
International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.87-94

ISSN 2356-5608

Dense-Sparse Matrix Multiplication :

Algorithms and Performance Evaluation

S. Ezouaoui , O. Hamdi-Larbi, Z. Mahjoub

University of Tunis El Manar - Faculty of Sciences of Tunis

University Campus 2092 El Manar

Tunis, Tunisia

Abstract—. In this paper, we address the dense-sparse matrix

product (DSMP) problem i.e. where the first matrix is dense and

the second is sparse. We first present initial versions of loop nest

structured algorithms corresponding to the most used sparse

matrix storing formats i.e. DNS, CSR, CSC and COO.

Afterwards, we derive several versions obtained by applying loop

interchange techniques, loop invariant motion and loop unrolling

on the previous loop nest algorithms. Theoretical multifold

comparisons are then made between the different designed

versions. Our contribution is validated through a series of

experiments achieved on a set of sparse matrices with different

sizes and densities.

Keywords— Algorithm complexity; compressed/storage format;

loop nest optimization; performance evaluation; sparse matrix

product

I. INTRODUCTION

Several scientific applications often use kernels performing
computations on large size sparse matrices e.g. in semi-
conductors, robotics, image processing, networks and graphs,
molecular dynamics etc [1], [2], [3], [4], [5], [6]. Most problems
in these fields reduce to sparse linear algebra kernels [2].

Many works have been devoted to the sparse computing
problem such as Sparse Matrix Product (SMP) [1], [4], [6],
Sparse Matrix Vector Product (SMVP) [2], [5], [7] and Sparse-
Dense Matrix Product (SDMP) [8], [9], [10], [11]. The
symmetric case of the SDMP problem i.e. Dense-Sparse matrix
product (DSMP) where the first is dense and the second is
sparse is also an important kernel, especially for computing a
sparse matrix chain product [12], [13] as well for building
Peano space-filling curves [8]. However, DSMP has not been
enough studied in literature. To our knowledge, the impact of
sparse storing formats, matrix access/storing modes and data
locality have not been studied so far.

This paper constitutes a symmetric investigation related a
previous work [9] where we studied SDMP optimization. Let
us first recall that processing large sparse matrices requires, for
reasons of space-time complexity reduction, the use of
compressing (or storing) formats (SCF). These latter may be
either general i.e. fitting any sparse structure e.g. DNS
(DeNSe) where both zero and nonzero elements are stored,
CSR (Compressed Sparse Row), CSC (Compressed Storage
Column) and COO (COOrdinate)…), or particular such as

MSR (Modified Storage Row), BND (BaNDed), DIA
(Diagonal)… , [5] , [6], [7].

Our aim here is to determine the best SCF for the DSMP
i.e. leading to the best performances. For this purpose, we
derived a series of algorithms corresponding to four SCF’s,
namely DNS, CSR, CSC and COO.

The remainder of the paper is organized as follows. In
section II, a very brief survey on SCF’s is given. Four SCF’s
being chosen, Section III is devoted to a detailed description of
two successive sets of algorithms for DSMP where the first
involves initial loop nest structured algorithms (LNSA), from
which we derive a second set of LNSA’s by applying specific
loop nest transformation techniques. Section IV is devoted to
an experimental study in order to validate our theoretical
contribution. Finally, we conclude our study and present some
perspectives in section V.

II. SPARSE MATRICES AND COMPRESSION FORMATS

Let us recall that a matrix is called sparse if it has a large
(resp. weak) number of zero (resp. nonzero) elements [5], [7].
Let NNZ be the number of nonzero elements. As previously
mentioned, processing sparse matrices requires using particular
SCF’s restricted to the nonzero elements.

A sparse matrix can have various structures according to
the locations of its nonzero elements. The structure of a sparse
matrix may be either regular e.g. triangular, diagonal, constant
band, etc; or irregular (called also general) e.g. variable band,
random, etc [5], [7], [14]. In this paper, we are interested in
four most used storage formats namely DNS, CSR, CSC and
COO.

