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Abstract—This paper presents an efficient software 

implementation of elliptic curve scalar multiplication. 

Computing kP need finite field point operations which are point 

addition and point doubling. Due to the use of big number, GMP 

library is used to support large integers. We implemented our 

design in INTEL (R) Core TM i3 CPU M380 @2.53 GHz 2.58 

GHz with RAM 3 Go processor. 
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I. INTRODUCTION 

Nowadays, data security became one of the primordial 

requirements for many applications in our life. Various 

methods exist to protect data; they are classified into two 

categories, symmetric cryptography and asymmetric 

cryptography. Asymmetric cryptography, called also public-

key cryptography, gained a big interest. It doesn’t provide 

algorithms for data encryption and decryption, but also for 

digital signatures and authentication. 

The elliptic curve cryptography (ECC) achieves an 

equivalent level of security with smaller key sizes compared 

with traditional asymmetric techniques such as RSA. ECC is 

based on scalar multiplication; it represents the most complex 

operation. It is based on two operations which are Point 

Addition and Point Doubling. These point operations are 

computed using arithmetic operations, such as multiplication, 

squaring and inversion. 

There are two type of implementation, Hardware and 

Software. In this paper, we are interested in the Software 

implementation of ECC scalar multiplication. We used a 

specific library called Multiple Precision Arithmetic Library 

(GMP), it has a rich set of functions, specially for the use of 

cryptography. The aim of GMP library is to be faster than any 

other library for all operand sizes, big numbers and small 

numbers. In our work, we used GMP for integer arithmetic to 

compute scalar multiplication over GF (p).  

The remainder of this paper is structured as follows. 

Section 2 gives briefly a mathematical background of elliptic 

curve cryptography. Section 3 presents our software 

implementation. We conclude the paper in Section 4. 

 

II. ECC AND  CRYPTOGRAPHY 

In this section, we will introduce briefly elliptic curves 

background. Then, we will present ECC scalar multiplication 

and how to optimize using different coordinates system. And 

finally, we will give an example of Diffie-Hellman key 

exchange. 

A. ECC Background 

Elliptic Curves can be represented over prime field GF (p) 

or over finite field GF (2
m
).  In this paragraph, we will give 

the mathematical formulae for ECC over GF (p) and GF (2
m

).   

1) ECC over GF (p) 

An elliptic curve E over GF (p) can be defined by as: 

y
2
 = x

3
 + ax + b, where a, b in GF (p) and 4a

3
 + 27b

2
 ≠0 in GF 

(p). The set of Fq-rational points of E is defined as 

E(Fq) = {(x, y)  Fq × Fq |(x, y) satisfy E}  {O} 

The algebraic formula for point addition and point doubling 

are given as follows: 

x3 =  m
2
 – x1 – x2 (mod p) 

y3 = m(x1 – x3) – y1 (mod p) 

With: 

m = (y2 – y1) * (x2 – x1) 
-1

, if P ≠ Q 

m = (3x1
2
 + a) * (2y1), P=Q 

Where, the addition, subtraction, multiplication and division 

are arithmetic operations over GF (p) 
2) ECC over GF(2

m
) 

Let E be a non-super singular curve defined over a binary 

field, GF (2
m
): 

E: y
2
+xy=x

3
+ax²+b where a, b in GF (2

m
) and b≠0.  

Let A=  and B= , ai, bi in {0, 1} 

Then A + B =  and A × B= A.B mod f 

Let P1=(x1, y1), P2=(x2, y2)  

 P1 + P2 = P3 = (x3, y3) where 

 x3 = m
2
 - x1 - x2 (mod p)  

 y3 = m(x1 - x3) - y1 (mod p)  

And m = (y2-y1)(x2-x1)
-1

 mod p, if P1P2  

              m = (3x1
2
+a)(2y1)

-1
 mod p, if P1 = P2  

Special cases:  If m is infinite, P3  =  , and   + P = P for 

all point. 

From the result of 2P and 3P, we can calculate other scalar 

multiplications on the elliptic curve.  
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B. ECC Scalar multiplication  

The scalar multiplication is the most complex operation in 

elliptic curve cryptography. It is based on the calculations of 

the form Q = k.P = P + P + P… k times. It consists of a 

succession of point operations. 

 

 

Fig. 1  Scalar Multiplication Hierarchy 

Fig. 1 present the scalar multiplication hierarchy based on 

Point Addition and Point Doubling, for example, if we take 

k=5 and P a point of the curve E, k.P= 5P = 2(2P)+P, here we 

need 2 doubling operations and one addition operation to 

compute scalar multiplication. 

 

Algorithm 1: Scalar multiplication MSB First 

Inputs: k= (kn-1… k1, k0), with n = [log2 l] 

Output: Q = k.P1 

 

1: Z  P1  

2: For i from (n-2) down to 0 do 

3: Z   2.Z 

4: If ki = 1 then 

5: Z  Z+ P1 

6: End if 

7: End for 

8: Return (Z) 

 

 

One of the most used algorithms to perform scalar 

multiplication is MSB First which is a sequential algorithm. It 

requires m point doublings and (m-1)/2 point additions on the 

average. Let’s take an example of 6P, 6= (110)2, 6P = 2(2(P) + 

P). 

C. Coordinates System:  

The computation of scalar multiplication required the 

calculation of inversions which is very costly. The affine 

coordinate uses the inversions to calculate this operation or 

affine coordinate’s inversions are very expensive. So to solve 

this problem we can use the projective coordinates in Lopez 

Dehab, such as (x.y.z), z≠0, maps to (x/z, y/z²). These 

coordinates systems replace inversion by the multiplication 

operations and then perform one inversion at the end (to 

obtain back the affine coordinate). 

