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Abstract— This paper proposes a PixelStreams-based FPGA 

implementation of a real-time system that can detect and 

recognize human activity using Handel-C, including all the 

stages, i.e., capture, processing, and display, using DK IDE of 

Mentor Graphics. The targeted circuit is an XC2V1000 FPGA 

embedded on Agility’s RC200E board. The PixelStreams-based 

implementation was successfully realized and validated for real-

time motion detection and recognition. 

 

Keywords— detection and recognition, FPGA, real-time 
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I. INTRODUCTION 

In modern society, there is a growing need for technologies 

such as video surveillance and access control to detect and 

identify human and vehicle motion in various situations. 

Intelligent video surveillance attempts to assist human 

operators when the number of cameras exceeds the operators’ 

capability to monitor them and alerts the operators when 

abnormal activity is detected. Most intelligent video 

surveillance systems are designed to detect and recognize 

human activity. It is difficult to define abnormal activity 

because there are many behaviors that can represent such 

activity. Examples include a person entering a subway 

channel, abandonment of a package, a car running in the 

opposite direction, and people fighting or rioting. However, it 

is possible not only to set criteria to detect abnormal activity 

but also to zoom in on the relevant area to facilitate the work 

of the operator.  

In general, an intelligent video surveillance system has 

three major stages: detection, classification, and activity 

recognition [1]. Over the years, various methods have been 

developed to deal with issues in each stage. 

II. RELATED WORK 

Many methods for motion detection have already been 

proposed. They have been classified [1]–[3] into three major 

categories: background subtraction, [4],[5] temporal 

differencing [6] , [7] and optical flow[8],[9]. Further, motion 

detection methods have been recently classified into matching 

methods, energy-based methods, and gradient methods. The 

aim of the motion detection stage is to detect regions 

corresponding to moving objects such as vehicles and human 

beings. It is usually linked to the classification stage in order 

to identify moving objects. There are two main types of 

approaches for moving object classification:[1],[2],[10] shape-

based identification and motion-based classification. Different 

descriptions of shape information of motion regions such as 

representations of points, boxes, silhouettes, and blobs are 

available for classifying moving objects. For example, Lipton 

et al.[11] used the dispersedness and area of image blobs as 

classification metrics to classify all moving object blobs into 

human beings, vehicles, and clutter. Further, Ekinci et al.[12] 

used silhouette-based shape representation to distinguish 

humans from other moving objects, and the skeletonization 

method to recognize actions. In motion-based identification, 

we are more interested in detecting periodic, non-rigid 

articulated human motion . For example, Ran et al.[13] 

examined the periodic gait of pedestrians in order to track and 

classify it. The final stage of surveillance involves behavior 

understanding and activity recognition. Various techniques for 

this purpose have been categorized into seven types: dynamic 

time warping algorithms, finite state machines, hidden 

Markov models, time-delay neural networks, syntactic 

techniques, non-deterministic finite automata, and self-

organizing neural networks. Such a wide variety of techniques 

is attributable to the complexity of the problems and the 

extensive research conducted in this field. The computational 

complexity of these methods and the massive amount of 

information obtained from video streams makes it difficult to 

achieve real-time performance on a general-purpose CPU or 

DSP. There are four main architectural approaches for 

overcoming this challenge: application-specific integrated 

circuits (ASICs) and field-programmable gate arrays (FPGAs), 

parallel computing, GPUs, and multiprocessor architectures. 

Evolving high-density FPGA architectures, such as those with 

embedded multipliers, memory blocks, and high I/O 

(input/output) pin counts, are ideal solutions for video 

processing applications [14]. In the field of image and video 

processing, there are many FPGA implementations for motion 

segmentation and tracking. For example, Menezes et al. [5] 

used background subtraction to detect vehicles in motion, 

targeting Altera’s Cyclone II FPGA with Quartus II software. 

Another similar study on road traffic detection [15] adopted 

the sum of absolute differences (SAD) algorithm, 
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implemented on Agility’s RC300E board using an XC2V6000 

FPGA with Handel-C and the PixelStreams library of 

Agility’s DK Design Suite. Other methods for motion 

detection such as optical flow have been successfully 

implemented [8],[9] on an FPGA. For example, Ishii et al.[8] 

optimized an optical flow algorithm to process 1000 frames 

per second. The algorithm was implemented on a Virtex-II 

Pro FPGA. 

