
FPGA Implementation of Real-Time System for

Detection of Human Activity
Kamal Sehairi

#1
, Cherrad Benbouchama

 *2
, Chouireb Fatima

#3
, Kobzili El Houari

*4

#
Laboratoire LTSS, Université Amar Telidji Laghouat

Route de Ghardaia, Laghouat, Algérie 03000
1
sehairikamel@yahoo.fr, k.sehairi@lagh-univ.dz

3
chouirebfatima@yahoo.fr

*
Laboratoire LMR, École Militaire Polytechnique

Borj El Bahri, Alger, Algérie
2
ben_cherrad@yahoo.fr

4
kobzili_elhouari@yahoo.fr

Abstract— This paper proposes a PixelStreams-based FPGA

implementation of a real-time system that can detect and

recognize human activity using Handel-C, including all the

stages, i.e., capture, processing, and display, using DK IDE of

Mentor Graphics. The targeted circuit is an XC2V1000 FPGA

embedded on Agility’s RC200E board. The PixelStreams-based

implementation was successfully realized and validated for real-

time motion detection and recognition.

Keywords— detection and recognition, FPGA, real-time

implementation, High level synthesis, video surveillance.

I. INTRODUCTION

In modern society, there is a growing need for technologies

such as video surveillance and access control to detect and

identify human and vehicle motion in various situations.

Intelligent video surveillance attempts to assist human

operators when the number of cameras exceeds the operators’

capability to monitor them and alerts the operators when

abnormal activity is detected. Most intelligent video

surveillance systems are designed to detect and recognize

human activity. It is difficult to define abnormal activity

because there are many behaviors that can represent such

activity. Examples include a person entering a subway

channel, abandonment of a package, a car running in the

opposite direction, and people fighting or rioting. However, it

is possible not only to set criteria to detect abnormal activity

but also to zoom in on the relevant area to facilitate the work

of the operator.

In general, an intelligent video surveillance system has

three major stages: detection, classification, and activity

recognition [1]. Over the years, various methods have been

developed to deal with issues in each stage.

II. RELATED WORK

Many methods for motion detection have already been

proposed. They have been classified [1]–[3] into three major

categories: background subtraction, [4],[5] temporal

differencing [6] , [7] and optical flow[8],[9]. Further, motion

detection methods have been recently classified into matching

methods, energy-based methods, and gradient methods. The

aim of the motion detection stage is to detect regions

corresponding to moving objects such as vehicles and human

beings. It is usually linked to the classification stage in order

to identify moving objects. There are two main types of

approaches for moving object classification:[1],[2],[10] shape-

based identification and motion-based classification. Different

descriptions of shape information of motion regions such as

representations of points, boxes, silhouettes, and blobs are

available for classifying moving objects. For example, Lipton

et al.[11] used the dispersedness and area of image blobs as

classification metrics to classify all moving object blobs into

human beings, vehicles, and clutter. Further, Ekinci et al.[12]

used silhouette-based shape representation to distinguish

humans from other moving objects, and the skeletonization

method to recognize actions. In motion-based identification,

we are more interested in detecting periodic, non-rigid

articulated human motion . For example, Ran et al.[13]

examined the periodic gait of pedestrians in order to track and

classify it. The final stage of surveillance involves behavior

understanding and activity recognition. Various techniques for

this purpose have been categorized into seven types: dynamic

time warping algorithms, finite state machines, hidden

Markov models, time-delay neural networks, syntactic

techniques, non-deterministic finite automata, and self-

organizing neural networks. Such a wide variety of techniques

is attributable to the complexity of the problems and the

extensive research conducted in this field. The computational

complexity of these methods and the massive amount of

information obtained from video streams makes it difficult to

achieve real-time performance on a general-purpose CPU or

DSP. There are four main architectural approaches for

overcoming this challenge: application-specific integrated

circuits (ASICs) and field-programmable gate arrays (FPGAs),

parallel computing, GPUs, and multiprocessor architectures.

Evolving high-density FPGA architectures, such as those with

embedded multipliers, memory blocks, and high I/O

(input/output) pin counts, are ideal solutions for video

processing applications [14]. In the field of image and video

processing, there are many FPGA implementations for motion

segmentation and tracking. For example, Menezes et al. [5]

used background subtraction to detect vehicles in motion,

targeting Altera’s Cyclone II FPGA with Quartus II software.

