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Abstract— In this paper we present a design method of Sliding
Mode Observer (SMO) applied to reconstruct both actuator
and sensor faults for a class of output time-delay systems. To
guarantee the quadratically stability of the estimation error
dynamics, sufficient conditions are developed with the Lyapunov-
Krasovskii approach arising a set of Linear Matrix Inequal-
ity (LMI) optimization. Applying the equivalent output error
injection, the reconstruction of actuator and sensor faults are
obtained. To show the efficacy of the SMO design and faults
reconstruction methods, a numerical example is proposed.

keywords- Sliding mode observer; actuator fault recon-
struction; sensor fault reconstruction; time-delay system;
LMI technique

I. INTRODUCTION

Fault Detection and Isolation (FDI) has received a con-
siderable attention in the last decades. Many solutions have
been proposed [1-5] to solve this problem using different
approaches such as the mathematical models [6-7]. The FDI
based on SMO has attracted great attention due to its robust-
ness properties against perturbations and parameters variations
[8-10]. Consequently, many design methods based on SMO are
successfully applied to solve this problem [11-17].

Its well known that time-delay can causes some problem
such as the instability. Furthermore, due to its robustness,
various researchers have applied this observer for time-delay
systems based on control [18] and state estimation [19]. In
addition, the analysis and the synthesis of SMO for time-
delay systems becomes an important issue of many works
[20]. Then, many authors considered the effect of state or/and
input time delay in the design of SMO for reconstruction and
fault detection [21-24]. In this context, an observer for fault
detection for a class of two-level distributed networked con-
trol systems with time-delay is presented in [21]. Moreover,
in [22] a robust delay- derivative-dependant SMO for fault
reconstruction for linear uncertain time-varying delay systems
is proposed. Then, in [23] a scheme for estimating the actuator
and sensor fault for Lipschitz nonlinear systems using SMO
is presented. Later, in [24], a SMO for fault detection and
minimization of computation time-delay effect is proposed,
where the time-delay is treated as a fault.

However, compared with the rich results in FDI based
SMO of linear systems, few research results are addressed
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on the FDI for output time-delay systems, and this motivates
our work. In [25], SMO design method for robust fault
reconstruction in the presence of sampled output information
proposed. Also, For a class of certain system with output time-
delay a FDI approach using SMO is presented in [26].

The main idea of this paper is to present an extended
design method of a new SMO for actuator and sensor faults
reconstruction in the presence of output time-delay system. To
guarantee the stability of the estimation error and computing
the SMO gains, a Lyapunov-Krasvskii functional and the LMI
technique are used. after this, the designed SMO is used to
obtain a robust actuator and sensor faults reconstruction.

The rest of this paper is organized as follows: section II
describes the SMO design method. In section III, a recon-
struction fault formulation is proposed. An example is given to
illustrate the theoretical concept in section IV. Finally, section
V presents some conclusions.

Notation: The notation used throughout this paper < de-
notes the field of real numbers. ‖.‖ represents the Euclidean
norm for vectors.

II. SLIDING MODE OBSERVER DESIGN

We consider the following linear certain output time-delay
system :

ẋ(t) = Ax(t) +Bu(t) +Dfi(t) (1)

y(t) = Cx(t− τ) + fs(t) (2)

where x ∈ <n, u ∈ <m, y ∈ <p are the state vector,
the input vector and the output vector respectively. fa(t)
represents the function of the actuator fault satisfies ‖fa(t)‖ ≤
β where β is a constant positive scalar. fs(t) represents the
sensor fault where is bounded ‖fs(t)‖ ≤ β . τ is the delay
which assumed to be constant and bounded. A, B, C and D
are constant matrices with appropriate dimensions. We assume
that the matrices D and C are full rank and the following tow
assumptions are satisfied for the existing of the sliding mode
observer [3] :

A1. rank(CD) = q.
A2. The system (1)-(2) is minimum phase.
The assumption A1 is verified by the calculation of the rank

and A2 is assured if the system (A,D,C) is minimum phase.
Lemma 1 [23]: since C has full rank, then there exists a

nonsingular change of coordinates
[
x̄1

x̄2

]
= T0x such that

T0 =
[
Nc CT

]T
. Where Nc spans the null space of C.
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Furthermore, if these conditions hold, then there exists a
linear change of coordinate x̄ = Tx such that the matrices
(A,D,C) from (1)-(2) in the new coordinates are:

Ā =

[
Ā11 Ā12

Ā21 Ā22

]
, D̄ =

[
0
D̄2

]
, C̄ =

[
0 Ip

]
(3)

