
Software Implementation of ECC Using GMP Library
Anissa Sghaier

#1
, Chiraz Massoud

#2
, Medien Zeghid

*#3
, Mohsen Machhout

#4

#
Faculty of Sciences, EµELab , University of Monastir ,

Monastir 5019, Tunisia
1
sghaieranissa@yahoo.com

2
massoud.chiraz@hotmail.fr

4
machhout @yahoo.com

*
Higher Institute of Applied Sciences and Technology,

 Taffala city 4003 Sousse
3
medien.zeghid@fsm.rnu.tn

Abstract—This paper presents an efficient software

implementation of elliptic curve scalar multiplication.

Computing kP need finite field point operations which are point

addition and point doubling. Due to the use of big number, GMP

library is used to support large integers. We implemented our

design in INTEL (R) Core TM i3 CPU M380 @2.53 GHz 2.58

GHz with RAM 3 Go processor.

Keywords— Elliptic Curves Cryptosystems (ECC), scalar

multiplication, Discrete Logarithm (DL), GMP Library.

I. INTRODUCTION

Nowadays, data security became one of the primordial

requirements for many applications in our life. Various

methods exist to protect data; they are classified into two

categories, symmetric cryptography and asymmetric

cryptography. Asymmetric cryptography, called also public-

key cryptography, gained a big interest. It doesn’t provide

algorithms for data encryption and decryption, but also for

digital signatures and authentication.

The elliptic curve cryptography (ECC) achieves an

equivalent level of security with smaller key sizes compared

with traditional asymmetric techniques such as RSA. ECC is

based on scalar multiplication; it represents the most complex

operation. It is based on two operations which are Point

Addition and Point Doubling. These point operations are

computed using arithmetic operations, such as multiplication,

squaring and inversion.

There are two type of implementation, Hardware and

Software. In this paper, we are interested in the Software

implementation of ECC scalar multiplication. We used a

specific library called Multiple Precision Arithmetic Library

(GMP), it has a rich set of functions, specially for the use of

cryptography. The aim of GMP library is to be faster than any

other library for all operand sizes, big numbers and small

numbers. In our work, we used GMP for integer arithmetic to

compute scalar multiplication over GF (p).

The remainder of this paper is structured as follows.

Section 2 gives briefly a mathematical background of elliptic

curve cryptography. Section 3 presents our software

implementation. We conclude the paper in Section 4.

II. ECC AND CRYPTOGRAPHY

In this section, we will introduce briefly elliptic curves

background. Then, we will present ECC scalar multiplication

and how to optimize using different coordinates system. And

finally, we will give an example of Diffie-Hellman key

exchange.

A. ECC Background

Elliptic Curves can be represented over prime field GF (p)

or over finite field GF (2
m
). In this paragraph, we will give

the mathematical formulae for ECC over GF (p) and GF (2
m

).

1) ECC over GF (p)

An elliptic curve E over GF (p) can be defined by as:

y
2
 = x

3
 + ax + b, where a, b in GF (p) and 4a

3
 + 27b

2
 ≠0 in GF

(p). The set of Fq-rational points of E is defined as

E(Fq) = {(x, y) Fq × Fq |(x, y) satisfy E} {O}

The algebraic formula for point addition and point doubling

are given as follows:

x3 = m
2
 – x1 – x2 (mod p)

y3 = m(x1 – x3) – y1 (mod p)

With:

m = (y2 – y1) * (x2 – x1)
-1

, if P ≠ Q

m = (3x1
2
 + a) * (2y1), P=Q

Where, the addition, subtraction, multiplication and division

are arithmetic operations over GF (p)
2) ECC over GF(2

m
)

Let E be a non-super singular curve defined over a binary

field, GF (2
m
):

E: y
2
+xy=x

3
+ax²+b where a, b in GF (2

m
) and b≠0.

Let A= and B= , ai, bi in {0, 1}

Then A + B = and A × B= A.B mod f

Let P1=(x1, y1), P2=(x2, y2)

 P1 + P2 = P3 = (x3, y3) where

 x3 = m
2
 - x1 - x2 (mod p)

 y3 = m(x1 - x3) - y1 (mod p)

And m = (y2-y1)(x2-x1)
-1

 mod p, if P1P2

 m = (3x1
2
+a)(2y1)

-1
 mod p, if P1 = P2

Special cases: If m is infinite, P3 = , and  + P = P for

all point.