We recall that storing a sparse matrix, say B of size N with
NNZ nonzero elements, the CSR data-structure consists of
three arrays B, JB and IB i.e. a real array B(1:NNZ) to store
row-wise the nonzero elements of B, an integer array
JB(1:NNZ) to store the column positions of the elements in the
real array B, and finally, a pointer array IB(1:n+1), the i-th
entry of which points to the beginning of the i-th row in arrays
B and JB [5] , [7].

The CSC is similar to CSR except that the nonzero
elements are stored column-wise in the first array, a row index
is stored for each element, and column pointers are stored. So,

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.87-94

ISSN 2356-5608

CSC is specified by three arrays, denoted B, IB and JB, where
IB stores the row indices of each nonzero, JB stores the index
of the elements in B which start a column of the matrix [7].

As to the COO format, it also consists of three arrays, each
of which is of size NNZ : an array B of floats containing the
nonzero elements, an array IB (resp. JB) of integers containing
their row (resp. column) indices [5].

III. THEORETICAL STUDY

It has to be firstly recalled, that in the SDMP case, denoted
C=AB where A is sparse and B is dense, the algorithms we
designed could be easily derived from known algorithms for
Sparse Matrix Dense Vector Product (SMDVP) algorithms [9].
As to the DSMP case (where A is dense and B is sparse) in
which we are interested, a direct approach will be adopted
since algorithms for the Dense Matrix Sparse Vector Product
(DMSVP) are of no use. Let us add that in both SDMP and
DSMP cases, 2N*NNZ flops are required, NNZ being the
number of nonzero elements of the sparse matrix and N its size
[9].

A. DNS Format

Given the standard algorithm, structured in a perfect 3-loop
nest denoted IJK, for computing the product of two square
dense matrices, we include some modifications consisting in
logical tests and scalar replacements [9]. The aim is to avoid
useless operations and reduce the number of accesses to matrix
B (see algorithm (a) below). Clearly, five other versions may
be derived by applying the loop interchange (LI) technique i.e.
IKJ, KJI, KIJ, JKI, JIK. This transformation has an impact on
data locality and may modify the loop nest body kernel (see
Table I, where R is for Row and C for Column) [3], [6], [9].

Considering the initial version IJK and since the logical test
is done on element B(k,j), we’ll keep both JKI (see algorithm
(b) below) and KJI versions and apply loop invariant motion
technique (LIM) [15] in order to reduce the number of logical
tests (see algorithm (c) below). Remark that the loop nest body
kernel is GAXPY-C in version JKI (resp. AXPY-C in version
KJI).

DNS_IJK

 DO i=1, N

 DO j=1, N

 DO k=1, N

 s=B(k,j)

 IF (s≠0) THEN

 C(i,j)=C(i,j) + A(i,k)*s

 ENDIF

 ENDDO

 ENDDO

 ENDDO

(a)

DNS_JKI

 DO j=1, N / first level /

 DO k=1, N / second level /

 DO i=1, N / third level /

 s=B(k,j)

 IF (s≠0) THEN

 C(i,j)=C(i,j) + A(i,k)*s

 ENDIF

 ENDDO

 ENDDO

 ENDDO

(b)

DNS_JKI_V1

 DO j=1, N

 DO k=1, N / second level /

 s=B(k,j)

 IF (s≠0) THEN

 DO i=1, N

 C(i,j)=C(i,j) + A(i,k)*s

 ENDDO

 ENDIF

 ENDDO

 ENDDO

(c)

Table I recapitulates a comparative study on the whole 6
versions including number of accesses, number of tests, access
mode and body kernel.

We can notice, from Table I, that both versions KJI_V1 and
JKI_V1 lead to less accesses and logical tests i.e. N

2
(resp.

NNZ) accesses to B (resp. A) instead of N
3
 (resp. N*NNZ) for

the four other versions.

