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Abstract—This paper deals with the continuous-time identifica- system identification in CT and DT. For an overview of the
tion of linear parameter varying (LPV) systems with fractional developed methods, refer to [10]-[18].
models in a noisy output context. Two methods developed 10 oy main contribution is to extend a CT system identifica-
identify the continuous-time systems with rational modelsare tion methods with LPV rational models to the fractional case
extended to identify the coefficients of fractional models.
The developed estimators are based on least squares: thelne developed methods are based on the Least Squares (LS)
fractional-linear parameter varying-ordinary least squares techniques and called fractional-linear parameters ngryi
(fLPV-OLS) and the fractional-linear parameter varying-i terative  ordinary least squarefLfPV-OLS and fractional-linear param-
least ﬁ%‘gj\‘;lezf _(fLPV;LS)- A fractional state variable filter ap-  aters varying-iterative least squardsRV-ILS algorithms.
proac is used. : : .
The performances of the developed estimators are analyzed Th_e Ou“m_e of the paper_ IS as fOHOWS'_The next Section
through a numerical example. The influence of the Signal-to details the differential equation representation of CEticmal
Noise Ratio (SNR) is studied using Monte Carlo simulations. LPV systems. In Section 3, the proposed methods for CT

fractional LPV systems are detailed. Their performances ar

I ndex Terms—system identiﬁcation, fractional differentiation, analyzed in Secuon 4 V|a a numencal example Sect|0n 5
linear parameter varying, fractional SVF, least squares. concludes the paper.

II. FRACTIONAL LPV SYSTEMS
A. Mathematical Background

The d_evelope.d methOdS for ContianUS'time SyStem |dent|f|'A Sing]e_|nput-Sing]e_Output (S|SO) linear paramete’yvar
cation with fractional Linear Time Invariant (LTl) modelave |ng fractional order System is governed by the fo”owing
been treated in several frameworks aiming open loop systefifferential equation:
identification [1]-[7] and closed loop system identificati@], N M
[9]. Yo®)+ 3 an(@)Do(t) = § bm(p)DPrut) (1)
Two different classes of identification methods are devetbp ot n; () ot n;o m(A) ®
the first one is based on an equation error and consistsyjfiere differentiation orders are allowed to be non integer

supposing that the fractional orders are knoavmpriori and  positive numbers and ordered for identifiability purposes:
only the linear coefficients are estimated. The second éfass

based on an output error and consists in estimating botarline ap <---<an, o< <Pwu

coefficients and fractional differentiation. u(t) andyp(t) are respectively the input and free-noise output

To identify a continuous-time (CT) model two mainsignals,D is the time-domain differential operator (also de-

approaches are investigated: the direct and the md'r%%ttedp), D:g:p.

approaches. Both of them use sampled data. The indirect e i
approach consists in identifying a discret-time (DT) modét - R — P (the compacP € R™ denotes the scheduling space)

using DT techniques, then convert it into a CT model. THg the scheduling variable with = p(t).

direct approach is based on CT strategies, thus a CT mode] i€ coefficientan(or) andbm(p) are functions of at time.
identified directly. The direct approach is considered iis th ' Nere exist two types of scheduling variable: scheduling va
paper. able with static dependence [17] and scheduling variabtle wi

dynamic dependence [10]. In this paper, the static deperden

is considered.

The developed works on fractional systems identificatic{fheu order fractional derivative of a continuous-time funatio
are almost for LTI models. However, in practice, physica#(t) relaxed att — 0, i.e. f(t) O for t <0, is numerically

behaviours may presents a time varying nature. . Y

y pr ying L e\éaluated using the Grunwald approximation [19]:
A system where its parameters are variables in time is callé

Linear Parameter Varying (LPV) system. Several methods DUF(t) ~ 1 X 1)K v

have been proposed in the past few years to solve the LPV (1)~ h_uk;(* ) k

|I. INTRODUCTION

> f(t—kh), VteR® (2
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wherev e RY, K= LtﬁJ with |.] is the floor operatorh is The unknown parameters matrix is given by:

the sampling period an Lé is the Newton’s binomial a0 ... ayL
generalized to fractional orders: : .
v 1 Jif k=0 g—| o AL (10)
= 3
( K ) { U(ufl)(u—li)---(u—kJrl) if k>0 () b?yo b?yL

For time-domain simulation of fractional LPV systems, the ' :

Griinwald approximation defined by equation (2) is used. buo -+ bui
Then, the problem is to consistently estimate the paraseter

matrix in the LPV framework.