Another similar study on road traffic detection [15] adopted

the sum of absolute differences (SAD) algorithm,

PC
Typewriter
ISSN: 2356-5608

PC
Typewriter
Proceedings of Engineering & Technology (PET)

PC
Typewriter
pp. 52-59

PC
Typewriter
Copyright IPCO-2016

mailto:sehairikamel@yahoo.fr
mailto:2ben_cherrad@yahoo.fr
User1
Typewritten Text
3rd International Conference on Automation, Control, Engineering and Computer Science (ACECS-2016)

User1
Typewritten Text

User1
Typewritten Text

User1
Typewritten Text

User1
Typewritten Text

User1
Typewritten Text

User1
Typewritten Text

implemented on Agility’s RC300E board using an XC2V6000

FPGA with Handel-C and the PixelStreams library of

Agility’s DK Design Suite. Other methods for motion

detection such as optical flow have been successfully

implemented [8],[9] on an FPGA. For example, Ishii et al.[8]

optimized an optical flow algorithm to process 1000 frames

per second. The algorithm was implemented on a Virtex-II

Pro FPGA.

Many video surveillance systems have been developed for

behavior change detection. For example, in the framework of

ADVISOR, a video surveillance system for metro stations, a

finite state machine (with scenarios) [16] is used to define

suspicious behavior (jumping over a barrier, overcrowding,

fighting, etc.). The W4 system [17] is a system for human

activity recognition that has been implemented on parallel

processors with a resolution of 320×240. This system can

detect objects carried by people and track body parts using

background detection and silhouettes. Bremond and Morioni

[18] extracted the features of moving vehicles to detect their

behaviors by setting various scenario states (toward an

endpoint, stop point, change in direction, etc.); the application

employs aerial grayscale images.

The objective of this study is to implement different

applications of behavior change detection and moving object

recognition based on motion analysis and the parameters of

moving objects. Such applications include velocity change

detection, direction change detection, and posture change

detection. The results can be displayed in the RGB format

using chains of parallelized sub-blocks. We used Handel-C

[19] and the PixelStreams library [20] of Agility’s DK Design

Suite [21] to simplify the acquisition and display stages. An

RC200E board with an embedded Virtex-II XC2V1000 FPGA

[22] was employed for the implementation.

III. OUTLINE OF THE ALGORITHM

A. Detection Algorithm

We choose to implement the delta frame method for three

reasons: its adaptability to changes in luminance, its simplicity,

and its low consumption of hardware resources. This method

determines the absolute difference between two successive

images, and it is executed in two stages: temporal difference

and segmentation.

1) Temporal difference

In this stage, we determine the absolute difference between

the previous frame and the current frame as follows.

, 1 1

(,)
(,) (,) (,) (,) (1)t t t t

dI x y
x y x y I x y I x y

dt
      

where (,)x y is the difference between It(x,y) (i.e., the

intensity of pixel (x,y) at moment t) and It-1(x,y) (i.e., the

intensity of pixel (x,y) at moment t-1).

2) Segmentation

In this stage, significant temporal changes are detected by

means of thresholding:

0 if (x,y) Th
(,) (2)

1 otherwise
x y

 
  



This operation yields a binary card that indicates zones of

significant variations in brightness from one image to the

other.

B. Feature Extraction and Behavior Change Detection

In this study, simple behavior change detection refers to

motion that can be caused by abrupt movements that might

represent suspicious actions. To define these actions, we use

the parameters of the objects in motion, such as the center of

gravity, width, and length. In general, the actions detected by

this method are simple yet useful in video surveillance. For

example, velocity change detection is useful for detecting a

criminal who is being chased by the police or a car that

exceeds the speed limit; direction change detection is useful

for detecting a car that is moving in the wrong direction; and

posture change detection is useful for detecting a person who

bends to place or pick up an object.

Our implementation involves the following stages:

acquisition of the video signal, elimination of noise from the

input video signal, detection of moving regions, segmentation

for separating the moving objects, extraction of the object

parameters, classification of the moving objects, and

determining whether movements are suspicious.

1) Velocity change detection

We can detect suspicious behavior of a person from his/her

gait as well as his/her change in velocity near sensitive

locations such as banks, airports, and shopping centers. In

such cases, we can calculate the speed (in pixels/s) or

acceleration (in pixels/s
2
) of the suspect in the image space in

real time. There are several ways of representing this anomaly:

the most widely adopted method in the literature is the use of

a bounding box (a rectangle around the suspect).