Let us add that the JKI kernel is GAXPY-C i.e. same
column-wise access for the three matrices whereas the KJI
kernel is AXPY-C i.e. A and C are accessed column-wise and
B row-wise. So, in order to reduce cache misses thus improve
performances, the three matrices have to be processed
according to their storing mode (i.e. either row-wise such in a
C environment or column-wise such in a Fortran environment).
This storing-access mode fitting leads to better data locality
[16].

Consequently, versions KJI (A and C : column-wise access,
AXPY-C kernel) and JKI (A, B and C : column-wise access,
GAXPY-C kernel) are better in a Fortran environment. It must
be emphasized that in a C environment, the best version from a
data locality point of view is IKJ. Unfortunately, for this latter,
the LIM technique cannot be applied. To resume, since we
worked in a C environment (see section IV), we have two
versions (JKI and KJI) where storing and access modes conflict
but the number of logical tests (nlt) is minimized, and a third
version (IKJ) where the two modes fit but the nlt is maximized.

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.87-94

ISSN 2356-5608

B. CSR, CSC and COO versions

From the initial versions, denoted CSR_JKI, CSC_IJK and

COO_IK, we derived other versions by apply improving

techniques such as scalar replacement and loop interchange in

order to ensure better data locality (see (e), (f) and (g) .

CSR_JKI

 DO j=1,N

 ibj= IB(j); ibj1= IB(j+1)-1

 DO k=ibj,ibj1

 DO i=1,N

 C(i,JB(k))= C(i,JB(k))+A(i,j)*B(k)

 ENDDO

 ENDDO

 ENDDO (e)

CSC_IJK
 DO i=1,N

 DO j=1,N

 jbj= JB(j), jbj1= JB(j+1)-1

 DO k=jbj, jbj1

 C(i,j)=C(i,j)+A(i,IB(k))*B(k)

 ENDDO

 ENDDO

 ENDDO (f)

COO_KI

 DO k=1,NNZ

 jbk= JB(k), ibk=IB(k)

 DO i=1,N

 C(i,jbk)= C(i,jbk)+ A(i,ibk)*B(k)

 ENDDO

 ENDDO (g)

Given these three versions, the LI technique permitted to

derive five other versions i.e. CSR_JIK, CSR_IJK, CSC_JKI,

CSC_JIK and COO_KI (see Table II).

Hence, from three initial versions (see Table II), we derived
18 other i.e. 7 for CSR, 7 for CSC and 3 for COO (see Table
II). Notice that for any version, the number of accesses to
matrix A is equal to N*NNZ. It is easy to deduce from
comparative intra-SCF versions that CSR_IJK_V1,
CSC_IJK_V1 and COO_IK_V1 would (theoretically) be the
best in a C environment (row-wise storing). This is due to two
reasons since they perform (i) 2-3 (out of 3) row accesses to A,
B, and C and (ii) less accesses to these arrays. We precise that
in the COO format, we have chosen a row-wise storing for B.

IV. EXPERIMENTAL STUDY

In order to evaluate the practical performances of the
derived versions and validate our theoretical study, we
achieved a series of experimentations on a set of randomly
generated matrices of different sizes and densities. Indeed, we
have chosen 10 sizes (N) in the range 1000-10000 and 6
densities (D=5%, 10%, 20%, 30%, 40% and 50%). We think
that it is not necessary to process larger matrices, since we can
use block decomposition methods for the DSMP were we
reduce to submatrices (blocks) of lower sizes.

We experimented 8 versions of DNS, 7 of CSR, 7 of CSC
and 3 of COO. We also studied the impact of loop unrolling
[5], [9], [15], [17], when applied on DOT-R kernel for the two
formats DNS and CSC. We present in the following excerpts
of the results obtained for a density of 5% (similar results were
obtained with the other values). We precise that our
experiments have been achieved on an i7 work station (3.4
GHz, 4GB RAM, 64Ko L1 cache, 256 KO L2 cache and 8 MO