From the result of 2P and 3P, we can calculate other scalar

multiplications on the elliptic curve.

PC
Typewriter
ISSN: 2356-5608

PC
Typewriter
Proceedings of Engineering & Technology (PET)

PC
Typewriter
pp.259-263

PC
Typewriter
Copyright IPCO-2016

mailto:2massoud.chiraz@hotmail.fr
User1
Typewritten Text
3rd International Conference on Automation, Control, Engineering and Computer Science (ACECS'16)

User1
Typewritten Text

B. ECC Scalar multiplication

The scalar multiplication is the most complex operation in

elliptic curve cryptography. It is based on the calculations of

the form Q = k.P = P + P + P… k times. It consists of a

succession of point operations.

Fig. 1 Scalar Multiplication Hierarchy

Fig. 1 present the scalar multiplication hierarchy based on

Point Addition and Point Doubling, for example, if we take

k=5 and P a point of the curve E, k.P= 5P = 2(2P)+P, here we

need 2 doubling operations and one addition operation to

compute scalar multiplication.

Algorithm 1: Scalar multiplication MSB First

Inputs: k= (kn-1… k1, k0), with n = [log2 l]

Output: Q = k.P1

1: Z  P1

2: For i from (n-2) down to 0 do

3: Z  2.Z

4: If ki = 1 then

5: Z  Z+ P1

6: End if

7: End for

8: Return (Z)

One of the most used algorithms to perform scalar

multiplication is MSB First which is a sequential algorithm. It

requires m point doublings and (m-1)/2 point additions on the

average. Let’s take an example of 6P, 6= (110)2, 6P = 2(2(P) +

P).

C. Coordinates System:

The computation of scalar multiplication required the

calculation of inversions which is very costly. The affine

coordinate uses the inversions to calculate this operation or

affine coordinate’s inversions are very expensive. So to solve

this problem we can use the projective coordinates in Lopez

Dehab, such as (x.y.z), z≠0, maps to (x/z, y/z²). These

coordinates systems replace inversion by the multiplication

operations and then perform one inversion at the end (to

obtain back the affine coordinate).

D. Diffie-Hellman

If we have two distinct points, P and Q on an elliptic curve

E, to add the points P and Q, a line is drawn through the two

points. This line will intersect the elliptic curve in exactly one

more point, call -R. The point -R is reflected in the x-axis to

the point R=P + Q. Any elliptic curves have an additive

identity, we note O this point called also point at infinity.

Fig. 2 Diffie-Hellman key exchange

To add a point P to itself, called doubling operation, a

tangent line to the curve is drawn at the point P. If P is not 0,

then the tangent line intersects the elliptic curve at exactly one

other point, -R which is reflected in the x-axis to R.

Let’s now take an example of Diffie-Hellman exchange,

like it’s mentioned in Fig. 2. Alice and Bob define an elliptic

curve E, with parameters a, b and a random value k. They

choose a point P, and every one select arbitrary, his private

key, here kA=2 and kB=3. Alice and Bob compute respectively;

PkA=2P and PkB=3P. They exchange keys and every one

calculates kAPkB=2×3P=6P and kBPkA=3×2P=6P. They found

finally the same key.

III. SOFTWARE DESIGN

In this section, we will present our software implementation

using GMP Library.

A. GMP Library used with ECC

The GNU Multiple Precision Arithmetic Library (GMP) is

a free library for arbitrary-precision arithmetic, operating on

signed integers, rational numbers, and floating-point numbers.

There are no practical limits to the precision except the ones

implied by the available memory in the machine GMP runs on

(operand dimension limit is 2
32

-1 bits on 32-bit machines and

2
37

 bits on 64-bit machines). GMP has a rich set of functions,

and the functions have a regular interface. The basic interface

is for C.

The main target applications of GMP

are cryptography applications and research, Internet security

applications, and computer algebra systems.