It is easy to calculate the speed of a moving object. As soon

as the speed or acceleration of the object exceeds a certain

threshold of normality (predetermined experimentally or on

the basis of statistical studies), a bounding box appears around

the suspect. However, the issue that needs to be addressed is

the calculation of the speed in real-time circuits owing to the

absence of mathematical functions (such as square root), types

of data (integer or real values), and the object parameters on

which we base our calculation.

In general, the speed and acceleration are calculated as

follows:

         2 2(() ()) / (3)g g g gvelocity t x t x t dt y t y t dt dt     

       / (4)acceleration t velocity t velocity t dt dt  

where    x , yg gt t and    x , yg gt dt t dt  are the co-

ordinates of the center of gravity of the object at moments t

and t dt , respectively, dt=40ms in our case, and

 velocity t and  velocity t dt are the velocities of the

object at moments t and t dt , respectively.

2) Direction change detection

To determine the change in direction, we select parameters

that distinguish the object of interest, such as its center of

gravity, width, and length. In general, the co-ordinates of the

center of gravity can be used to determine whether the object

has changed its direction, i.e., whether it has moved rightward

or leftward depending on the position of the camera.

The change in direction along the x-axis is given by

   g g

0 The object did not change direction
x t x t dt (5)

0 The object changed direction


  



The change in direction along the y-axis is given by

   g g

0 The object did not change direction
y t y t dt (6)

0 The object changed direction


  



These techniques, which are based on the object

parameters, can be improved by integrating them with

advanced models such as finite state machines (FSMs).

IV. HARDWARE IMPLEMENTATION

Figure 2 shows the general outline of our FPGA

implementation.

Fig. 2 General outline of behavior change detection.

This general outline consists of four blocks: an acquisition

block, an analysis block, a display block, and an intermediate

block between the display block and the analysis block.

A. Acquisition Block

Acquisition is achieved using the standard camera

associated with the RC200E board. The video input processor,

Philips SAA7113H, acquires the frames in the PAL format at

a rate of 25 fps. The pixels are in the YCbCr format. Using the

PixelStreams library of Agility’s DK Design Suite, we split

the input video signal into two identical streams (see Fig. 3).

Fig. 3 Acquisition block.

 The first stream is fed to the display block and it is

converted into the RGB format to display the results on a

VGA display. The second stream is fed to the analysis block

and it is converted into the grayscale format to reduce (by

one-third) the amount of data to be processed.

B. Analysis Block

The analysis block consists of several stages. In the first

stage, we use inter-image subtraction (delta frames) and apply

thresholding to detect moving regions.

To obtain the delta frames, we start by splitting the video

signal in three channels (see Fig. 4). The first and second

channels are used to save the acquired image, creating a delay

cell. The image I(t-1) is recorded in the memory. The third

channel is used to acquire the actual frame at moment t. Then,

the two image streams are synchronized and fed to the

subtraction block. The subtraction block is a modified block

that takes the absolute result of subtraction and compares it

with a threshold. This function is realized using a macro. The

threshold value Th is fixed according to the luminosity of the

scene.

Fig. 4 Motion detection block.

The second stage of the analysis block involves statistical

analysis. In this stage, we search for the min and max values

along the x- and y-axes of the mobile regions (Fig. 5). In

general, this stage must be preceded by a filter for noise

reduction. We employed a morphological filter (e.g.,

alternating sequential filter, opening/closing filter) using the

PixelStreams library.

After calculating the min and max values along the two

axes, we determine the center of gravity of the detected object.

We calculate the sum of the pixel co-ordinates that have non-

zero values along the x- and y-axes, and we divide these

coordinate values by their sum. However, for our

implementation, it is better to avoid this division. Therefore,

we use the direct method. We subtract the max from the min

and divide the result by 2. Division by 2 is achieved by a

simple bit shift (right shift). Once the values minX, MaxX,

minY, MaxY, and XG, YG are obtained, we copy these values

into the behavior change detection block. Then, we reset these

values to zero.

Fig. 5 frame difference and calculation of min and max values.