TABLE I. DNS RECAPITULATION TABLE

Version

A B C

Kernel Initial version V1 Access
mode

Initial version V1
Access mode

Access
mode #Access #Access #Access #Test #Access #Test

IJK N*NNZ N*NNZ R N³ N³ N³ N³ C R DOT-R

JIK N*NNZ N*NNZ R N³ N³ N³ N³ C C DOT-C

KIJ N*NNZ N*NNZ C N³ N³ N³ N³ R R AXPY-R

KJI N*NNZ NNZ C N³ N³ N² N² R C AXPY-C

IKJ N*NNZ N*NNZ R N³ N³ N³ N³ R R GAXPY-R

JKI N*NNZ NNZ C N³ N³ N² N² C C GAXPY-C

TABLE II. SCF’S COMPARISON

Format Version

A B C

Kernel
MA

a

Initial version (#Access) V1 (#Access)
MA

a
 MA

a

IB JB B IB JB B

CSR

JKI C 2N*NNZ N*NNZ N*NNZ 2N NNZ N*NNZ R C AXPY-C

JIK C 2N*NNZ N*NNZ N*NNZ 2N N*NNZ N*NNZ R R AXPY-R

IJK R 2N*NNZ N*NNZ N*NNZ 2N² N*NNZ N*NNZ R R GAXPY-R

CSC

IJK R N*NNZ 2N*NNZ N*NNZ N*NNZ 2N² N*NNZ C R DOT-R

JIK R N*NNZ 2N*NNZ N*NNZ N*NNZ 2N N*NNZ C C DOT-C

JKI C N*NNZ 2N*NNZ N*NNZ NNZ 2N NNZ C C GAXPY-C

COO
IK R N*NNZ 2N*NNZ N*NNZ N*NNZ N*NNZ N*NNZ R R GAXPY-R

KI C N*NNZ 2N*NNZ N*NNZ NNZ NNZ NNZ R C AXPY-C

a. AM : Access mode (Row/Column)

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.87-94

ISSN 2356-5608

Fig. 1. Running times for DNS versions

Fig. 2. Running times for CSR versions

Fig. 3. Running times for CSC versions

Fig. 4. Running times for COO versions

L3 cache) under openSUSE OS. Our algorithms were coded in C.

A. Intra-algorithm Comparison

1) DNS

Despite its GAXPY-C kernel, JKI_V1 version offers

minimal runtime (see Table I and Fig. 1). This is mainly due to

the minimization of the number of logical tests (N
2
) after loop

invariant motion (LIM) from loop level 3 to loop level 2.

Remark that for any density and any N, IKJ is about 62-85%

better than IJK in average. Moreover, JKI_V1 is about 35-75%

faster than JKI. In fact, this rate tends towards 32% when N

and D increase. Thus we can conclude that the observed

improvement is essentially due to LIM. Notice in addition that

IKJ version whose kernel is GAXPY-R., is not among the best

versions (it is ranked 4th to 6th in 60% of the tests) in spite of

its efficient data locality (row-wise storing in a C environment,

row-wise accesses).

2) CSR

 The experimentations (see Fig. 2) confirm the theoretical

results (see Table II). Indeed, IJK_V1 is the best since the

GAXPY-R kernel reduced cache misses. Thus, we have data

locality optimisation combined with code motion where we

minimized access to IB i.e. 2N*NNZ to 2N
2
.We should

however mention that the other versions, namely JIK_V1 and

JKI_V1, uses less accesses to IB i.e. 2N but they are not the

best since data locality has a more important impact that code

motion in this case.

3) CSC
The best results were obtained with IJK_V1. This may be

due to the reduced number of accesses to arrays JB and B as

previously mentioned (see Table II). Moreover, matrices A

and C are accessed row-wise (see Fig. 3).

4) COO

 IK is the best since it adopts a row-wise access to the

matrices i.e. GAXPY-R (see Table II and Fig. 4).

