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Abstract—This paper deals with the continuous-time identifica-
tion of linear parameter varying (LPV) systems with fractional
models in a noisy output context. Two methods developed to
identify the continuous-time systems with rational modelsare
extended to identify the coefficients of fractional models.
The developed estimators are based on least squares: the
fractional-linear parameter varying-ordinary least squares
(fLPV-OLS) and the fractional-linear parameter varying-i terative
least squares (fLPV-ILS). A fractional state variable filter ap-
proach (SVF) is used.
The performances of the developed estimators are analyzed
through a numerical example. The influence of the Signal-to
Noise Ratio (SNR) is studied using Monte Carlo simulations.

Index Terms—system identification, fractional differentiation,
linear parameter varying, fractional SVF, least squares.

I. I NTRODUCTION

The developed methods for continuous-time system identifi-
cation with fractional Linear Time Invariant (LTI) models have
been treated in several frameworks aiming open loop system
identification [1]–[7] and closed loop system identification [8],
[9].
Two different classes of identification methods are developed:
the first one is based on an equation error and consists in
supposing that the fractional orders are knowna priori and
only the linear coefficients are estimated. The second classis
based on an output error and consists in estimating both linear
coefficients and fractional differentiation.

To identify a continuous-time (CT) model two main
approaches are investigated: the direct and the indirect
approaches. Both of them use sampled data. The indirect
approach consists in identifying a discret-time (DT) model
using DT techniques, then convert it into a CT model. The
direct approach is based on CT strategies, thus a CT model is
identified directly. The direct approach is considered in this
paper.

The developed works on fractional systems identification
are almost for LTI models. However, in practice, physical
behaviours may presents a time varying nature.

A system where its parameters are variables in time is called
Linear Parameter Varying (LPV) system. Several methods
have been proposed in the past few years to solve the LPV

system identification in CT and DT. For an overview of the
developed methods, refer to [10]–[18].

Our main contribution is to extend a CT system identifica-
tion methods with LPV rational models to the fractional case.
The developed methods are based on the Least Squares (LS)
techniques and called fractional-linear parameters varying-
ordinary least squares (fLPV-OLS) and fractional-linear param-
eters varying-iterative least squares (fLPV-ILS) algorithms.

The outline of the paper is as follows. The next Section
details the differential equation representation of CT fractional
LPV systems. In Section 3, the proposed methods for CT
fractional LPV systems are detailed. Their performances are
analyzed in Section 4 via a numerical example. Section 5
concludes the paper.

II. FRACTIONAL LPV SYSTEMS

A. Mathematical Background

A Single-Input-Single-Output (SISO) linear parameter vary-
ing fractional order system is governed by the following
differential equation:

y0(t)+
N

∑
n=1

an(ρt)D
αny0(t) =

M

∑
m=0

bm(ρt)D
βmu(t) (1)

where differentiation orders are allowed to be non integer
positive numbers and ordered for identifiability purposes:

α1 < · · ·< αN, β0 < · · ·< βM

u(t) andy0(t) are respectively the input and free-noise output
signals,D is the time-domain differential operator (also de-

notedp), D =
d
dt

= p.
ρt :R→P (the compactP∈R

nP denotes the scheduling space)
is the scheduling variable withρt = ρ(t).
The coefficientsan(ρt) andbm(ρt) are functions ofρt at time.
There exist two types of scheduling variable: scheduling vari-
able with static dependence [17] and scheduling variable with
dynamic dependence [10]. In this paper, the static dependence
is considered.
Theυ-order fractional derivative of a continuous-time function
f (t), relaxed att = 0, i.e. f (t) = 0 for t ≤ 0, is numerically
evaluated using the Grünwald approximation [19]:

Dυ f (t)≈
1
hυ

K

∑
k=0

(−1)k
(

υ
k

)
f (t − kh), ∀ t ∈ R

∗
+ (2)

PC
Typewriter
Proceedings of Engineering & Technology (PET)