C. Behavior Change Detection Block

As stated in the previous section, the analysis block

provides the behavior change detection block with the

parameters of the moving objects. In this stage, we save the

values extracted from the first delta frame (xg(t-1), yg(t-1),

minx(t-1), MaxX(t-1), miny(t-1), MaxY(t-1)), and from the

second delta frame, we obtain the current values xg(t), yg(t),

minx(t), MaxX(t), miny(t), and MaxY(t). From these latter

results, we can calculate the width and length of the moving

object to classify the object as human, vehicle, or others, as in

our previous work [23]. Using the values extracted in two

different instants (t-1, t), we define the changes in behavior.

For velocity change detection, the speed and acceleration

are calculated using the two equations presented in Sec. 3.B.1.

However, we simplify these equations by calculating the

absolute differences between two moments (the previous and

current values). If the absolute difference exceeds a certain

threshold Vth, we assume that the velocity has changed, and

we copy the values of the center of gravity in the display

block in order to draw a rectangle around the object. Then, the

current values are saved as previous values.

Figure 7 shows this implementation and represents all the

stages realized.

Fig. 7 Hardware architecture for velocity change detection.

Direction change detection: To implement this application,

we follow the same stages as those used in velocity change

detection, except that the condition changes. We use the same

parameters, minX, MaxX, minY, and MaxY, in order to

guarantee that the object is entirely entered the scene. We

calculate the difference between minX1 and minX2, and

MaxX1 and MaxX2. If there is a change in sign, we assume

that the object has changed its direction. Otherwise, we

assume that the object has not changed its direction.

We can easily determine the direction of motion of an

object by applying the same concept as that described above.

However, in this case, it is impractical to compare the

differences between the previous values and the current values

with zero because the presence of a small or non-significant

movement (such as that of the arms) can cause false detection.

Therefore, to overcome this problem, we compare the

difference with a threshold Thd, which should not be very

large. Then, the values minX, MaxX, minY, and MaxY are

copied to the block that draws the bounding box.

We use two blocks for detection in two directions (a

different color for each direction of motion). In order to

minimize resource consumption, we used only one block for

drawing the bounding box by changing the parameters of

entry in our macro. In this macro, we added a parameter that

changes the color according to the direction of detected

motion (Fig. 8).

Fig. 8 Hardware architecture for direction change detection.

Posture change detection: We are interested in such an

application to detect a person who leans (bends) to place or

pick up something, especially in sensitive locations (e.g.,the

subways). In this case, we are interested in movements along

the y-axis of the image (up/down motion), and we use the

same architecture as that used in velocity change detection.

We calculate the difference between the previous and current

values of miny(t-1), MaxY(t-1), miny(t), MaxY(t).

If the difference between the previous and current values is

positive (negative), we assume that the person leans (rises),

and we copy the values minX, MaxX, minY, and MaxY to the

block that draws the bounding box and fix the color parameter

of the rectangle. We can add a warning message using the

PxsConsole filter of PixelStreams. As in the case of direction

change detection, it is better to use a threshold Thp to reduce

the occurrence of false detection due to small movements

along the y-axis. For such detections, we require a camera

whose front sight faces the scene.

Motion analysis: Here, we tried to collect all the above-

mentioned behaviors using a single program in order to

practically validate the system. To minimize resource

consumption, we considered our problem as a finite state

machine with several scenarios. The thresholds of detection

for each case were used to define and manage these various

scenarios, these values were obtained by tests. The differences

between the values of minX, MaxX, minY, and MaxY at

moments t and t-1 are denoted by ∆minx, ∆MaxX, ∆miny, and

∆MaxY, respectively.

In the first state, all the values are initialized (State 0); they

represent the initial state of each new inter-image difference.

In the second state (State 1), if the absolute values of ∆minx

and ∆MaxX are higher than VTh, we assume that the velocity

changes and we return to the initial state after copying the

values of the block to the bounding box filter. In the opposite

case, we go to the third state (State 2) and compare ∆minx and

∆MaxX with the threshold Thd. According to the result of this

comparison, we assume that a leftward or rightward

movement has occurred. Then, we return to the initial state.

Starting from this state, if the moving object accelerates, we

return to the second state of velocity change. For posture

change detection, the condition is related to the values of

∆miny and ∆MaxY (State 3). We can detect this behavior

from any state (e.g., a person runs and leans to collect

something). The following figure summarizes these states and

the possible scenarios.