Many video surveillance systems have been developed for 

behavior change detection. For example, in the framework of 

ADVISOR, a video surveillance system for metro stations, a 

finite state machine (with scenarios) [16] is used to define 

suspicious behavior (jumping over a barrier, overcrowding, 

fighting, etc.). The W4 system [17] is a system for human 

activity recognition that has been implemented on parallel 

processors with a resolution of 320×240. This system can 

detect objects carried by people and track body parts using 

background detection and silhouettes. Bremond and Morioni 

[18] extracted the features of moving vehicles to detect their 

behaviors by setting various scenario states (toward an 

endpoint, stop point, change in direction, etc.); the application 

employs aerial grayscale images. 

The objective of this study is to implement different 

applications of behavior change detection and moving object 

recognition based on motion analysis and the parameters of 

moving objects. Such applications include velocity change 

detection, direction change detection, and posture change 

detection. The results can be displayed in the RGB format 

using chains of parallelized sub-blocks. We used Handel-C 

[19] and the PixelStreams library [20] of Agility’s DK Design 

Suite [21] to simplify the acquisition and display stages. An 

RC200E board with an embedded Virtex-II XC2V1000 FPGA 

[22] was employed for the implementation. 

III. OUTLINE OF THE ALGORITHM 

A. Detection Algorithm 

We choose to implement the delta frame method for three 

reasons: its adaptability to changes in luminance, its simplicity, 

and its low consumption of hardware resources. This method 

determines the absolute difference between two successive 

images, and it is executed in two stages: temporal difference 

and segmentation. 

1)  Temporal difference 

In this stage, we determine the absolute difference between 

the previous frame and the current frame as follows. 

, 1 1

( , )
( , ) ( , ) ( , ) ( , ) (1)t t t t

dI x y
x y x y I x y I x y

dt
        

where ( , )x y is the difference between It(x,y) (i.e., the 

intensity of pixel (x,y) at moment t) and It-1(x,y) (i.e., the 

intensity of pixel (x,y) at moment t-1). 

2)  Segmentation 

In this stage, significant temporal changes are detected by 

means of thresholding: 

0                 if (x,y) Th
( , )                   (2)

1                 otherwise
x y

 
  


 

This operation yields a binary card that indicates zones of 

significant variations in brightness from one image to the 

other. 

B. Feature Extraction and Behavior Change Detection 

In this study, simple behavior change detection refers to 

motion that can be caused by abrupt movements that might 

represent suspicious actions. To define these actions, we use 

the parameters of the objects in motion, such as the center of 

gravity, width, and length. In general, the actions detected by 

this method are simple yet useful in video surveillance. For 

example, velocity change detection is useful for detecting a 

criminal who is being chased by the police or a car that 

exceeds the speed limit; direction change detection is useful 

for detecting a car that is moving in the wrong direction; and 

posture change detection is useful for detecting a person who 

bends to place or pick up an object.  

Our implementation involves the following stages: 

acquisition of the video signal, elimination of noise from the 

input video signal, detection of moving regions, segmentation 

for separating the moving objects, extraction of the object 

parameters, classification of the moving objects, and 

determining whether movements are suspicious. 

1)  Velocity change detection 

We can detect suspicious behavior of a person from his/her 

gait as well as his/her change in velocity near sensitive 

locations such as banks, airports, and shopping centers. In 

such cases, we can calculate the speed (in pixels/s) or 

acceleration (in pixels/s
2
) of the suspect in the image space in 

real time. There are several ways of representing this anomaly: 

the most widely adopted method in the literature is the use of 

a bounding box (a rectangle around the suspect). 

It is easy to calculate the speed of a moving object. As soon 

as the speed or acceleration of the object exceeds a certain 

threshold of normality (predetermined experimentally or on 

the basis of statistical studies), a bounding box appears around 

the suspect. However, the issue that needs to be addressed is 

the calculation of the speed in real-time circuits owing to the 

absence of mathematical functions (such as square root), types 

of data (integer or real values), and the object parameters on 

which we base our calculation. 

In general, the speed and acceleration are calculated as 

follows: 

         2 2( ( ) ( ) ) /   (3)g g g gvelocity t x t x t dt y t y t dt dt     

       /       (4)acceleration t velocity t velocity t dt dt    

where    x , yg gt t  and    x , yg gt dt t dt  are the co-

ordinates of the center of gravity of the object at moments t  

and t dt , respectively, dt=40ms in our case, and 

 velocity t  and  velocity t dt  are the velocities of the 

object at moments t  and t dt , respectively. 