PC
Typewriter

PC
Typewriter
pp. 662-668

PC
Typewriter
Copyright IPCO-2016

PC
Typewriter
ISSN: 2356-5608

User1
Typewritten Text
3rd International Conference on Automation, Control, Engineering and Computer Science (ACECS'16)

User1
Typewritten Text



where υ ∈ R
∗
+, K =

⌊
t
h

⌋
with ⌊.⌋ is the floor operator,h is

the sampling period and

(
υ
k

)
is the Newton’s binomial

generalized to fractional orders:
(

υ
k

)
=

{
1 , if k= 0

υ(υ−1)(υ−2)···(υ−k+1)
k! , if k> 0

(3)

For time-domain simulation of fractional LPV systems, the
Grünwald approximation defined by equation (2) is used.

B. Problem formulation

Let (S) the system modeled with a fractional continuous-
time differential equation with a static scheduling dependence.

(S) :

{
A(ρt , p)y0(t) = B(ρt , p)u(t)
y(t) = y0(t)+e0(t)

(4)

wherey(t) is the measured output signal which is eventually
corrupted by an additive white noisee0(t).

The ρt dependent polynomialsA and B, witch contain the
coefficients of fractional LPV differential equation, are defined
by: 




A(ρt , p) = 1+
N
∑

n=1
an(ρt)pαn

B(ρt , p) =
M
∑

m=0
bm(ρt)pβm

(5)

where




an(ρt) = an,0+
L
∑

l=1
an,l fl (ρt); n= 1, ...,N

bm(ρt) =
L
∑

l=0
bm,l fl (ρt); m= 0, ...,M

(6)

{ fl}
L
l=0 is a memorphic1 function of ρt with static depen-

dence defined by:

fl (ρ) = ρ l
t , l = 0, · · · ,L (7)

Using equation (7), the coefficients given by (6) can be
rewritten as:

{
an(ρt) = an,0+an,1ρt + · · ·+an,LρL

t
bm(ρt) = bm,0+bm,1ρt + · · ·+bm,LρL

t
(8)

Thus, the fractional CT-IO-LPV system(S) is defined by:

(S) :





y0(t)+
N
∑

n=1
an(ρt)pαny0(t) =

M
∑

m=0
bm(ρt)pβmu(t)

y(tk) = y0(tk)+e0(tk)
(9)

wheretk = kh (k∈ Z).
The fractional differentiation orders are supposeda priori

known. The objective is to estimate the coefficients of the
fractional LPV differential equation (9), for eachtk (k< Nt),
using the set of available dataDNt = {y(tk),u(tk),ρ(tk)}Nt

k=0 (Nt

is the number of samples) sampled with a sampling periodh.

1 f is a memorphic function if it is in the formf = g
g1

whereg andg1 are
analytic functions withg1 6= 0.

The unknown parameters matrix is given by:

θ =




a1,0 . . . a1,L
...

. . .
...

aN,0 · · · aN,L

b0,0 . . . b0,L
...

. . .
...

bM,0 · · · bM,L




(10)

Then, the problem is to consistently estimate the parameters
matrix in the LPV framework.

III. L EAST SQUARES BASED METHODS FOR FRACTIONAL

LPV SYSTEM IDENTIFICATION

The estimated output signal ˆy(tk) can be written as a linear
regression form:

ŷ(tk) = ΦT(tk)θ +eθ (tk) (11)

where eθ (tk) is the output error andΦ(tk) the extended
regression vector defined by:

Φ(tk) = ϕT ⊗F (12)

where⊗ design the kronecker product (also denoted a tensor
product),F is given by the following equation:

F = [1 f1(ρ) · · · fL(ρ)] (13)

andϕ(tk) is defined by:

ϕT(tk) = [−pα1y(tk),−pα2y(tk), · · · ,−pαNy(tk),
pβ0u(tk), · · · , pβM u(tk)

] (14)

The regression vector defined by (14) contains fractional
time-derivatives of the input and the noisy output signals.
To built this regression vector, the compute of time-domain
fractional derivatives is required.

