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Abstract—This paper investigates the problem of fault However, the problem reduces the system performances
detection and isolation for discrete linear systems subje¢ed to  of fault diagnosis due to modeling errors and unmeasurable
unknown disturbances, actuator and sensor faults. A bank of - gigtribytion. it is difficult to distinguish between the efts
Robust Two Stage Kalman filters is adapted to estimate both -
the state and the fault as well as to generate the residuals. OT an actual fault and those Causgd by uncertalntle§ and
Besides, this paper presents the evaluation of the residual disturbances, when perfect de-coupling cannot be achieved
with Bayes test of binary hypothesis test for fault detectin We must make a difference between ”"low” residuals which
to adaptive threshold compared with fixed threshold. This are characteristics of normal state and "big” residualg tha
test allow the detection of low magnitude faults as fast ;\qicates the presence of faults. The implementation of the
as possible with a minimum risk of errors, the increase of - . . .
detection probability and the reduction of false alarm probability. ,Stat'St'C,al tests of binary hypo.th.eses in - this \_quk makes

it possible to analyze the statistical characteristics fof t

Keywords: Fault Detection,Fault isolation, Stochastic Sgtems, residuals and their sensitivity to the changes of the system
Adaptive Threshold, detection delay. [9]. In this contexts, our work consists in proposing a rdbus
decision making with a statistical approach of fault detect
of linear stochastic systems with unknown disturbances.

The problem of fault detection and isolation (FDI) for This paper is organized as follows: Section 2 states the
stochastic linear systems with unknown inputs has receivegstem and the fault modeling. Section 3 presents fault
considerable attention in intelligent control systems[F]. diagnosis for stochastic systems using the Robust Two Stage
In [3], [4]the optimal filtering and robust fault diagnosisKalman filter(RTSKF). The fault detection delay is presente
problem has been studied for stochastic systems with unknoin the Section 4. Section 5 demonstrates the influence ofusin
disturbances. An optimal observer is proposed to estimaie adaptive threshold in improving the performance of the
the state which is designed to be decoupled from unknowault detection. In Section 6, the performances of the psepgo
disturbances with minimum variance for time varying systenmethod are assessed through a numerical example. Finally,
with both noise and unknown disturbances. Recently,unknowoncluding notices are given in section 7.
input filtering has been extensively studied using the Kalma
filtering approach [5] in which the residual is designed to [I. SYSTEM AND FAULT MODELING
be decoupled to unknown disturbances, modeling errors an
noises, whilst it's sensible to faults. In fact Chien Shudtsi
in [6], has develo_ped a robust filter strl_Jcture, that canesolv Tpy1 = Az + Buy, + Edy, + wf )
the problem of simultaneously estimating the state and the yr = Cxp + vy,
fault in the presence of the unknown disturbances. The
procedure of fault detection and isolation can be divided inwherez, € R" is the state vectory, € R™ is the output
the following two steps [7], [8]: the first step considers th¥€ctor,ux € R? is the known input vector, and, € R is
residuals’generation which is based on a physical model € unknown disturbances;; andv; are uncorrelated white
the system to be monitored. The generation phase consl@éses sequences of zero-mean and the covariances matrices
in calculating the residuals which are consistency indiat are Qi = ¢ [wiwi] > 0, and R}, = ¢ [vzv | > 0, where: []
between recorded measures and the model behavior. H§&otes the expectation operator. The matrides3 and C'
second step describes the residuals’evaluation(congeitie are known and have appropriate dimensions. We assume that
residuals'value symptoms). The detection problem is tal,C) is observablem > r + ¢ and rankCE) = rank (E).
establish a rule of decision that can detect the earliestijpes The initial state is correlated with the white noises preess
passage of an available functioning hypothesis, to an wi andwvy. The initial statex, is a gaussian random variable
abnormal state, where there are failures, called hypattigsi  with € [z9] = 2o ande [(ﬂUo — o) (o — 20)" | = P§.

I. INTRODUCTION

dConsider the linear time-varying discrete stochasticesyist
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The unknown disturbancek € R can be used to describethe state, and to apply the Kalman filter. The Robust Two-
additive disturbances and modeling errors such as nomlin&age Kalman filter(RTSKF)is developed on two steps. Firstl
terms in the system dynamics. In the system modeling, two-stageU — V transformations are made in order to
faults are described in two different types: 1)additiveltau decouple the covariance matrix on the augmented state Kalma
characterizing actuator or sensor faults, 2)multiplieafaults, Filter (ASKF)so, reduced order Kalman filter called twogsa
designating plant faults.In the sequel, only actuator am$aer Kalman filter is obtained. Secondly, by making use of the
faults are considered. For instance, an actuator faultldim two-stage Kalman filtering technique and a new proposed
represented by unknown inputs filtering technique, a robust two-stage kKadm