B. Loop unrolling technique

Given a (normalized) DO loop, loop unrolling (LpU)
consists in first choosing an integer u (called LpU factor),
duplicating the loop body u times, then iterating the loop with
a step equal to u (instead of 1) [9]. It is well known that LpU
reduces cache misses [5]. Thus, we applied it by choosing
values for u in the range [2 32] and obtained interesting results.
Indeed, the LpU technique has improved the algorithms on
which it was applied (see Fig. 5 and 6). As a matter of fact,
about an 8% improvement (in average) could be reached with
u=4 for version COO_IK (GAXPY-R kernel, see Table III and
Fig. 6). We precise that the parameter ratio used below is
defined as follows :

ratio=(1- run. time with unrolling /run. time without
unrolling)*100

 Concerning DNS, for version DNS_IJK_V1 (DOT-R

kernel), there is not a unique optimal LpU factor. As a matter

of fact, in 33.33% of tests, optimality is obtained with u=16

(see Table VI and Fig. 5).

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.87-94

ISSN 2356-5608

We can see that DNS_IJK_V1 version with unrolling
which is more efficient than without (see Fig. 5) still remains
less efficient than DNS_JKI_V1. Moreover, JKI_V1 is about 6
times faster than IJK_V1 with unrolling for D=5%. This
improvement factor decreases in fact when D increases for
fixed N (it reaches 1.5 for D=50% and any N).

Regarding CSR, for CSR_IJK_V1 (GAXPY-R kernel), the
optimal unrolling factor is u=16 and induces, in average, a 10%
improvement (see Table IV and Fig. 6).

As for CSC, CSC_IJK_V1 (DOT-R kernel) induced about
a 43-46% improvement (in average). This was obtained with
u=24 (see Table V and Fig. 6).

TABLE III. UNROLLING IMPROVEMENT RATIOS (%) FOR COO VERSIONS

(DENSITY=5%)

N u=2 u=4 u=8 u=12 u=16 u=20

1000 0.00 0.00 0.00 0.00 0.00 0.00

2000 0.00 50.00 50.00 50.00 50.00 50.00

3000 0.00 14.29 0.00 0.00 0.00 0.00

4000 5.56 11.11 11.11 5.56 11.11 11.11

5000 5.71 8.57 5.71 5.71 5.71 5.71

6000 4.92 8.20 6.56 6.56 6.56 6.56

7000 5.10 9.18 7.14 6.12 6.12 6.12

8000 6.21 9.66 7.59 6.90 6.21 6.21

9000 5.42 8.37 7.39 6.40 6.40 6.40

10000 5.32 8.51 7.45 6.38 6.03 6.03

TABLE IV. UNROLLING IMPROVEMENT RATIOS (%) FOR CSR VERSIONS

(DENSITY=5%)

TABLE V. UNROLLING IMPROVEMENT RATIOS (%) FOR CSC VERSIONS

(DENSITY=5%)