 



2)  Direction change detection 

To determine the change in direction, we select parameters 

that distinguish the object of interest, such as its center of 

gravity, width, and length. In general, the co-ordinates of the 

center of gravity can be used to determine whether the object 

has changed its direction, i.e., whether it has moved rightward 

or leftward depending on the position of the camera. 

The change in direction along the x-axis is given by  

   g g

0  The object did not change direction 
x t x t dt          (5)

0  The object changed direction


  



 

The change in direction along the y-axis is given by  

   g g

0  The object did not change direction 
y t y t dt         (6)

0  The object changed direction


  



 

These techniques, which are based on the object 

parameters, can be improved by integrating them with 

advanced models such as finite state machines (FSMs). 

IV. HARDWARE IMPLEMENTATION 

Figure 2 shows the general outline of our FPGA 

implementation. 

 
Fig. 2 General outline of behavior change detection. 

This general outline consists of four blocks: an acquisition 

block, an analysis block, a display block, and an intermediate 

block between the display block and the analysis block. 

A. Acquisition Block 

Acquisition is achieved using the standard camera 

associated with the RC200E board. The video input processor, 

Philips SAA7113H, acquires the frames in the PAL format at 

a rate of 25 fps. The pixels are in the YCbCr format. Using the 

PixelStreams library of Agility’s DK Design Suite, we split 

the input video signal into two identical streams (see Fig. 3). 

Fig. 3 Acquisition block. 

 The first stream is fed to the display block and it is 

converted into the RGB format to display the results on a 

VGA display. The second stream is fed to the analysis block 

and it is converted into the grayscale format to reduce (by 

one-third) the amount of data to be processed. 

B. Analysis Block 

The analysis block consists of several stages. In the first 

stage, we use inter-image subtraction (delta frames) and apply 

thresholding to detect moving regions. 

To obtain the delta frames, we start by splitting the video 

signal in three channels (see Fig. 4). The first and second 

channels are used to save the acquired image, creating a delay 

cell. The image I(t-1) is recorded in the memory. The third 

channel is used to acquire the actual frame at moment t. Then, 

the two image streams are synchronized and fed to the 

subtraction block. The subtraction block is a modified block 

that takes the absolute result of subtraction and compares it 

with a threshold. This function is realized using a macro. The 

threshold value Th is fixed according to the luminosity of the 

scene.  

Fig. 4 Motion detection block. 

The second stage of the analysis block involves statistical 

analysis. In this stage, we search for the min and max values 

along the x- and y-axes of the mobile regions (Fig. 5). In 

general, this stage must be preceded by a filter for noise 

reduction. We employed a morphological filter (e.g., 

alternating sequential filter, opening/closing filter) using the 

PixelStreams library. 

After calculating the min and max values along the two 

axes, we determine the center of gravity of the detected object.  

We calculate the sum of the pixel co-ordinates that have non-

zero values along the x- and y-axes, and we divide these 

coordinate values by their sum. However, for our 

implementation, it is better to avoid this division. Therefore, 

we use the direct method. We subtract the max from the min 

and divide the result by 2. Division by 2 is achieved by a 

simple bit shift (right shift).  Once the values minX, MaxX, 

minY, MaxY, and XG, YG are obtained, we copy these values 

into the behavior change detection block. Then, we reset these 

values to zero. 

 
Fig. 5 frame difference and calculation of min and max values. 

C. Behavior Change Detection Block 

As stated in the previous section, the analysis block 

provides the behavior change detection block with the 

parameters of the moving objects. In this stage, we save the 

values extracted from the first delta frame (xg(t-1), yg(t-1), 

minx(t-1), MaxX(t-1), miny(t-1), MaxY(t-1)), and from the 



second delta frame, we obtain the current values xg(t), yg(t), 

minx(t), MaxX(t), miny(t), and MaxY(t). From these latter 

results, we can calculate the width and length of the moving 

object to classify the object as human, vehicle, or others, as in 

our previous work [23]. Using the values extracted in two 

different instants (t-1, t), we define the changes in behavior. 

For velocity change detection, the speed and acceleration 

are calculated using the two equations presented in Sec. 3.B.1. 

