55 5.45 2.55 

2000 8.37 9.55 8.88 10.20 9.48 6.75 

3000 30.96 29.29 32.06 31.44 30.73 28.40 

4000 10.81 8.87 10.54 9.95 9.38 6.66 

5000 13.52 7.90 9.75 9.05 8.38 5.61 

6000 8.56 8.26 10.00 9.42 8.58 5.85 

7000 8.11 7.60 9.51 8.62 8.11 5.87 

8000 14.42 13.90 15.64 14.89 14.07 11.70 

9000 9.09 8.54 10.02 9.32 8.81 6.04 

10000 8.55 8.15 9.80 8.93 8.10 5.54 

       
First Rang (%) 31.67 1.67 28.33 33.33 1.67 3.33 

 

First Rank (%) above corresponds to the number of times 
(%) the corresponding version was first ranked. For instance, 
33.33 in column u=16 means that for u=16, we obtained the 
best results in 33.33% of the 60 cases i.e. 20/60. 

Concerning the behaviors of DNS and CSC algorithms 
according to the unrolling factor, we note that LpU technique 
significantly improved the performance but not so much as far 
as CSR and COO algorithms are concerned. In fact, DNS and 
CSC algorithms use DOT kernel while the two others use 
GAXPY kernel. When applying LpU technique with DOT 
kernel, the loop body corresponds to an accumulation in the 
same element of the matrix (see (h) below), whereas with 
GAXPY kernel, it is a set of assignments of different elements 
of the matrix (see (i) below). 

CSC_IJK_u=4  DOT Kernel 

  DO i=1,N 

     DO j=1,N    

            jbj= JB(j), jbj1= JB(j+1)-1 

            m= (jbj1-jbj+1) mod 4 ; ne=jbj1-m ; 

            DO k=jbj, ne,4             
                  C(i,j)=C(i,j)+A(i,IB(k))*B(k)+A(i,IB(k+1))*B(k+1)                                             

+A(i,IB(k+2))*B(k+2)+A(i,IB(k+3))*B(k+3) 

            ENDDO 

            DO k=ne+1, jbj1  

                   C(i,j)=C(i,j)+A(i,IB(k))*B(k) 

            ENDDO 

      ENDDO 

   ENDDO               

(h) 

N u=2 u=4 u=8 u=12 u=16 u=20 

4000 -6.25 6.25 6.25 6.25 6.25 6.25 

5000 -3.13 3.13 9.38 6.25 9.38 9.38 

6000 -1.79 5.36 8.93 8.93 8.93 8.93 

7000 -1.11 5.56 8.89 8.89 10.00 8.89 

8000 -1.52 5.30 9.09 8.33 9.85 9.09 

9000 -1.60 4.79 8.51 7.98 9.57 8.51 

10000 -1.54 5.00 8.46 8.46 9.62 9.23 
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Fig. 7 . Ratio where D=50 % for the optimal 

version of each format 

COO_IK_u=4    GAXPY Kernel 
  DO i=1,N 

         m=NNZ mod 4 ; ne=NNZ-m 

         DO k=1,ne,4  

                C(i, JB(k))= C(i, JB(k))+A(i, IB(k))*B(k) 

                C(i,JB(k+1))=C(i,JB(k+1))+A(i,IB(k+1))*B(k+1) 

                C(i,JB(k+2))=C(i,JB(k+2))+A(i,IB(k+2))*B(k+2) 

                C(i,JB(k+3))=C(i,JB(k+3))+A(i,IB(k+3))*B(k+3) 

         ENDDO 

         DO k=ne+1,NNZ  

                C(i,JB(k))=C(i,JB(k))+A(i,IB(k))*B(k) 

         ENDDO 

  ENDDO 

(i) 

 

 

 

 

 

 

 

Fig.s and 

 

 
 

 

 

 

 

 

 

 

 

 