N u=2 u=4 u=8 u=12 u=16 u=20 u=24 u=28

1000 10.20 30.61 42.86 38.78 35.71 34.69 30.61 24.49

2000 13.40 30.93 40.21 40.72 42.53 41.24 40.89 35.31

3000 13.06 30.63 39.64 40.54 42.91 42.43 42.94 39.26

4000 13.21 29.92 38.84 39.81 42.26 41.98 42.30 40.87

5000 12.50 29.77 38.61 39.87 41.95 41.79 42.14 41.07

6000 12.45 29.83 38.68 40.09 42.26 42.15 42.53 41.86

7000 12.14 29.69 38.61 39.89 42.70 42.91 43.17 42.77

8000 12.46 30.59 39.69 40.79 43.45 43.45 43.82 43.50

9000 12.62 30.70 39.85 40.95 43.52 43.58 43.96 43.81

10000 12.27 30.52 39.53 40.85 43.21 43.29 43.68 43.60

TABLE VI. UNROLLING IMPROVEMENT RATIOS (%) FOR DNS VERSIONS

N D u=4 u=8 u=12 u=16 u=20 u=24

1000

5%

-3.50 3.00 3.25 4.00 3.75 1.75

2000 5.52 12.73 7.52 14.89 14.61 13.59

3000 8.79 7.22 14.98 15.60 15.47 14.79

4000 13.05 13.89 14.44 15.12 14.90 14.12

5000 15.03 13.02 13.49 14.27 14.18 13.62

6000 9.48 12.54 12.96 13.87 13.36 13.14

7000 10.13 12.70 13.18 14.29 13.98 15.70

8000 36.34 37.68 37.92 38.31 38.06 37.67

9000 17.98 19.98 20.02 20.81 20.74 20.49

10000 14.72 16.38 16.73 17.36 17.14 16.64

1000

50%

6.45 5.55 7.36 6.55 5.45 2.55

2000 8.37 9.55 8.88 10.20 9.48 6.75

3000 30.96 29.29 32.06 31.44 30.73 28.40

4000 10.81 8.87 10.54 9.95 9.38 6.66

5000 13.52 7.90 9.75 9.05 8.38 5.61

6000 8.56 8.26 10.00 9.42 8.58 5.85

7000 8.11 7.60 9.51 8.62 8.11 5.87

8000 14.42 13.90 15.64 14.89 14.07 11.70

9000 9.09 8.54 10.02 9.32 8.81 6.04

10000 8.55 8.15 9.80 8.93 8.10 5.54

First Rang (%) 31.67 1.67 28.33 33.33 1.67 3.33

First Rank (%) above corresponds to the number of times
(%) the corresponding version was first ranked. For instance,
33.33 in column u=16 means that for u=16, we obtained the
best results in 33.33% of the 60 cases i.e. 20/60.

Concerning the behaviors of DNS and CSC algorithms
according to the unrolling factor, we note that LpU technique
significantly improved the performance but not so much as far
as CSR and COO algorithms are concerned. In fact, DNS and
CSC algorithms use DOT kernel while the two others use
GAXPY kernel. When applying LpU technique with DOT
kernel, the loop body corresponds to an accumulation in the
same element of the matrix (see (h) below), whereas with
GAXPY kernel, it is a set of assignments of different elements
of the matrix (see (i) below).

CSC_IJK_u=4 DOT Kernel

 DO i=1,N

 DO j=1,N

 jbj= JB(j), jbj1= JB(j+1)-1

 m= (jbj1-jbj+1) mod 4 ; ne=jbj1-m ;

 DO k=jbj, ne,4
 C(i,j)=C(i,j)+A(i,IB(k))*B(k)+A(i,IB(k+1))*B(k+1)

+A(i,IB(k+2))*B(k+2)+A(i,IB(k+3))*B(k+3)

 ENDDO

 DO k=ne+1, jbj1

 C(i,j)=C(i,j)+A(i,IB(k))*B(k)

 ENDDO

 ENDDO

 ENDDO

(h)

N u=2 u=4 u=8 u=12 u=16 u=20

4000 -6.25 6.25 6.25 6.25 6.25 6.25

5000 -3.13 3.13 9.38 6.25 9.38 9.38

6000 -1.79 5.36 8.93 8.93 8.93 8.93

7000 -1.11 5.56 8.89 8.89 10.00 8.89

8000 -1.52 5.30 9.09 8.33 9.85 9.09

9000 -1.60 4.79 8.51 7.98 9.57 8.51

10000 -1.54 5.00 8.46 8.46 9.62 9.23

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.87-94

ISSN 2356-5608

Fig. 7 . Ratio where D=50 % for the optimal

version of each format

COO_IK_u=4 GAXPY Kernel
 DO i=1,N

 m=NNZ mod 4 ; ne=NNZ-m

 DO k=1,ne,4

 C(i, JB(k))= C(i, JB(k))+A(i, IB(k))*B(k)

 C(i,JB(k+1))=C(i,JB(k+1))+A(i,IB(k+1))*B(k+1)

 C(i,JB(k+2))=C(i,JB(k+2))+A(i,IB(k+2))*B(k+2)

 C(i,JB(k+3))=C(i,JB(k+3))+A(i,IB(k+3))*B(k+3)

 ENDDO

 DO k=ne+1,NNZ

 C(i,JB(k))=C(i,JB(k))+A(i,IB(k))*B(k)

 ENDDO

 ENDDO

(i)