Fig. 9 FSM of motion analysis.

D. Display Block

In this block, we call the macro PxsAnalyseAwaitUpdate,

which allows us to pause the display until an update occurs in

the analysis block. We obtain the values minX, MaxX, minY,

and MaxY; if there is a motion, we copy these values to the

bounding box filter to draw the rectangle. The values of the

center of gravity, Xg,Yg, are also copied to the PxsCursor

filter in order to draw a cross at the center of the moving

object. We can add a warning message, e.g., "Warning:

velocity change detection", by using the PxsConsole filter of

the PixelStreams library. Finally, the results are displayed in

the RGB format on a VGA display.

V. EXPERIMENTAL RESULTS

An RC200E board with an embedded Virtex-II XC2V1000

FPGA was used for our implementation. The language used

was Handel-C. The results for each behavior are summarized

in Tables 2–5:

TABLE 2 RESOURCE CONSUMPTION AND MAXIMUM FREQUENCY OF

IMPLEMENTATION FOR VELOCITY CHANGE DETECTION.

These tables specify the resource consumption and

maximal frequency of each implemented detection case for

PAL video with a resolution of 720×576.

In all these implementations, the results show that the two

main constraints, i.e., the resource limit of our FPGA and the

real-time aspect (40 ms/image), are well respected. We note

that the consumption of the CLB blocks increases in the case

of detection of multiple objects; this is caused by the

algorithm used to identify the number of objects in the scene.

We also note that the algorithm for motion analysis that

collects all the previous behaviors have been implemented on

our FPGA in real time, but it consumes nearly all of the CLB

resources (88%).

TABLE 3 RESOURCE CONSUMPTION AND MAXIMUM FREQUENCY OF

IMPLEMENTATION FOR DIRECTION CHANGE DETECTION.

TABLE 4 RESOURCE CONSUMPTION AND MAXIMUM FREQUENCY OF

IMPLEMENTATION FOR UP/DOWN MOTION DETECTION.

TABLE 5 RESOURCE CONSUMPTION AND MAXIMUM FREQUENCY OF

IMPLEMENTATION FOR MOTION ANALYSIS.

The following figures show the results of all these

implementations. Each behavior is represented by a different

color, and a warning message is added below the scenes.

Fig. 10 Results of velocity change detection in the case of one object.

Figure 10 shows the results of velocity change detection in

the case of one object. In Fig. 10(a), as soon as the object

decreases its speed, the rectangle disappears. In Fig. 10(b), as

soon as the object starts to run, a rectangle appears around it.

Figure 11 shows the results of velocity change detection in

the case of two objects. As soon as the objects start running, a

rectangle appears. We note that in the case of occlusion, the

algorithm considers both objects as a single object.

Fig. 11 Results of velocity change detection in the case of two objects.

Figure 12 shows the results of direction change detection.

Right to left movement, represented by the blue rectangle, and

left to right movement, represented by the red rectangle. The

figures also show warning messages below the images.

Fig. 12 Direction change detection.

Figure 13 shows the results of posture change detection.

When the object leans to pick up something, it will be

detected. Up/down and down/up motion are represented in

different colors. A warning message is added in each case.

Fig. 13 Posture change detection: a) for one object, b) for two objects.

Figure 14 shows the results of collecting all the behaviors

using a single program. Motion to the right and left are

represented by red and blue rectangles, respectively. Further,

up/down and down/up motion are represented by turquoise

and yellow rectangles, respectively. Finally, velocity change is

represented by a black rectangle. In every case, a warning

message is displayed.

Fig. 14 Motion analysis.

VI. CONCLUSIONS

We presented in this paper an implementation approach for

object detection and behavior recognition based on motion

analysis and sudden movements. We exploited the hardware

part, which offers the possibility of handling large amounts of

data and performing calculations for image processing via

parallel processing, guaranteed by the use of the PixelStreams

library of Agility’s DK Design Suite. Further, we tried to

improve our architecture by collecting all the different

behaviors using a single program. In addition, we added

warning messages using the PxsConsole filter. Thus, we

successfully implemented different algorithms that can

recognize objects in motion and detect changes in velocity,

direction, and posture in real time. The results showed that our

approach achieves good recognition and detection of these

behaviors, in indoor areas. However, in outdoor areas, the

results are less promising owing to the simple motion

detection algorithm used; this problem is aggravated by

occlusion due to overlapping movements of different persons.