The use of the Grünwald approximation (equation (2))
amplifies the additive noise effect. To solve this problem,
the extension of the State Variable Filter (SVF) approach for
fractional orders is proposed [1].
The extended regression vector, built from the filtered input
and output signals, is given by:

Φ f (tk) = Fυ(s)
[
ϕT ⊗F

]
(15)

with Fυ(s) is the transfer function of the fractional SVF
defined by:

Fυ(s) = sυ
(

λ
λ + s

)⌊αN⌋+1

(16)

⌊.⌋ stands for the floor operator andλ is the cut-off frequency.
λ should be chosen equal to, or larger than, the bandwidths
of the system to be identified.

Equation (15) can be rewritten as:

ϕ f =
[
−yα1

f (tk)− yα2
f (tk), · · · ,−yαN

f (tk),u
β0
f (tk), · · · ,u

βM
f (tk)

]T

(17)



whereyαn
f anduβm

f are the fractional filtered derivatives of the
input and the measured output signals:

{
yαn

f (tk) = Fαn(s)y(tk); 1≤ n≤ N

uβm
f (tk) = Fβm(s)u(tk); 0≤ m≤ M

(18)

A. Fractional-linear parameter varying-ordinary least squares
algorithm (fLPV-OLS)

This method is inspired by the work developed in [12]
for DT LPV system identification with rational models and
extended in this section for fractional models.

The fLPV-OLSestimator is given by:

θ̂ f LPV−OLS(k) = arg min
θ∈Rnθ

V(DNt ,θ ) (19)

where the cost functionV{DNt ,θ} is defined as:

V(DNt ,θ ) =
1
Nt

Nt

∑
k=1

εθ
2(tk) (20)

and based on the equation error:

εθ (tk) = y(tk)− ŷ(tk) (21)

ŷ(tk) design the estimated output signal.
Then, the optimal estimator is given by:

θ̂ f LPV−OLS=

[
1
Nt

K
∑

k=1
Φ̂ f (tk)Φ̂T

f (tk)

]−1

[
1
Nt

K
∑

k=1
Φ̂ f (tk)yf (tk)

] (22)

This estimator is unbiased and consistent if:

lim
Nt→∞

εθ=0 (23)

In the noisy framework, the OLS estimator gives a biased
parameters. Particulary in the case of fractional LPV system
identification, fractional derivatives take into account the hole
past of the noisy output and the linear parameters variation.
To obtain an unbiased estimation of the parameters matrix,
an iterative technique is proposed and presented in the next
section.

B. Fractional-linear parameter varying-iterative least squares
algorithm (fLPV-ILS)

The fLPV-ILS algorithm is inspired by the work in [17]
developed for CT-LPV system identification with rational
models and the work developed in [7] for CT-LTI system
identification with fractional models. It is extended in this
section for CT-LPV system identification with fractional
models.

Substituting the linear parameters by their expressions given
by equation (6) in the fractional LPV system (S) equation (9)
yields to:

(S) :





y0(t)+
N
∑

n=1
an,0pαny0(t) =−

N
∑

n=1

L
∑

l=1
an,l fl (ρt)pαny0(t)+

M
∑

m=0

L
∑

l=0
bm,l fl (ρt)pβmu(t)

y(tk) = y0(tk)+e0(tk)
(24)

Equation (24) can be rewritten as:




F0(p)y0(t) =−
N
∑

n=1

L
∑

l=1
an,l yαn,l (t)+

M
∑

m=0

L
∑

l=0
bm,l uβm,l (t)

y(tk) = y0(tk)+e0(tk)
(25)

where

F0(p) = 1+
N

∑
n=1

an,0pαn (26)

and
{

yαn,l (t) = fl (ρt)pαny0(t); {n, l} ∈ {1, ...,N;1, ...,L}
uβm,l (t) = fl (ρt)pβmu(t); {m, l} ∈ {0, ...,M;0, ...,L}