) filter(RTSKF)which is unaffected by the unknown inputs[6].
By = B(I + diag(&})) (2)

A. Robust Two Stage Kalman filter

The algorithm of the Robust Two Stage Kalman filter is
summarized in the Table I.

with g2 = [ €. g &% ]T , By is an unknown matrix,
the state-space representation of the faulty system ejthe
definition of an unknown inpyt,, which is equal to zero in
the fault-free case ; B. Residual generation and fault detection

To detect a fault, the residual is synthesized from the

=A B Ed Fefe ¢ 3 . .
Th+1 = Azi + Bug + Bdy + F2 i + wi ) gifference between the real and the estimated output of the
where system described by its mathematical model.
e — [ Far Fai [ap ] f}g — [ ]zn ]gi ]?p ] Yk = Cfck/k + F]:7’fk/k )

T = Yk — Yk = Ceg + FS7'6£ + v
Likewise, sensor faults characterize a scaling change én th
state measurement and are represented by modifying ¥Heeree = xj,—xy,;, andef = fi— f;./; are the state and the
matrix C' as: fault estimation errors. Note that these errors have mimmu
Cy = (I +diag(&}))C (4) Vvariances.

The residual is examined in terms of the probability of a
withés = [ T SEV S o ] and expression of the faulty fault, therefore a logical decision-making process is i@gpl
system is : aiming to decide if the fault has occurred and avoided wrong

decisions, such as false alarm and non-detection. Differen
yr = Cxp + F° 7 + vy, (5) techniques to evaluate residuals is as follows.
1) Thresholding: Evaluation consists in defining a threghol
to detect the presence of faults. The main difficulty of
Fs = [ Fs1 Fsi Fsm } i = [ A S ] detection lies in the calculation of the threshold residue.

] _ i A high threshold is likely to cause non detection. On
The system with an actuator fault is thus modeled by repgacin the contrary, a low threshold will possibly cause false

where

the state equation in(1)as: alarms[7].
Tpy1 = Axy, + Bup + Ed + F% f + wf 2) Statistical decision: For this assessment, the wellkmo
f (6) examples of these statistical test techniques are as

Jeyr = i +wy

follows :
and the one ywth_ a sensor fault is modeled by substituting the . Generalized Likelihood Ratio (GLR) test introduced
output equation in(1)as: by Willsky and Jones [10] performs statistical tests
yr = Cxy + F5 f7 + vy ; on _the innovations sequence of a Kalman filter state
fea=fi+ w}{ @) estimator.
o Bayes test: the function of decision which is
1. FAULT DIAGNOSIS the likelihood ratio test of conditional probability
Fault diagnosis divided into the two tasks: 1)fault detacti densities noted byA(r)  will be compared
determining if the system is faulty or not regardless with a thresholdn, which is determined by the
disturbances. 2)fault isolation, deciding which elemefit o minimization of an optimality criterion [9]. We can
the system is faulty. In order to achieve this task, we detect the fault using the following detection rule
need to look for fault symptoms. Residual is the most 0 if <
. . . k<t
common defect symptom that is used for fault diagnosis. S(rx) { | otherwise (9)

It is composed of the state and the estimation error where

the state and the estimation error are generated usingtrofus Fault isolation

filtering for the system subjected of unknown disturbances.Faultisolation requires the generation of a residual thagtm
To solve the simultaneous state and fault estimation pnoblde sensitive to faults able to distinguish between differgmes

of linear stochastic discrete-time with unknown disturdes) of faults. Thus, a bank of two-stage kalman filters is set up
the natural approach is to augment the fault as a part adcording to the system model with actuator fault and with



TABLE | where
THE ALGORITHM OF THE ROBUST TWO STAGE KALMAN FILTER ) )
€iy1 = (I = L1 O)F fr = (I = Ly O)F* fi .