Fig.s and

C. Inter-algorithms comparison

1) Without unrolling

Before applying the LpU technique, two versions shared

the first rank i.e. CSR-IJK_V1 (GAXPY-R kernel) and CSC-

IJK_V1 (DOT-R kernel). Indeed, CSC-IJK_V1 (resp. CSR-

IJK_V1) was the first in 55% (resp. 45%) cases. In fact, for

low density (5%, 10%, 20%) CSR-IJK_V1 is the best whereas

for higher densities (30%, 40%, 50%) CSC-IJK_V1 becomes

better (see Table VII). Fig. 7 depicts the improvement ratios in

terms of D for D=50% where ratio=(1-run_opt/run_v)*100,

run_opt (resp. run_v) being the running time of version

CSC_JIK_V1 (resp. the running time of any other version).

A negative ratio means that run.time of CSC_JIK_V1 is larger

than the other (i.e. CSR-IJK_V1 run.time is better).

We remark that CSC is followed by CSR, then COO and

DNS. We can see that runtimes given by CSC version and CSR

version are very close. In fact, in average, version CSC-

IJK_V1 is 1-2% better than the best CSR-IJK_V1 (for high

density), 6-12% better than the best COO version (i.e. COO-

IK), and more than 50% better than the best DNS version i.e.

DNS-JKI_V1 (see Fig. 8). Notice that the reduction of the

number of logical tests (from N
3
 to N

2
) did not improve so

much DNS-JKI_V1 since it was not associated to optimal data

locality (row-wise).

TABLE VII. RATIO FOR THE OPTIMAL VERSION OF EACH FORMAT

2) After unrolling

By applying the LpU technique, we can notice that

COO_IK with unrolling factor u=4 is quite similar to

CSR_IJK_V1 for low densities (D=5%). However, an 8-9%

improvement could be obtained for u=16 by CSR_IJK_V1. On

the other hand, CSC_IJK_V1_u=24 superseded

CSR_IJK_V1_u=16.

Consequently, the ranking (best to worst) now is

CSC_IJK_V1 (u=24), CSR_IJK_V1(u=16), COO_IK (u=4),

N D (%) CSR_IJK_V1 COO_IK DNS_JKI_V1

9000 5 -1.82 7.57 72.37

9000 10 -1.27 6.50 69.34

9000 20 0.04 8.01 63.43

9000 30 0.89 9.96 57.99

9000 40 1.50 10.58 52.92

9000 50 2.04 11.21 48.36

10000 5 -1.55 6.58 73.78

10000 10 -1.02 6.69 70.70

10000 20 -0.04 8.37 64.96

10000 30 0.74 9.86 59.15

10000 40 1.54 10.78 54.54

10000 50 1.97 11.39 50.26

Fig. 5 . Running times for DNS with Loop unrolling

Fig. 6 . Running times for CSR, CSC and COO

with Loop unrolling

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014, pp.87-94

ISSN 2356-5608

Fig. 8 . Ratio where D=5% for the optimal version

DNS_JKI_V1. In fact, in average, CSC_IJK_V1 (u=24), is 34-

37% better than CSR_IKJ_V1 (u=16), 36-42% better than

COO_IK (u=4) and 80-85% (in average) better than

DNS_JKI_V1 (see Fig. 8).

V. CONCLUSION

In this paper, we studied several dense-sparse matrix

product algorithms for four compressing formats (DNS, CSR,

CSC and COO). Various optimisation techniques have been

applied and led to interesting improvements. The version

corresponding to the CSC format, namely CSC_IJK_V1

(u=24), once optimised gave the best results and was followed

by versions corresponding to successively formats CSR and

COO, DNS.

Our work induces some interesting points we intend to

study in the near future. We may cite the following :

• Extension of our work by studying other regular and
irregular SCF’s

• Comparison of SDMP and DSMP algorithms in order
to deduce an adequate version for any kind of matrix
product

• Study of the general case of sparse-sparse matrix
product (SSMP)

• Study the sparse matrix chain product problem

• Parallelisation of SDMP and DSMP algorithms.