However, we simplify these equations by calculating the 

absolute differences between two moments (the previous and 

current values). If the absolute difference exceeds a certain 

threshold Vth, we assume that the velocity has changed, and 

we copy the values of the center of gravity in the display 

block in order to draw a rectangle around the object. Then, the 

current values are saved as previous values. 

Figure 7 shows this implementation and represents all the 

stages realized. 

 
Fig. 7 Hardware architecture for velocity change detection. 

Direction change detection: To implement this application, 

we follow the same stages as those used in velocity change 

detection, except that the condition changes. We use the same 

parameters, minX, MaxX, minY, and MaxY, in order to 

guarantee that the object is entirely entered the scene. We 

calculate the difference between minX1 and minX2, and 

MaxX1 and MaxX2. If there is a change in sign, we assume 

that the object has changed its direction. Otherwise, we 

assume that the object has not changed its direction. 

We can easily determine the direction of motion of an 

object by applying the same concept as that described above. 

However, in this case, it is impractical to compare the 

differences between the previous values and the current values 

with zero because the presence of a small or non-significant 

movement (such as that of the arms) can cause false detection. 

Therefore, to overcome this problem, we compare the 

difference with a threshold Thd, which should not be very 

large. Then, the values minX, MaxX, minY, and MaxY are 

copied to the block that draws the bounding box.  

We use two blocks for detection in two directions (a 

different color for each direction of motion). In order to 

minimize resource consumption, we used only one block for 

drawing the bounding box by changing the parameters of 

entry in our macro. In this macro, we added a parameter that 

changes the color according to the direction of detected 

motion (Fig. 8). 

Fig. 8 Hardware architecture for direction change detection. 

Posture change detection: We are interested in such an 

application to detect a person who leans (bends) to place or 

pick up something, especially in sensitive locations (e.g.,the  

subways). In this case, we are interested in movements along 

the y-axis of the image (up/down motion), and we use the 

same architecture as that used in velocity change detection. 

We calculate the difference between the previous and current 

values of miny(t-1), MaxY(t-1), miny(t), MaxY(t). 

If the difference between the previous and current values is 

positive (negative), we assume that the person leans (rises), 

and we copy the values minX, MaxX, minY, and MaxY to the 

block that draws the bounding box and fix the color parameter 

of the rectangle. We can add a warning message using the 

PxsConsole filter of PixelStreams. As in the case of direction 

change detection, it is better to use a threshold Thp to reduce 

the occurrence of false detection due to small movements 

along the y-axis. For such detections, we require a camera 

whose front sight faces the scene. 

Motion analysis: Here, we tried to collect all the above-

mentioned behaviors using a single program in order to 

practically validate the system. To minimize resource 

consumption, we considered our problem as a finite state 

machine with several scenarios. The thresholds of detection 

for each case were used to define and manage these various 

scenarios, these values were obtained by tests. The differences 

between the values of minX, MaxX, minY, and MaxY at 

moments t and t-1 are denoted by ∆minx, ∆MaxX, ∆miny, and 

∆MaxY, respectively. 

In the first state, all the values are initialized (State 0); they 

represent the initial state of each new inter-image difference. 

In the second state (State 1), if the absolute values of ∆minx 

and ∆MaxX are higher than VTh, we assume that the velocity 

changes and we return to the initial state after copying the 

values of the block to the bounding box filter. In the opposite 

case, we go to the third state (State 2) and compare ∆minx and 

∆MaxX with the threshold Thd. According to the result of this 

comparison, we assume that a leftward or rightward 

movement has occurred. Then, we return to the initial state. 

Starting from this state, if the moving object accelerates, we 

return to the second state of velocity change. For posture 

change detection, the condition is related to the values of 

∆miny and ∆MaxY (State 3). We can detect this behavior 

from any state (e.g., a person runs and leans to collect 



something). The following figure summarizes these states and 

the possible scenarios. 

 

Fig. 9 FSM of motion analysis. 

D. Display Block 

In this block, we call the macro PxsAnalyseAwaitUpdate, 

which allows us to pause the display until an update occurs in 

the analysis block. We obtain the values minX, MaxX, minY, 

and MaxY; if there is a motion, we copy these values to the 

bounding box filter to draw the rectangle. The values of the 

center of gravity, Xg,Yg, are also copied to the PxsCursor 

filter in order to draw a cross at the center of the moving 

object. We can add a warning message, e.g., "Warning: 

velocity change detection", by using the PxsConsole filter of 

the PixelStreams library. Finally, the results are displayed in 

the RGB format on a VGA display. 