Correction of state estimation +(I — Lg41C)Aef + (I — L1 C)wi
_ — Ly v
:Ekz+1/k+1 = Qikz+1/k+1 + Brt1/kr1 o1 k41 g :;—1 k41 CF% s U opa ’
Pk = Pilpa e + Bet1/ea By +1/k+1ﬁk+1/k+1 k+1 fk k+1 o k+1 k/k
with —Lj ,CAef + wk Ly (Cw + vgt1)
Zos0 = 0 — Bojofo, Bojo = By (Bf)~! (11)
; with
Pz, =P — By,0P! BT, , _ 7 f
0/0 0 0/040 Pg /0 Lii1 =1L + L 12
State Subfilter + k1 T Brri/mr1 Ly (12)
_ _ _ _ Tzi :Cei—Fsifk/k—f—’Uk (13)
Tpy1 k1 = Tppr/k + L k1 Vet 1
Plviep = = k+1C) k+T1/k where
+nk+1nk+1Gk+1Hk+1nk+1 eiJrl = — Lg1C)F% fr, + Lk+1Fsifk/k
with Jr(I - Lk+1C)A€i + (I — LkHC’)w;ﬁ
Lk+1 = Kk+1 + 1 i ; *Lk;rlkarl (24)
T = KICTHCE -1 €k+1 = €k k+1CFaJ S+ L1 B fryi
fé;j = [(ee)yTepcE] (cBTar, —L{ ,CAef +wl — L, (Cw} + vii1)
Wi
Vi1 = Ykt1 — CTpp1/k 2) The residual ofith filter in case of thejth sensor fault
Tk = ATy + Bug + o frye — Br1/e Sk ) ]
[fk+1 _ Pk+1/kCTTGi+1 (T =0a1,.cccs Qp, S1eeee 8y J = ST, 00y Sp)
ke = AP P = Ceb + F* fi, + vy (15)
+on P = Brra/kb +1/k5k+1/k
G, =C kH/kC +v where
Fault Subfilter i1 = —Liir B fr = (I = L1 O)F® fi
+(I — Lk—i-lC)Aei + (I — Lk+10)wg
fkf+1/k+1 Ty +?k+17£+1 —Lyp 1 (F ’w;f + Vkt1) (16)
Pevipn =0 - Kk+1H7’f+1/k) k17K el = ei Liy F fr+ LL CF fi
+”k+1H£+1G£+1H£+1’71{+1 Lk+1CAek (I - Li_HFSJ )w,’:
L'
with =Ly 1 (Cwi + vky1)
fo g f f f ) )
Liyr = Kjl;+1 M1 My rit = Cep + F% fr, — F* fi 1. + 17)
Mog1 = K1 CF ) h
uf,, = [eBTal, o8] ©BTal where ) )
€1 = L1 F% f + L1 F* frp,
where . +(I — L1 C)Ae?t + (I — Ly C)wf
%;1 = %;1 - k+1/kfk]/cli *Lk+1( J‘w,{ Y vpr) s
K P
I;+ k+1/k k+1/ka+1 e£+1 _ ek Lk+1FsJ fr+ Lk_HF i (18)
Grpr = Hipr/e Py Hi oy + G Lk_HCAek (I - LkHFsJ)
Coupling Equations k_H(ka + Vp11)
Hyq1yp = F*i 4 CBryyk, F*i = 0 for model (6) The resultant vectorS®(r,) for residuals from the filters with
Brt1/b+1 = Brt1/k = Ly 1 Heya/k F% and S%(ry) for residuals from the filters withF* are
ak = APk + F, F* =0 for model (7) produced as
1
B =ap P/ Pf
k+1/k k/k” k+1/k S“(r)*[ S‘“(?‘ ) Saq,( ) Sap( ) T
k) — k)ee- Tk)-.- Tk ] (19)

() = [ S0 S% () S%0(r) |7

sensor fault. The residual generated from the bank of tagest Then for fault isolation,S%(r;) and S*(r;) are compared
kalman filters in case of an actuator or sensor fault summario the fault signatures®(ref, f;) and S*(ref, f;) which are

as follows. the column vectors if the fault signature matrices defined in
1)The residual of theth filter in case of thejth actuator the Table Il. Note that thé)’” element of the fault signature
fAUIt (i = a1, ooy Gpy S1eenSimy = A1, ey Q) matrices are designed based on the underlying principke tha

only the filter associated with the fault occurred can edtma
the state and the fault correctly. Now,Sf (r;) coincides with
rit = Cej, + vy (10) a column of the actuator fault signature matrix in the Table



I, the corresponding fault indicataf(f,,) orl(fs) is set to P;, which is the probability of the time detection delayiaf
"one”. If I(f,,) = 1, theith actuator is declared to faulty. The probability of detection delay is expressed by:
If I(fs) = 1, we guess a sensor fault. Further, by checking

if S%(r) is same as which column of sensor fault signature P(Ta=0n) = P(r(ty) >rm) =P
matrix in theTable II, the corresponding fault indicafdf,. ) P(Ty=1h) = P(r(ty) <rw,r(ty +h)>rm)
set to 1, and théth sensor is declared to be faulty [6]. = PP
TABLE I :
FAULT SIGNATURE MATRICES P(T,=ih) =
A L e G 2 i 3 X O A 270 P(r(ty +ih—h) < 71, r(ty +1ih) > 1)
S : : ; B = Bh (21)
Asry is IID, then P, = 1 — Py, the average value of
- the expected detection timé,; is expressed by equation
RG] 0 0 L L (22)wherd& denotes the expected value:
S5P (1) 0 1 1 0 B 0
T,=E(Ty) =h Y. iP(T; = ih)
=0
IV. FAULT DETECTION DELAY =hY iP P}
1=0
The main goal of fault detection is to detect the fault when _p (S piy (22)
it occurs, by generating an alarm. However, we must attach - 2(2.;) 2)
a great importance to the time taken before generating an = hPyPy (7 1P )
— 12

alarm which depends on the decision method. This step aims _ P
to analyze the residuals in order to detect the fault.