Consider initially that fs(t) = 0 and fa(t) 6= 0.
Therefore, the original system (1)-(2) is written in the new

coordinate system as :

˙̄x1(t) = Ā11x̄1(t) + Ā12x̄2(t) + B̄1u(t) (4)

˙̄x2(t) = Ā21x̄1(t) + Ā22x̄2(t) + B̄2u(t) + D̄2fi(t) (5)

y(t) = x̄2(t− τ) (6)

where x̄1 ∈ <n−p, x̄2 ∈ <p, Ā11 ∈ <(n−p)×(n−p) has stable
eigenvalue and D̄2 ∈ <p×q is non-singular.
A SMO for the system (4), (5) and (6) in the new coordinate
is:

˙̄̂x1(t) = Ā11 ˆ̄x1(t) + Ā12 ˆ̄x2(t) + B̄1u(t)− Ā12ē2(t− τ) (7)

˙̄̂x2(t) = Ā21 ˆ̄x1(t) + Ā22 ˆ̄x2(t) + B̄2u(t)

− 1
µ (Ā22 − Ās

22)ē2(t− τ) + ν(t− τ)
(8)

ŷ(t) = ˆ̄x2(t− τ) (9)

A suitable choice for the observer gain matrices Ḡl ∈ <n×p
and Ḡn ∈ <n×p in the new coordinate are given by:

Ḡl =

[
Ā12

1
µ (Ā22 − Ās22)

]
and Ḡn =

[
0
Ip

]
(10)

where Ās22 ∈ <p×p is any design matrix with stable eigen-
values and where µ is a positive number. The discontinuous
function υ is defined by:

υ(t) =

{
−ρ
∥∥D̄2

∥∥ P2ey(t)
‖P2ey(t)‖ if ey(t) 6= 0

0 otherwise
(11)

where P2 ∈ <p×p is a Lyapunov matrix and ρ is a positive
scalar.

The objective is to design a SMO where the sliding motion
is attained, during finite time, the sliding surface which is
defined by:

S = {x̄2, ˆ̄x2 ∈ <p : se(t) = ŷ(t)− y(t) = ē2(t− τ)} (12)

with ē2(t− τ) = ˆ̄x2(t− τ)− x̄2(t− τ).

Defining the state estimation error as:{
ē1(t) = ˆ̄x1(t)− x̄1(t)
ē2(t) = ˆ̄x2(t)− x̄2(t)

then it is straightforward to show:

˙̄e1(t) = Ā11ē1(t) + Ā12ē2(t)− Ā12ē2(t− τ) (13)

˙̄e2(t) = Ā21ē1(t) + Ā22ē2(t)− 1
µ (Ā22 − Ās22)ē2(t− τ)

+υ(t− τ)− D̄2fi(t)
(14)

ey(t) = ē2(t− τ) (15)

Theorem: The state estimation error dynamics is quadratically
stable, if there exist symmetric positive definite matrices P1 ∈
<(n−p)×(n−p), Q ∈ <p×p and a symmetric matrix P2 ∈ <p×p
such that the following condition LMI is satisfied: ĀT11P1 + P1Ā11 P1Ā12 + ĀT21P2

∗ ĀT22P2 + P2Ā22 +Q
∗ ∗

→

←
−P1Ā12

1
µP2(Ā22 − Ās22)

−Q

 < 0

(16)

Proof : To prove the stability and the convergence of the
designed SMO, choose a Lyapunov-Krasovskii functional as
follows:

V (t) = V1(t) + V2(t) + V3(t) > 0 (17)

where

V1(t) = ēT1 (t)P1ē
T
1 (t)

V2(t) = ēT2 (t)P2ē2(t)

V3(t) =
∫ t
t−τ ē

T
2 (θ)Qē2(θ)dθ

By calculating the derivative of (16) which must be negative
and to determinate the gains of the observer, the derivative of
V along the trajectory of (13) and (14) is:

V̇ (t) = 2ēT1 (t)P1̇̄e1(t) + 2ēT2 (t)P2̇̄e2(t)
+ēT2 (t)Qē2(t)− ēT2 (t− τ)Qē2(t− τ)
= ēT1 (t)

[
ĀT11P1 + P1Ā11

]
ē1(t) + 2ēT1 (t)P1Ā12ē2(t)

−2ēT1 (t)P1Ā12ē2(t− τ) + 2ēT2 (t)P2Ā21ē1(t)
+ēT2 (t)

[
ĀT22P2 + P2Ā22

]
ē2(t)

− 2
µ ē

T
2 (t)P2(Ā22 − Ās22)ē2(t− τ)