Therefore, in the future, we will try to use improved motion

detection algorithm and learning methods to detect behavior

changes in crowded environments, using a newer architecture.

ACKNOWLEDGMENT

We would like to thank Pr. Larbes Cherif and Dr.

Benkouider Fatiha for their insightful comments.

REFERENCES

[1] L.Wang, W. Hu, and T. Tan, “Recent developments in human motion
analysis”, Pattern Recogn, 36 (3), 585-601, (2003).

[2] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual

surveillance of object motion and behaviors”, IEEE T Syst Man Cyb,
34 (3), (2004).

[3] T. Ko, “A survey on behavior analysis in video surveillance for

homeland security applications”, AIPR 2008, Washington, DC, USA,
2008.

[4] M. Piccardi “Background subtraction techniques: a review”, IEEE

SMC, 4, 3099-3104, (2004).
[5] G.G.S. Menezes and A.G. Silva-Filho, “Motion detection of vehicles

based on FPGA”, SPL VI Southern, 151-154, (2010).
[6] W.Shuigen, C.Zhen, L.Ming, and Z.Liang, “An improved method of

motion detection based on temporal difference”, ISA 2009, 1-4, (2009).

[7] Widyawan, M.I. Zul, and L.E. Nugroho, “Adaptive motion detection
algorithm using frame differences and dynamic template matching

method”, URAI 2012, 236-239, (2012).

[8] I. Ishii, T. Taniguchi, K. Yamamoto, and T. Takaki, “1000 fps real-
time optical flow detection system”, Proc. SPIE 7538, 75380M (2010).

[9] J. Diaz, E. Ros, F. Pelayo, E.M. Ortigosa, and S. Mota, “FPGA-based

real-time optical-flow system”, IEEE T Circ Syst Vid, 16, (2), 274-279,
(2006).

[10] M. Paul, S. Haque, and S. Chakraborty, “Human detection in

surveillance videos and its applications - a review”, EURASIP JASP,
Springer International Publishing, (2013).

[11] A.J. Lipton, H. Fujiyoshi, and R.S. Patil, “Moving target classification

and tracking from real-time video”, WACV 98, 8-14, (1998).

[12] M. Ekinci and E. Gedikli, “Silhouette based human motion detection
and analysis for real-time automated video surveillance”, Turk. J. Elec.

Eng. & Comp. Sci., 13, 199-229 (2005).

[13] Y. Ran, I. Weiss, Q. Zheng, and L. S. Davis, “Pedestrian detection via

periodic motion analysis”, Int J Comput Vision, 71 (2), 143-160,

(2007).

[14] K. Ratnayake and A. Amer, “An FPGA-based implementation of
spatio-temporal object segmentation”, Proc. ICIP, 3265-3268, (2006).

[15] M.Gorgon, P.Pawlik, M. Jablonski, and J. Przybylo, “FPGA-based

road traffic videodetector”, DSD 2007.
[16] F. Cupillard , A. Avanzi , F. Bremond, and M. Thonnat, “Video

understanding for metro surveillance”, ICNSC 2004.

[17] I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: Real-time
surveillance of people and their activities”, IEEE T Pattern Anal, 22 (8),

809-830 (2000).

[18] F. Bremond and G. Medioni, “Scenario recognition in airborne video
imagery”, IUW 1998, 211-216, (1998).

[19] “DK5 Handel-C language reference manual”, Agility 2007.

[20] “PixelStreams Manual”, Mentor Graphics Agility (2015),
http://www.mentor.com/products/fpga/handel-c/pixelstreams/

[21] “Agility DK User Manual”, Mentor Graphics Agility (2015),

http://www.mentor.com/products/fpga/handel-c/dk-design-suite/
[22] “Virtex II 1.5v Field-Programmable Gate Arrays”, Data sheet, Xilinx

Corporation, 2001.

[23] K. Sehairi, C. Benbouchama, and F. Chouireb, "Real Time
Implementation on FPGA of Moving Objects Detection and

Classification," International Journal of Circuits, Systems and Signal

Processing, 9, 160-167, 2015.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5473892
http://www.mentor.com/products/fpga/handel-c/pixelstreams/
http://www.mentor.com/products/fpga/handel-c/dk-design-suite/