(27)
The system (S) can be rewritten as:




y0(t) =−
N
∑

n=1

L
∑

l=1

an,l
F0(p)

yαn,l (t)+
M
∑

m=0

L
∑

l=0

bm,l
F0(p)

uβm,l (t)

y(tk) = y0(tk)+e0(tk)
(28)

The estimated output can be presented as a linear regression
form:

ŷ(tk) = ΦT(tk)θ +eθ (tk) (29)

where
Φ(tk) = ϕT(tk)⊗F (30)

with ϕ as defined by (equation(eq17)) then,Φ f (tk) can be
expressed as follow:

Φ f
T(tk) =

[
−yα1,1

f (tk), · · · ,−yαN,1
f (tk), · · · ,

−yα1,L
f (tk), · · · ,−yαN,L

f (tk),

uβ0,1
f (tk), · · · ,u

βM ,1
f (tk), · · · ,u

β0,L
f (tk), · · · ,u

βM ,L
f (tk)

] (31)

yαn,l
f (tk) and uβm,l

f (tk) are the fractional derivatives of the
filtered input and the output signals are filtered using the
following filter:

Qi
0
(s) =

1
F i

0
(s)

=
1

1+
N
∑

n=1
âi

n,0
sαn

(32)

Qi
0
(s) the filter transfer function which depend on the estimates

at the iterationi.
The optimal parameter vector is given by:

θ̂ i
f LPV−ILS = argmin

θ
V i(θ ) (33)

At each iteration, the following cost function is minimized:

V i
f LPV−ILS(θ ) =

1
Nt

Nt

∑
k=1

1
2

(
ε i

θ (tk)
)2

(34)

ε i
θ (tk) denotes the equation error at each iteration.

Minimising the cost functionV i at each iterationi leads to
the fLPV-ILSestimator:

θ̂ i
f LPV−ILS(k) =

[
1
Nt

Nt

∑
k=1

Φi
f (tk)Φ

i
f
T
(tk)

]−1

[
1
Nt

Nt

∑
k=1

Φi
f (tk)yf (tk)

] (35)



The proposedfLPV-ILSalgorithm for fractional LPV model
identification is summarized in 6 steps.

Step 1: i = 0 Initialization
Compute the first estimate by applying thefLPV-OLS
algorithm:

θ̂ 0
f LPV−ILS = θ̂ f LPV−OLS (36)

i = i +1
Step 2: Compute ˆy(tk) using the obtained auxiliary model

θ̂ i−1
f LPV−ILS.

Step 3: Compute the continuous-time fractional estimated
filter

F i
υ(s) =

sυ

1+
N
∑

n=1
âi

n,0
sαn

(37)

to generate the estimates of the derivatives signals:




ŷαn,l
f (tk) =

sαn

1+
N
∑

n=1
âi

n,0
sαn

ŷ(tk)

uβm,l
f (tk) =

sβm

1+
N
∑

i=1
âi

n,0
sαn

u(tk)
(38)

Step 4:Built the filtered estimated regression vectorΦi
f
(tk)

(equation (31)).
Step 5: Compute thefLPV-ILSestimate (equation (35)).
Step 6: If θ̂ i+1

f LPV−ILS has converged according to a specified
convergence criterion∥∥∥θ̂ i+1

f LPV−ILS−θ̂ i
f LPV−ILS

∥∥∥
∥∥∥θ̂ i

f LPV−ILS

∥∥∥
< ξ whereξ < 10−5

or a maximum number of iterations is reached, then
stop, else go to step 2.