+2ēT2 (t)P2υ(t− τ)− 2ēT2 (t)P2D̄2fi(t)
+ēT2 (t)Qē2(t)− ēT2 (t− τ)Qē2(t− τ)

(18)
Using the fact that ‖fi(t)‖ ≤ β and (11), one obtains :

2ēT2 (t)P2υ(t− τ)− 2ēT2 (t)P2D2fi(t)

= −2P2ē
T
2 (t)

[
ρ P2ē2(t−τ)
‖P2ē2(t−τ)‖ + D̄2fi(t)

]
≤ −2

∥∥P2ē
T
2

∥∥ [ρ‖P2ē2(t−τ)‖
‖P2ē2(t−τ)‖ + β

∥∥D̄2

∥∥]
≤ −2

∥∥P2ē
T
2

∥∥ [ρ+ β
∥∥D̄2

∥∥]
(19)

Substituting (19) into (18) yields

V̇ (t) ≤ ēT1 (t)
[
ĀT11P1 + P1Ā11

]
ē1(t) + 2ēT1 (t)P1Ā12ē2(t)

−2ēT1 (t)P1Ā12ē2(t− τ) + 2ēT2 (t)P2Ā21ē1(t)
+ēT2 (t)

[
ĀT22P2 + P2Ā22 +Q

]
ē2(t)

− 2
µ ē

T
2 (t)P2(Ā22 − Ās22)ē2(t− τ)

−ēT2 (t− τ)P2Qē2(t− τ)− 2
∥∥P2ē

T
2

∥∥ [ρ+ β
∥∥D̄2

∥∥]
(20)



defining the vector ξ(t) =

 ē1(t)
ē2(t)

ē2(t− τ)

, the inequality (20)

becomes :

V̇ (t) ≤ ξT (t)

 ĀT11P1 + P1Ā11 P1Ā12 + ĀT21P2

∗ ĀT22P2 + P2Ā22 +Q
∗ ∗

→

←
−P1Ā12

1
µP2(Ā22 − Ās22)

−Q

 ξ(t)− 2
∥∥P2ē

T
2

∥∥ [ρ+ β
∥∥D̄2

∥∥]
(21)

if

 ĀT11P1 + P1Ā11 P1Ā12 + ĀT21P2

∗ ĀT22P2 + P2Ā22 +Q
∗ ∗

→

←
−P1Ā12

1
µP2(Ā22 − Ās22)

−Q

 < 0, so ˙V (t) < 0. Therefore the

state estimation error dynamics is quadratically stable.

III. FAULT RECONSTRUCTION

A. Actuator fault reconstruction

The sliding motion is holding on to the sliding surface, for
a sufficiently small number of µ, the equations (13) and (14)
become:

˙̄e1(t) = Ā11ē1(t) (22)

0 ≈ Ā21ē1(t)− 1
µ (Ā22 − Ās22)ē2(t− τ) + υ(t− τ)

−D̄2fi(t)
(23)

The matrix Ā11 is stable, therefore ē1 −→ 0, so the equation
(23) becomes:

0 ≈ − 1

µ
(Ā22 − Ās22)ē2(t− τ) + υeq(t− τ)− D̄2fi(t) (24)

where υeq(t) the equivalent output injection defined by [27] :

υeq(t) = −ρ
∥∥D̄2

∥∥ P2ey(t)

‖P2ey(t)‖+ δ
(25)

with δ is a smoothing small positive scalar.
Since rank(D̄2) = q, it follows that:

f̂i(t) = (D̄T
2 D̄2)−1D̄T

2 (υeq(t)−
1

µ
(Ā22−Ās22)ē2(t−τ)) (26)

B. Sensor faults reconstruction

Assuming that the actuator fault is zero fi(t) = 0, and the
sensor fault fo(t) 6= 0, where :

y(t) = Cx(t− τ) + fo(t)⇒ ey(t) = ē2(t− τ)− fo(t) (27)

then the dynamic error estimation is :

˙̄e1(t) = Ā11ē1(t)+Ā12ē2(t)−Ā12ē2(t−τ)+Ā12fo(t) (28)

˙̄ey(t) = Ā21ē1(t) + Ā22ēy(t)− Ā22fo(t)

− 1
µ (Ā22 − Ās22)ēy(t− τ) + υ(t)− ḟo(t)

(29)

while the matrix Ā11 is stable, so ˙̄e1 7→ 0, then from the
equation (28) can be drawn ē1(t) ≈ −Ā−1

11 Ā12fo(t).