Let (S) the system modeled with a fractional continuous-

time differential equation with a static scheduling depemze.  !ll. L EAST SQUARES BASED METHODS FOR FRACTIONAL
A(pr, P)Yo(t) = B(pr, p)u(t) LPV SYSTEM IDENTIFICATION
5 = ,p)u . . ) | |
(S): { y(tl))t:pyz(()t) +eo(t1)0t P 4) The estimated output signgty) can be written as a linear
regression form:

wherey(t) is the measured output signal which is eventually ) .
corrupted by an additive white noisg(t). Y(tk) = P ()6 + eq(t) (11)

where eg(t) is the output error andb(ty) the extended
regression vector defined by:

B. Problem formulation

The p; dependent polynomial& and B, witch contain the
coefficients of fractional LPV differential equation, arefihed

by: ) O(t) = ¢T ©F (12)
Alpr; p) = 1+n§lan(9t)pa” where® design the kronecker product (also denoted a tensor
M 3 () product),F is given by the following equation:
B(p,p) = 3 bm(pt)p™
= F=[1f(p)- fi(p)] (13)
where . ,
. and ¢ (ty) is defined by:
alp) =anot 3 anifilp);n=1,..N 67 () = [PY(8).—P2y(h). -~ PV
(6) pBOu(tk), Ty pBM u(tk)}

L
bm(pt) = 3 bmifi(o); m=0,...,M
=0 The regression vector defined by (14) contains fractional

{fl}|L:o is a memorphid function of p; with static depen- time—d_erivgtives of the input and the noisy output signal_s.

dence defined by: To built this regression vector, the compute of time-domain
fractional derivatives is required.

filp)=p, 1=0,---,L (7) The use of the Griinwald approximation (equation (2))

. , - , amplifies the additive noise effect. To solve this problem,

U;mg equation (7), the coefiicients given by (6) can bl‘ﬁe extension of the State Variable Filter (SVF) approach fo
rewritten as: fractional orders is proposed [1].

an(pt) = ano+an1p + - +anLpt ®) The extended regression vector, built from the filtered inpu
bm(pt) = bmo -+ bmapt + - - +bmiot and output signals, is given by:
Thus, the fractional CT-IO-LPV syste(i®) is defined by: D¢ (tx) = Fy (9) [¢T ®F] (15)
) vot)+ g an(o1) peyo (t) = g bm(pt) pPu(t) with Fy(s) is the transfer function of the fractional SVF
(S: =1 =0 (9)  defined by:
Y(t) = Yo(tk) + €o(t) o A\ lawl
wheret, = kh (K € Z). Fus)=s (/\ n s) (16)

The fractional differentiation orders are supposegriori
known. The objective is to estimate the coefficients of thg
fractional LPV differential equation (9), for eadh (k < N;),
using the set of available daay, = {y(t), u(tk), P(tk) o (N
is the number of samples) sampled with a sampling pehiod

| stands for the floor operator andis the cut-off frequency.
should be chosen equal to, or larger than, the bandwidths
of the system to be identified.

Equation (15) can be rewritten as:

. ar a2 an Bo Bm
1f is a memorphic function if it is in the forni = g% whereg andg; are ¢ = {*yf (t) — Yi (t), -+ » V¢ (t), Uy (), , Ut (tk)J
analytic functions withg; # 0. a7



Wherey‘f”n and ulf”‘ are the fractional filtered derivatives of the Equation (24) can be rewritten as:

input and the measured output signals: N L ML
n . F —
Y (t) = Fa, (9Y(t); 1<n<N 18 { o(P)Yo(t) 3 3 anYay (t)+ méoéobm,lugm (t)
U (t) = Fa (S)u(ty); 0<m< M y(t) = Yo(tk) + €o(tk)
f Bm (25)
A. Fractional-linear parameter varying-ordinary leastisayes \yhere
algorithm (fLPV-OLS) 1 N an 26
This method is inspired by the work developed in [12] Fo(P) =1+ 3 anoP (26)
for DT LPV system identification with rational models and
o . . and
extended in this section for fractional models.
The fLPV-OLSestimator is given by: { Yan, (1) = fi (Pt)pZ”YO(t): {n1}e{1,..,N;1,...,L}
A . ug (t)="* mu(t); {m,I} € {0,...,M;0,...,L
Oripv-ovs(k) =arg min V(D 6) (19) pt (1) = (@)U {1} €4 }(27)
where the cost functiok' {Dy,, 6} is defined as: The system ) can be rewritten as:
1y Vo) =~ 3 3 YO+ 3 5 2ug ()
V(Dn,6) = N > €0 () (20) 0 2y 2y PP ant I 2 2 Folp) P (28)
k=1 y(tk) = Yo(t) + €o(tx)

and based on the equation error: The estimated output can be presented as a linear regression