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Computer_algebra_system

B. Implementation design

In this part, we will present how to define an elliptic curve,

then how to find elliptic points and finally, we will give an

example of encryption and decryption message.

1) ECC Parameters

Every user has a public, used for encryption/signature

verification, and a private key, used for decryption/signature

generation.

- Key generation: Alice and Bob agree on public :

• Curve parameters (a, b)

• The modulus p

• Base point B (on the curve)

• Pick a random integer k as private key

- Encryption

Let’s k be a randomly chosen integer as the private key.

Alice and Bob create public/private keys respectively: Alice(n,

Pa = n * B) and Bob (m, Pb = m * B)

 Alice sends to Bob a pair of points: {k*B, k*Pa }

 Bob represents data to send as a point Pb

 Bob sends to Alice a pair of points: {k*B, k*Pb }

Alice takes plaintext message, M, and encodes it onto a point,

PM, from the elliptic group

- Decryption

 Bob decrypts the message using his private key:

 Pa + k*B - n (k*B) = Pa + k (n*B) - n (k*B) = Pa

Remark: Elliptic curve discrete logarithm problem:

Given P and B, (and P= n*B), find n? This is a difficult

mathematical problem which let ECC very hard to be attacked.

2) Elliptic Curve on a finite set of Integers

The central part of any cryptosystem involving elliptic

curves is the elliptic group. Using the finite fields, we can

form an Elliptic Curve Group. Elliptic curve groups over Fp

have a finite number of points, which is a desirable property

for cryptographic purposes.

Fig. 2 Points of ECC

As an example, consider an elliptic curve over the field F163.

With a = 1 and b = 1, the elliptic curve equation is:

E: y
2
 = x

3
 + x + 1 mod 163

The field Fp uses the numbers from 0 to p - 1, and

computations end by taking the remainder on division by p.

 x = 0  y
2
 = 1 y=1, 162 (mod 163)

 x = 1  y
2
 = 3  no solution (mod 163)

 x = 2  y
2
 = 11  no solution (mod 163)

 x = 3  y
2
 = 31  no solution (mod 163)

 x = 4  y
2
 = 69  y = 45, 118 (mod 163)

 x = 5  y
2
 = 131  y = 72, 91 (mod 163)

Then points on the elliptic curve are (0, 1) (0,162) (4, 45)

(4,118) (5, 72) (5, 91) and the other points are given in Fig. 2.

As it mentioned in Fig. 2, P and Q are opposite so P + Q = O

with O is a point at infinity.

Fig. 3 Encryption and Decryption Results

Fig. 2 shows an example of encryption and decryption

using ECC. Alice and Bob choose a base point B (90, 127).

They fixed their private keys respectively: a=32 and b=131.

Alice and Bob calculated respectively: Pa=32B and Pb=131B.

Alice chose a plain text (31, 74) and he encoded it onto (Pa,

c1, c2). Then receiving the message from Alice, Bob decrypts

it as mentioned in the previous section.

IV. CONCLUSIONS

Elliptic curve cryptography (ECC) is now very used in

practice because it offers the same level of security with

smaller key size comparing to other public key cryptography.

In this paper, we presented a software implementation of

scalar multiplication over GF (p) field using GMP library

which is rich in cryptographic functions applied for all

operand sizes (big or small).

REFERENCES

[1] Praful Kumar Singh, and Mrityunjay Kumar Choudhary, ―Scalar

Multiplication Algorithms of Elliptic Curve Cryptography over GF
(2m)‖, International Journal of Innovative Technology and Exploring

Engineering (IJITEE), ISSN: 2278-3075, Volume-3, Issue-1, June

2013

[2] Manuel Bluhm, and Shay Gueron, ―Fast Software Implementation of
Binary Elliptic Curve Cryptography‖,, 2013

[3] Jean-Marc ROBERT, ―Approches Parallèles de Multiplication Scalaire

sur Courbe Elliptique Binaire‖, 2014.

[4] Jean-Marc Robert, ―Software Implementation of Parallelized ECSM
over Binary and Prime Fields‖, 16 Dec 2014.

[5] Software and Hardware Implementation of Elliptic Curve

Cryptography