Therefore the estimated sensor fault is given by:

f̂o(t) = (Ā21Ā
−1
11 Ā12 + Ā22)−1(υeq(t)

− 1
µ (Ā22 − Ās22)ēy(t− τ))

(30)

IV. SIMULATION EXAMPLE

To illustrate the theoretical concepts which has been de-
veloped in this paper, consider an inverted pendulum system
where the equation of motion is:

(M +m)ẍ+ Fxẋ+ml(θ̈ cos θ − θ̇2 sin θ) = u (31)

Jθ̈ + Fθ −mlg sin θ +mlẍ cos θ = 0 (32)

where the particular values of the system parameters are
given in Table 1

M(kg) m(kg) J(kgm2) l(m) Fx(kg/s) Fθ(kgm
2)

3.2 0.535 0.062 0.365 6.2 0.009
g(m/s2)
9.807

Table1. Parameters of inverted pendulum system.

A linearized matrix model of equation motion has been
made about the equilibrium point at the origin is given by:

A =


0 0 1 0
0 0 0 1
0 −1.9333 −1.9872 0.0091
0 36.9771 6.2589 −0.1738

,

B = D =


0
0

0.3205
−1.0095

, C =

 1 0 0 0
0 1 0 0
0 0 1 0

.

Taking as states the angular position of the pendulum θ,
angular velocity θ̇, the position d and velocity of the cart ḋ,
then x(t) =

[
θ θ̇ d ḋ

]T
.

A linear state feedback controller u = [−7.8265 −
83.7077 − 15.6042 − 12.9578]x has been introduced to
stabilize the system.

The new matrix dynamics after stabilization is :

A =


0 0 1 0
0 0 0 1

2.5084 24.8950 3.0139 4.1621
−7.9009 −47.5258 −9.4935 −13.2547


After the change of coordinates, we obtain the following

matrices:

Ā =


−2 0 27.1779 6.2992
0 0 0 1
1 0 1.8549 −3.1498

4.1621 2.5084 32.6151 −10.0957

,



B̄ = D̄ =


0
0
0

0.3205

 , C̄ =

 0 1 0 0
0 0 1 0
0 0 0 1


and Ās22 = diag {−11;−12;−13}.

A. Observer design
The obtained SMO gains are:

Gl =


11 0 1
0 13.8549 −3.1498

2.5084 32.6151 2.9043
−7.9009 −49.8532 −8.6911

,

Gn=


1 0 0
0 1 0
0 0 1
0 1.8549 −3.1498

,

P1= 0.0172, P2=

 0.0131 0.0046 −0.0023
0.0046 0.0450 −0.0142
−0.0023 −0.0142 0.0086

,

Q =

 0.6496 0.0024 −0.0019
0.0024 0.6875 0.0036
−0.0019 0.0036 0.6708

 and µ = 0.05.

B. Observer simulation
In the corresponding simulation, the constants associated

with ν have been chosen to be ρ = 10 and δ = 0.005.
Furthermore, the system was assumed to have an initial
condition x(0) = [0.1;−0.1; 0.2; 0.1] and the observer was
assumed to have zero initial condition.

Fig. 1. The system outputs (dash line) and the observer’s estimates (solid
line).

Figure 1 shows a good estimation of the actual outputs with
a constant delay τ = 0.1s.

C. Fault reconstruction

1) Actuator fault reconstruction
An actuator fault is injected in the input of the system.

The figure Fig.2 below shows the robust reconstruction of this
fault:



Fig. 2. The actuator fault and its reconstruction.

The figure 2 presents an injected actuator fault and its recon-
struction. Therefore,it can be seen in spite the presence of the
time delay in the output system and the initial condition the
proposed method is able to give a good estimation of this
actuator fault.

2) Sensor fault reconstruction
In figures 3 and 4 we present the sensors faults reconstruc-

tion using the proposed SMO.

Fig. 3. The fault signal on the second sensor and its reconstruction.

Fig. 4. The fault signal on the third sensor and its reconstruction.

The simulation results show the efficiency of the proposed
methods of SMO design and sensor faults reconstruction for
the proposed output time-delay system. An appropriate choice
of the constants ρ and δ provides a good reconstruction.

V. CONCLUSION

In this paper a design method of sliding mode observer for
a class of linear output delay systems is developed. Using a
Lyapunov-Krasovskii functional and the LMI technique, the
SMO’s gains are derived. The proposed SMO has been used
to obtain actuator and sensor faults reconstruction despite the
presence of an output tim-delay. Finally the simulation results
is used to prove the efficiency of the proposed approaches in
fault reconstruction area.
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