 

 

D. Diffie-Hellman 

If we have two distinct points, P and Q on an elliptic curve 

E, to add the points P and Q, a line is drawn through the two 

points. This line will intersect the elliptic curve in exactly one 

more point, call -R. The point -R is reflected in the x-axis to 

the point R=P + Q. Any elliptic curves have an additive 

identity, we note O this point called also point at infinity. 

 

 
Fig. 2  Diffie-Hellman key exchange 

 

To add a point P to itself, called doubling operation, a 

tangent line to the curve is drawn at the point P. If P is not 0, 

then the tangent line intersects the elliptic curve at exactly one 

other point, -R which is reflected in the x-axis to R.  

Let’s now take an example of Diffie-Hellman exchange, 

like it’s mentioned in Fig. 2. Alice and Bob define an elliptic 

curve E, with parameters a, b and a random value k. They 

choose a point P, and every one select arbitrary, his private 

key, here kA=2 and kB=3. Alice and Bob compute respectively; 

PkA=2P and PkB=3P. They exchange keys and every one 

calculates kAPkB=2×3P=6P and kBPkA=3×2P=6P. They found 

finally the same key. 

III. SOFTWARE DESIGN 

In this section, we will present our software implementation 

using GMP Library. 

A. GMP Library used with ECC 

The GNU Multiple Precision Arithmetic Library (GMP) is 

a free library for arbitrary-precision arithmetic, operating on 

signed integers, rational numbers, and floating-point numbers. 

There are no practical limits to the precision except the ones 

implied by the available memory in the machine GMP runs on 

(operand dimension limit is 2
32

-1 bits on 32-bit machines and 

2
37

 bits on 64-bit machines). GMP has a rich set of functions, 

and the functions have a regular interface. The basic interface 

is for C. 

The main target applications of GMP 

are cryptography applications and research, Internet security 

applications, and computer algebra systems. 
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B. Implementation design 

In this part, we will present how to define an elliptic curve, 

then how to find elliptic points and finally, we will give an 

example of encryption and decryption message. 

 

1) ECC Parameters 

Every user has a public, used for encryption/signature 

verification, and a private key, used for decryption/signature 

generation. 

- Key generation: Alice and Bob agree on public :  

• Curve parameters (a, b)  

• The modulus p  

• Base point B (on the curve)  

• Pick a random integer k as private key  

- Encryption 

Let’s k be a randomly chosen integer as the private key.  

Alice and Bob create public/private keys respectively: Alice(n, 

Pa = n * B) and Bob (m, Pb = m * B) 

 Alice sends to Bob a pair of points:  {k*B, k*Pa }   

 Bob represents data to send as a point Pb  

 Bob sends to Alice a pair of points:  {k*B, k*Pb }   

Alice takes plaintext message, M, and encodes it onto a point, 

PM, from the elliptic group 

- Decryption 

 Bob decrypts the message using his private key:  

    Pa + k*B - n (k*B) = Pa + k (n*B) - n (k*B) = Pa  

 

Remark: Elliptic curve discrete logarithm problem: 

Given P and B, (and P= n*B), find n? This is a difficult 

mathematical problem which let ECC very hard to be attacked. 

 

2) Elliptic Curve on a finite set of Integers 

The central part of any cryptosystem involving elliptic 

curves is the elliptic group. Using the finite fields, we can 

form an Elliptic Curve Group. Elliptic curve groups over Fp 

have a finite number of points, which is a desirable property 

for cryptographic purposes. 

 

 
 

Fig. 2 Points of ECC 

As an example, consider an elliptic curve over the field F163. 

With a = 1 and b = 1, the elliptic curve equation is: 

E: y
2
 = x

3
 + x + 1 mod 163 

The field Fp uses the numbers from 0 to p - 1, and 

computations end by taking the remainder on division by p. 

 x = 0  y
2
 = 1 y=1, 162 (mod 163) 

 x = 1  y
2
 = 3   no solution (mod 163) 

 x = 2  y
2
 = 11  no solution (mod 163) 

 x = 3  y
2
 = 31  no solution (mod 163) 

 x = 4  y
2
 = 69  y = 45, 118 (mod 163) 

 x = 5  y
2
 = 131   y = 72, 91 (mod 163) 

Then points on the elliptic curve are (0, 1) (0,162) (4, 45) 

(4,118) (5, 72) (5, 91) and the other points are given in Fig. 2. 

As it mentioned in Fig. 2, P and Q are opposite so P + Q = O 

with O is a point at infinity. 

 

 
 

Fig. 3 Encryption and Decryption Results 

 

Fig. 2 shows an example of encryption and decryption 

using ECC. Alice and Bob choose a base point B (90, 127). 

They fixed their private keys respectively: a=32 and b=131. 

Alice and Bob calculated respectively: Pa=32B and Pb=131B. 

Alice chose a plain text (31, 74) and he encoded it onto (Pa, 

c1, c2). Then receiving the message from Alice, Bob decrypts 

it as mentioned in the previous section. 

IV. CONCLUSIONS 

Elliptic curve cryptography (ECC) is now very used in 

practice because it offers the same level of security with 

smaller key size comparing to other public key cryptography. 

In this paper, we presented a software implementation of 

scalar multiplication over GF (p) field using GMP library 

which is rich in cryptographic functions applied for all 

operand sizes (big or small). 
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