€o(tk) = y(tk) — () (21) form: )
y(t,) design the estimated output signal. Y(t) = @ ()6 + e (t) (29)
Then, the optimal estimator is given by: where
X Koo 1t O(t) = ¢7 (k) ©F (30)
BrLpv-oLs= {& 3 ch(tk)CIﬂ(tk)} . , ,
K k=1 (22) with ¢ as defined by (equation(eql7)) theh;(t) can be
[% kzlagf (t)ys (tk):| expressed as follow:
- 1 1
This estimator is unbiased and consistent if: ' () = [*ycfxl' (B, =YV (),
L
lim €g_o (23) *y‘f’i (t), ,ﬂf’“’L(tk), ; ) (31)
N Ut U (1), U (), U ()

In the noisy framework, the OLS estimator gives a biased
parameters. Particulary in the case of fractional LPV systeycfxn,l(tk) and uEm,l (t) are the fractional derivatives of the
identification, fractional derivatives take into accoum hole fjereq input and the output signals are filtered using the
past of the noisy output and the linear parameters variatiqgnowing filter:

To obtain an unbiased estimation of the parameters matrix, 1 1

an iterative technique is proposed and presented in the next Q ()= = = (32)
section. ° G 14 g & g
n,0
B. Fractional-linear parameter varying-iterative leasjisares n=1
algorithm (fLPV-ILS) Q. (s) the filter transfer function which depend on the estimates

The fLPV-ILS algorithm is inspired by the work in [17] &t the iteration. o
developed for CT-LPV system identification with rational The optimal parameter vector is given by:
models and the work developed in [7] for CT-LTI system
identification with fractional models. It is extended in ghi
section for CT-LPV system identification with fractional
models.

éifLPV—ILS =arg minV' (0) (33)
0

At each iteration, the following cost function is minimized

. 1 Mg 2
i _ = Lo
Substituting the linear parameters by their expressiorangi Vitev-is(6) = N k; 2 (25(t)) (34)

by equation (6) in the fractional LPV system (S) equation (9) ) ) )
yields to: £y(tx) denotes the equation error at each iteration.

N N L Minimising the cost functioV'! at each iteration leads to
Yolt)+ 3 anop™yo(t)=— 3 ¥ anifi(pr)pPyo(t)+ thefLPV-ILS estimator:
n=1 n=11=1

: ML . .
. méoéobm’I filp)pPru(t) Bt Lpv_iLs(k) = [ﬁ >

a
y(tk) = Yo(tk) + €o(tk) [ AN }
(24)



The proposed._PV-ILSalgorithm for fractional LPV model
identification is summarized in 6 steps.
Step 1: i =0 Initialization
Compute the first estimate by applying fihéV-OLS

Input
1

°

o o

o 5 10 15 20 25 30

algorithm: ) s w0 s w0
1P ~ o~ —
Ao A /N /N /N /N /
eﬂ_p\/,”_s = efLPV—OLS (36) g2 il
28 0 : :
i = | + 1 ‘:z/@ g 05} \\ //' \\\ //// ‘\\ ///' \\\ //’
Step 2: _C?mputey(tk) using the obtained auxiliary model o s m o w o m T w o w . s
= -
efLPV—ILS' | . ‘n\ \
. . T . . Foily A A I ) P )
Step 3.. Compute the continuous-time fractional estimate m“",“""‘\wﬁ‘”“/\ﬁ\\ﬂ»»W"%”’“‘v‘u«\?ﬁ,\‘“ *ﬂW".\"e‘\xfw**ww~""‘v'\Wf\‘u“"‘W»f'm“v’“M-,J‘.N“‘v‘r‘\ il
filter . o i ‘ \‘y | ‘ ‘Q | ‘ ‘ Y‘\ ‘ \u,‘
FLI) (S) = Ni (37) ) 5 10 15 20 25 30 35 40 45 50
Time(s)
1+ y & sn
n=1 "

to generate the estimates of the derivatives signals:

Fig. 1. Input/scheduling variable/free-noise output algn

9i! (t) = ——9(t)
1+n§13'n,03"” cut-off frequency in (16) is set to 100 rad/sec. Fig 1 showes th
u?m.,l (t) = fm u(ty) (38) input, the scheduling variable and the noisy output signals
1+§ a s The performances of the proposed algorithms are assessed
i=1 ™

Step 4:Built the filtered estimated regression vec@r(tk)
(equation (31)).

Step 5: Compute thedLPV-ILS estimate (equation (35)).

Step 6:1f 8i1L, s
convergence criterion

estimators are applied.

HéiftéV—lLS_é}LPV—ILSH < & where& < 10°5

error (NRQE) defined in (43) by:

with Njme = 100 runs of Monte Carlo simulation with different
white noise realizations foBNR= 30 dB andSNR= 15 dB.
For each realization, both thiePV-OLS and thefLPV-ILS

has converged according to a specified Simulation results are summarized respectively in Table |
and Il which contain the mean of estimates, the standard de-
viation of each parameter and the normalized relative caiadr

‘ éifLPV—ILS‘
or a maximum number of iterations is reached, then 1A >
stop, else go to step 2. NRQE— 1 T ][6 - 6o (43)
Ne 22 6ol

IV. SIMULATION RESULTS

The following fractional LPV system is considered to ana- 1he distribution of thefLPV-OLSand fLPV-ILS estimates

lyze the performances of the developed algorithms:

(S): { A(pr, p) = 14 a1(pr) p° (39)

B(pr, p) = bi(pr) TABLE |

for SNR= 30 dB andSNR= 15 dB are plotted respectively

MONTE CARLO SIMULATION FOR SNR= 30DB.

where the coefficients, dependent on the scheduling paeamet

' Parameter| True value| mean std mean std
ai(p) =1—-0.5p ) 1 0,9178 | 0,0094 | 0,9965 | 0,00967
_ (40) al 05 | -0,4448] 0,0092 | -0,4932 | 0,0092
bi(p) =2+ p
b0 2 1,8946 | 0,0118 | 1,9977 | 0,0112
where 5 ar 1 0,9837 | 0,0113| 0,9964 | 0,0099
. 2m NRQE 0,0588 0.0087
p=p(t) =sin(35t) (41) Q >
12
The fractional order is priori fixed toa = 0.5 and only the TABLE Il
linear coefficients are estimated using the proposed efstima MONTE CARLO SIMULATION FOR SNR= 15DB.
The true parameters matrix is defined by:
Method fLPV-OLS fLPV-ILS
— _ T Parameter| True value| mean std mean std
6 =[1,—0.5,2,1] (42)
B 1 0,1608 | 0,0131| 1,0037 | 0,0528
The input signal is chosen as a uniformly distributed se- a% 0.5 -0,0102 | 0,0142 | -0,4971 | 0,0462
quence denoted (—1,1). The output signal is contaminated g% i 8’222;‘ 8'8;2(7) i'gigg 8’8282
with an additive white noise. The number of samples is NROE 0.6150 0.0454

N: =500, the sampling period is fixed to= 0.1 sec and the



in Fig.2 and Fig.3.
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Fig. 2. Distribution of the estimates for SNR=30 dB (fapPV-OLSand (b)
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estimates, with small standard deviation ®NR= 30 dB
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consistency of the developed iterative algorithm.
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V. CONCLUSION

This paper proposed two new methods for the identification
of a continuous-time linear parameter varying systems with
The obtained results show that thiePV-ILS estimator fractional models in a noisy output context. The proposed
give an unbiased estimates, compared to thBV-OLS methods are based on a linear regression form. For the
the fractional-linear parameter varying-ordinary leaptiares
and SNR= 15 dB. This result proves the efficiency and th¢fLPV-OLS) estimator, time-domain derivatives are congolit
using a fractional State Variable Filter. A reformulatioh o
the data generating system is made in order to applied
the fractional-linear parameter varying-iterative lesgtiares
(fLPV-ILS) estimator. The performances of the proposed es-
timators have been assessed through a numerical example.
Simulation results, show that thi&PV-ILS estimator gives
good results and provide unbiased estimates compared to
fLPV-OLSalgorithm. Those results have been evaluated with
the help of Monte Carlo simulation analysis.