C. Inter-algorithms comparison  

1) Without unrolling  

Before applying the LpU technique, two versions shared 

the first rank i.e.  CSR-IJK_V1 (GAXPY-R kernel) and CSC-

IJK_V1 (DOT-R kernel). Indeed, CSC-IJK_V1 (resp. CSR-

IJK_V1) was the first in 55% (resp. 45%) cases. In fact, for 

low density (5%, 10%, 20%) CSR-IJK_V1 is the best whereas 

for higher densities (30%, 40%, 50%) CSC-IJK_V1 becomes 

better (see Table VII). Fig. 7 depicts the improvement ratios in 

terms of D for D=50% where ratio=(1-run_opt/run_v)*100, 

run_opt (resp. run_v) being the running time of version 

CSC_JIK_V1 (resp. the running time of any other version).    

A negative ratio means that run.time of CSC_JIK_V1 is larger 

than the other (i.e. CSR-IJK_V1 run.time is better).  

We remark that CSC is followed by CSR, then COO and 

DNS. We can see that runtimes given by CSC version and CSR 

version are very close. In fact, in average, version CSC-

IJK_V1 is 1-2% better than the best CSR-IJK_V1 (for high 

density), 6-12% better than the best COO version (i.e. COO-

IK), and more than 50% better than the best DNS version i.e. 

DNS-JKI_V1 (see Fig. 8). Notice that the reduction of the 

number of logical tests (from N
3
 to N

2
) did not improve so 

much DNS-JKI_V1 since it was not associated to optimal data 

locality (row-wise).  

TABLE VII. RATIO FOR THE OPTIMAL VERSION OF EACH FORMAT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) After unrolling 

By applying the LpU technique, we can notice that 

COO_IK with unrolling factor u=4 is quite similar to 

CSR_IJK_V1 for low densities (D=5%). However, an 8-9% 

improvement could be obtained for u=16 by CSR_IJK_V1. On 

the other hand, CSC_IJK_V1_u=24 superseded 

CSR_IJK_V1_u=16. 

Consequently, the ranking (best to worst) now is 

CSC_IJK_V1 (u=24), CSR_IJK_V1(u=16), COO_IK (u=4), 

N D (%) CSR_IJK_V1 COO_IK DNS_JKI_V1 

9000 5 -1.82 7.57 72.37 

9000 10 -1.27 6.50 69.34 

9000 20 0.04 8.01 63.43 

9000 30 0.89 9.96 57.99 

9000 40 1.50 10.58 52.92 

9000 50 2.04 11.21 48.36 

10000 5 -1.55 6.58 73.78 

10000 10 -1.02 6.69 70.70 

10000 20 -0.04 8.37 64.96 

10000 30 0.74 9.86 59.15 

10000 40 1.54 10.78 54.54 

10000 50 1.97 11.39 50.26 

 
Fig. 5 . Running times for DNS with Loop unrolling 

 

Fig. 6 . Running times for CSR, CSC and COO 

with Loop unrolling 
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Fig. 8 . Ratio where D=5% for the optimal version 

DNS_JKI_V1. In fact, in average, CSC_IJK_V1 (u=24), is 34-

37% better than CSR_IKJ_V1 (u=16), 36-42% better than 

COO_IK (u=4) and 80-85% (in average) better than 

DNS_JKI_V1 (see Fig. 8).   
 

 

 

 

 

 

 

 

 

V. CONCLUSION 

In this paper, we studied several dense-sparse matrix 

product algorithms for four compressing formats (DNS, CSR, 

CSC and COO). Various optimisation techniques have been 

applied and led to interesting improvements. The version 

corresponding to the CSC format, namely CSC_IJK_V1 

(u=24), once optimised gave the best results and was followed 

by versions corresponding to successively formats CSR and 

COO, DNS.  

Our work induces some interesting points we intend to 

study in the near future. We may cite the following :  

• Extension of our work by studying other regular and 
irregular SCF’s  

• Comparison of SDMP and DSMP algorithms in order 
to deduce an adequate version for any kind of matrix 
product 

• Study of the general case of sparse-sparse matrix 
product (SSMP)  

• Study the sparse matrix chain product problem 

• Parallelisation of SDMP and DSMP algorithms. 
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