V. EXPERIMENTAL RESULTS 

An RC200E board with an embedded Virtex-II XC2V1000 

FPGA was used for our implementation. The language used 

was Handel-C. The results for each behavior are summarized 

in Tables 2–5: 

TABLE 2 RESOURCE CONSUMPTION AND MAXIMUM FREQUENCY OF 

IMPLEMENTATION FOR VELOCITY CHANGE DETECTION. 

 

These tables specify the resource consumption and 

maximal frequency of each implemented detection case for 

PAL video with a resolution of 720×576. 

In all these implementations, the results show that the two 

main constraints, i.e., the resource limit of our FPGA and the 

real-time aspect (40 ms/image), are well respected. We note 

that the consumption of the CLB blocks increases in the case 

of detection of multiple objects; this is caused by the 

algorithm used to identify the number of objects in the scene. 

We also note that the algorithm for motion analysis that 

collects all the previous behaviors have been implemented on 

our FPGA in real time, but it consumes nearly all of the CLB 

resources (88%). 

TABLE 3 RESOURCE CONSUMPTION AND MAXIMUM FREQUENCY OF 

IMPLEMENTATION FOR DIRECTION CHANGE DETECTION. 

 

TABLE 4 RESOURCE CONSUMPTION AND MAXIMUM FREQUENCY OF 

IMPLEMENTATION FOR UP/DOWN MOTION DETECTION. 

 

TABLE 5 RESOURCE CONSUMPTION AND MAXIMUM FREQUENCY OF 

IMPLEMENTATION FOR MOTION ANALYSIS. 

 

The following figures show the results of all these 

implementations. Each behavior is represented by a different 

color, and a warning message is added below the scenes. 

Fig. 10 Results of velocity change detection in the case of one object. 

Figure 10 shows the results of velocity change detection in 

the case of one object. In Fig. 10(a), as soon as the object 



decreases its speed, the rectangle disappears. In Fig. 10(b), as 

soon as the object starts to run, a rectangle appears around it.  
 

Figure 11 shows the results of velocity change detection in 

the case of two objects. As soon as the objects start running, a 

rectangle appears. We note that in the case of occlusion, the 

algorithm considers both objects as a single object. 

 
Fig. 11 Results of velocity change detection in the case of two objects. 

Figure 12 shows the results of direction change detection. 

Right to left movement, represented by the blue rectangle, and 

left to right movement, represented by the red rectangle. The 

figures also show warning messages below the images. 

 

 
Fig. 12 Direction change detection. 

Figure 13 shows the results of posture change detection. 

When the object leans to pick up something, it will be 

detected. Up/down and down/up motion are represented in 

different colors. A warning message is added in each case. 

 
Fig. 13 Posture change detection: a) for one object, b) for two objects. 

Figure 14 shows the results of collecting all the behaviors 

using a single program. Motion to the right and left are 

represented by red and blue rectangles, respectively. Further, 

up/down and down/up motion are represented by turquoise 

and yellow rectangles, respectively. Finally, velocity change is 

represented by a black rectangle. In every case, a warning 

message is displayed. 

 

 
Fig. 14 Motion analysis. 

VI. CONCLUSIONS 

We presented in this paper an implementation approach for 

object detection and behavior recognition based on motion 

analysis and sudden movements. We exploited the hardware 

part, which offers the possibility of handling large amounts of 

data and performing calculations for image processing via 

parallel processing, guaranteed by the use of the PixelStreams 

library of Agility’s DK Design Suite. Further, we tried to 

improve our architecture by collecting all the different 

behaviors using a single program. In addition, we added 

warning messages using the PxsConsole filter. Thus, we 

successfully implemented different algorithms that can 

recognize objects in motion and detect changes in velocity, 

direction, and posture in real time. The results showed that our 

approach achieves good recognition and detection of these 

behaviors, in indoor areas. However, in outdoor areas, the 

results are less promising owing to the simple motion 

detection algorithm used; this problem is aggravated by 

occlusion due to overlapping movements of different persons. 

Therefore, in the future, we will try to use improved motion 

detection algorithm and learning methods to detect behavior 

changes in crowded environments, using a newer architecture. 
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