REFERENCES

[1] A. Buluç & J. R. Gilbert, “Challenges and advances in parallel sparse
matrix-matrix multiplication”. In Proc of ICPP’08, pp. 503-510,
Portland, Oregon, USA, 2008.

[2] T. A. Davis & Y. F. Hu, “The university of Florida sparse matrix
collection”, ACM Transactions on Mathematical Software, vol.38, N.1,
pp. 1-25, 2011.

[3] E. Garcia, J. L. L. Pey, T. Juan, T. Lang & J. J. Navarro, “Block
algorithms to speed up the sparse matrix by dense matrix multiplication
on high performance worstations”, Tech. Rep. No. UPC-DAC-1995-3,
University Polytechnics of Catalunya, Barcelona, Spain, 1995.

[4] F. G. Gustavson, “Two fast algorithms for sparse matrices:
multiplication and permuted transposition”, ACM Transactions on
Mathematical Software, vol. 4, N. 3, pp. 250-269, 1978.

[5] O. Hamdi-Larbi, N. Emad & Z. Mahjoub, “On sparse matrix-vector
product optimization”, In AICCSA’05, Cairo, Egypt, 2005.

[6] P. D. Sulatycke & K. Ghose, “Caching–efficient multithreaded fast
multiplication of sparse matrices”, In Proc. of the 12th. Int. parallel
processing symposium on international parallel processing symposium,
pp. 117-123, Orlando, FL, USA, 1998.

[7] Y. Saad, “Iterative methods for sparse linear systems”, 2nd ed, SIAM
Press, 2003.

[8] M. Bader & A. Heinecke, “Cache oblivious dense and sparse matrix
multiplication based on Peano curves”. In Proc. of the PARA 08,
Lecture Notes in Computer Science, 6126/6127, 2008. From:
https://para08.idi.ntnu.no/docs/submission_155.pdf

[9] S. Ezouaoui, Z. Mahjoub, L. Mendili & S. Selmi, “Performance
evaluation of algorithms for sparse-dense matrix product”, Proceedings
of the International MultiConference of Engineers and Computer
Scientists 2013, pp. 257-262, Kowloon, Hong Kong, 2013. From:
http://www.iaeng.org/publication/IMECS2013/IMECS2013_pp257-
262.pdf

[10] G. Greiner & R. Jacob, “The I/O complexity of sparse matrix dense
matrix multiplication”, LATIN 2010: Theoretical Informatics, in Lecture
Notes in Computer Science 2010, 6034, pp. 143-156, Oaxaca, Mexico,
2010.

[11] G.W. Howell, ““ Wide or Tall” and “Sparse matrix dense matrix”
multiplications”, In Proc. HPC '11, Proceedings of the 19th High
Performance Computing Symposia, pp. 159-165, Boston, MA, USA,
2011.

[12] F. Ben Charrada, S. Ezouaoui, & Z. Mahjoub, “Greedy algorithms for
optimal computing of matrix chain products involving square dense and
triangular matrices”, RAIRO - OR, vol. 45, N. 1, 1-16, 2011.

[13] E. Cohen, “Structure prediction and computation of sparse matrix
products”, Journal of Combinatorial Optimization, vol. 2, N. 4, pp. 307-
332, 1998.

[14] I. S. Duff, A. M. Erisman & J. K. Reid, “Direct methods for sparse
matrices”, Oxford Science Publications, 1992.

[15] A. V. Aho, M. S. Lam, R. Sethi & J. D. Ullman, “Compilers: Principles,
techniques, & tools”, 2nd ed., Pearson Addison Wesley, 2007.

[16] V. Loechner, B. Meister & P. Clauss, “Precise data locality optimization
of nested loops”, The Journal of Supercomputing, vol. 21, N. 1, pp.37-
76, 2002.

[17] J. J. Dongarra & A. R. Hinds, “Unrolling loops in FORTRAN”,
Software-Practice and Experience, vol. 9, N. 3, pp. 219-226, 1979.