REFERENCES

[1] O. Caois, A. Oustaloup, T. Poinot, and J.-L. Battagliasd€tional state
variable filter for system identification by fractional mgtiéen Control



(2]

(3]

(4

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[29]

Conference (ECC), 2001 EuropeanlEEE, 2001, pp. 2481-2486.

M. Aoun, R. Malti, F. Levron, and A. Oustaloup, “Numericmulations
of fractional systems: an overview of existing methods amgrove-
ments,”Nonlinear Dynamicsvol. 38, no. 1-4, pp. 117-131, 2004.

R. Malti, S. Victor, O. Nicolas, and A. Oustaloup, “Systedentification
using fractional models: state of the art,” ASME 2007 International
Design Engineering Technical Conferences and Computeds |afor-
mation in Engineering Conference American Society of Mechanical
Engineers, 2007, pp. 295-304.

S. Victor, R. Malti, and A. Oustaloup, “Instrumental iasle method
with optimal fractional differentiation order for contious-time system
identification,” in System identificatignvol. 15, no. 1, 2009, pp. 904—
909.

M. Amairi, M. Aoun, S. Najar, and M. N. Abdelkrim, “Set meyarship
parameter estimation of linear fractional systems usingligdotopes,”
in International Multi-Conference on Systems, Signals & Peyi2012.
A. Maachou, R. Malti, P. Melchior, J.-L. Battaglia, and Bay, “Thermal
system identification using fractional models for high temgture levels
around different operating pointsNonlinear Dynamicsvol. 70, no. 2,
pp. 941-950, 2012.

M. Chetoui, M. Thomassin, R. Malti, M. Aoun, S. Najar, M..N
Abdelkrim, and A. Oustaloup, “New consistent methods fateprand
coefficient estimation of continuous-time errors-in-ghtes fractional
models,” Computers & Mathematics with Applicatigngol. 66, no. 5,
pp. 860-872, 2013.

Z. Yakoub, M. Amairi, M. Chetoui, and M. Aoun, “On the cled-
loop system identification with fractional modelsCircuits, Systems,
and Signal Processingp. 1-28, 2015.

Z. Yakoub, M. Chetoui, M. Amairi, and M. Aoun, “A bias carttion
method for fractional closed-loop system identificatiod@urnal of
Process Contrglvol. 33, pp. 25-36, 2015.

R. Téth, Modeling and identification of linear parameter-varyingssy
tems Springer, 2010, vol. 403.

R. Liacu, D. Beauvois, and E. Godoy, “Identification oblytopic
models for a linear parameter-varying system performed wahécle,”
in ICINCO 2012

B. Bamieh and L. Giarre, “Identification of linear parefer varying
models,”International journal of robust and nonlinear controfol. 12,
no. 9, pp. 841-853, 2002.

M. Nemani, R. Ravikanth, and B. A. Bamieh, “Identificati of linear
parametrically varying systems,” ifProceedings of the 34th IEEE
Conference on Decision and Control, 199%ol. 3. IEEE, 1995, pp.
2990-2995.

V. Verdult, Non linear system identification: a state-space approach
Twente University Press, 2002.

R. Téth, “Modeling and identification of linear pararaevarying sys-
tems, an orthonormal basis function approadbr’ Dissertation, Delft
University of Technology2008.

V. Laurain, M. Gilson, R. Téth, and H. Garnier, “Refinassirumental
variable methods for identification of Ipv box—jenkins misdeAuto-
maticg vol. 46, no. 6, pp. 959-967, 2010.

V. Laurain, R. Téth, M. Gilson, and H. Garnier, “Diredtantification of
continuous-time linear parameter-varying input/outpwtdeis,” Control
Theory & Applications, IETvol. 5, no. 7, pp. 878-888, 2011.

J. Schorsch, M. Gilson, V. Laurain, and H. Garnier, titfcation of
LPV partial differential equation models,” i8013 IEEE 52nd Annual
Conference on Decision and Control (CDC)IEEE, 2013, pp. 4547—
4552,

A. Grunwald, “Ueber begrenzte derivationen und derewendung,’
Zeitschrift fur Mathematik und Physikol. 12, no. 6, pp. 441-480,
1867.