IV. SIMULATION RESULTS

The following fractional LPV system is considered to ana-
lyze the performances of the developed algorithms:

(S) :

{
A(ρt , p) = 1+a1(ρt)pα

B(ρt , p) = b1(ρt)
(39)

where the coefficients, dependent on the scheduling parameter
ρt , are chosen as :

{
a1(ρt) = 1−0.5ρt

b1(ρt) = 2+ρt
(40)

where

ρt = ρ(t) = sin(
2π
12

t) (41)

The fractional order isa priori fixed toα = 0.5 and only the
linear coefficients are estimated using the proposed estimators.
The true parameters matrix is defined by:

θ0 = [1,−0.5,2,1]T (42)

The input signal is chosen as a uniformly distributed se-
quence denotedU (−1,1). The output signal is contaminated
with an additive white noise. The number of samples is
Nt = 500, the sampling period is fixed toh= 0.1 sec and the
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Fig. 1. Input/scheduling variable/free-noise output signals.

cut-off frequency in (16) is set to 100 rad/sec. Fig 1 shows the
input, the scheduling variable and the noisy output signals.

The performances of the proposed algorithms are assessed
with Nmc= 100 runs of Monte Carlo simulation with different
white noise realizations forSNR= 30 dB andSNR= 15 dB.
For each realization, both thefLPV-OLS and the fLPV-ILS
estimators are applied.

Simulation results are summarized respectively in Table I
and II which contain the mean of estimates, the standard de-
viation of each parameter and the normalized relative quadratic
error (NRQE) defined in (43) by:

NRQE=

√√√√ 1
Nmc

Nmc

∑
i=1

∥∥θ̂i −θ0
∥∥2

‖θ0‖
2 (43)

The distribution of thefLPV-OLSand fLPV-ILS estimates
for SNR= 30 dB andSNR= 15 dB are plotted respectively

TABLE I
MONTE CARLO SIMULATION FOR SNR= 30 DB.

Method fLPV-OLS fLPV-ILS
Parameter True value mean std mean std

a0
1 1 0,9178 0,0094 0,9965 0,00967

a1
1 -0.5 -0,4448 0,0092 -0,4932 0,0092

b0
1 2 1,8946 0,0118 1,9977 0,0112

a1
1 1 0,9837 0,0113 0,9964 0,0099

NRQE 0,0588 0.0087

TABLE II
MONTE CARLO SIMULATION FOR SNR= 15 DB.

Method fLPV-OLS fLPV-ILS
Parameter True value mean std mean std

a0
1 1 0,1608 0,0131 1,0037 0,0528

a1
1 -0.5 -0,0102 0,0142 -0,4971 0,0462

b0
1 2 0,8524 0,0257 2,0123 0,0638

a1
1 1 0,6828 0,0260 1,0136 0,0605

NRQE 0.6150 0,0454



in Fig.2 and Fig.3.
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Fig. 2. Distribution of the estimates for SNR=30 dB ((a)fLPV-OLSand (b)
fLPV-ILS).

The obtained results show that thefLPV-ILS estimator
give an unbiased estimates, compared to thefLPV-OLS
estimates, with small standard deviation forSNR= 30 dB
and SNR= 15 dB. This result proves the efficiency and the
consistency of the developed iterative algorithm.
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Fig. 3. Distribution of the estimates for SNR=15 dB ((a)fLPV-OLSand (b)
fLPV-ILS).

V. CONCLUSION

This paper proposed two new methods for the identification
of a continuous-time linear parameter varying systems with
fractional models in a noisy output context. The proposed
methods are based on a linear regression form. For the
the fractional-linear parameter varying-ordinary least squares
(fLPV-OLS) estimator, time-domain derivatives are computed
using a fractional State Variable Filter. A reformulation of
the data generating system is made in order to applied
the fractional-linear parameter varying-iterative leastsquares
(fLPV-ILS) estimator. The performances of the proposed es-
timators have been assessed through a numerical example.
Simulation results, show that thefLPV-ILS estimator gives
good results and provide unbiased estimates compared to
fLPV-OLSalgorithm. Those results have been evaluated with
the help of Monte Carlo simulation analysis.
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