Py
The probabilitesP, and P, = 1 — P, can be determined
from the probability density function of the decision signa
after occurrence of the fault and the threshold value is fixed
as shown in figure 2

A. Fault detection threshold and detection time
The residuak is compared with a threshold;, as follow:

system (20)
system Tth—

e < 1, fault free
rE > Tih, faulty

The choice of thresholds vector affects directly the daact
time of the anomaly. This time is the difference between the " Py
time of occurrence; and the detection instary, the time P
taken for detection is denotél; = t4 — ¢ [11].

Fig. 2. The Probability density of the residue.

Tk;y; Here fault-free data has a Gaussian distribution with mean
rih ‘ N/\ 0, variance 1 and faulty data is also Gaussian distributefdl wi

T ; ] mean 2 and variance 2.
b %d’ ] Determining the estimation of detection tim&(Ty) is

) directly related to probabilitiesP; and P, which are

determined by the choice of the threshold detection.Tdb)e (
presentsk(Ty) calculated for different threshold values and

In an ideal case, a fault must be detected immediately affer 1 = 1sec.
its occurrence. However, because of the position of thidsho
alarm there is always a detection delay. In order to show the
effect of the threshold value variation on the detectionetim

Fig. 1. Effect of the threshold on the detection time

TABLE IlI
EFFECT OF THRESHOLD CHANGE ON EXPECTED DETECTION DELAY

we consider the probability tools to estimate the varidhle Thresholdr;, | Expected detection delayy,(s)

for different threshold values [12]. We assume that thedresi 0 0.19

signalry is an independent and identically distributed random 21'255 0;?7

variable (l1ID). The probability of exceeding the threshold 1 53

detectionr;;, by the residue at the occurrence time of the fault 5 13.97

is given by P, , which is in fact the probability of immediate

detection. According to the table (lll), for threshold values, < 4

The probability of not exceeding the threshold residu#the estimation of the detection time is in the order of 5.3, bu
signal at the time of the fault occurrence withdelay time is it increases considerably for valuesof, > 5.



Based on analysis of probability, we note that:there is 3) Calculate the output over the sum of the weighted kernel
always a detection delay which can be considered more or outputs:
less important depending on the type of fault, type of system
dynamics, whether fast or slow. Since the time represergs on 2
of the basic indices of the safety process. Detection delay P(yr) = Z“’iv’fpi(yk/“’“ai)
must be limited. However, this limitation should not cause =1
false alarms. In addition, optimizing the detection time do 4) Update the weights
the choice of a detection threshold ensuring the compromise

between the rate of false alarms and the rate of non detection M

Wi, k+1 = Wik + Qf {

— Wik
[12], [13]. P(yr) ’
B. Optimization of the detection delay 5) Adjust adaptive gaim:
Detection at optimal time is a detection having optimal o — 1
performances, a minimum rate of false alarms with an LT R

acceptable sensitivity to the faults. The choice of a carista 6) k =k + 1 go to step (2) while
threshold value is limited by the presence of unknown
input. The threshold resulted from modeling uncertainties
and disturbances can be misinterpreted as a response to
sensor and actuator faults thus, set off a false alarm. 1 Faults Detection with Bayes Test

fact, perfe_ct decoupling cannot be_ _a_chleved, a performanc%urveys on design algorithms for failure detection aremive
index which measures the sensitivity to faults and tr]ﬁ

insensitivity to uncertainties must be defined and optichise the works [14], [15]. The rule of decision-making of Bayes

The implementation of the statistical tests of binary hinests 's written in the following form:

makes it possible to analyse the statistical charactesisti H,y

of these residuals and their sensitivity to change of system Ar) = P(r/Hi) > FB(Cio—Coo) _ .
behaviour. In fact, the introduction of the technique of P(r/Hy) < Pi(Co —Ch1) 7
decision-making, shows that it is possible to minimise the Hy

detection delay and false alarms.

|(wi k41 — wik)/wik| > €

(23)

A(y): ratio of conditional probabilities densities;
V. ROBUSTFAULT DETECTION BASED ONBAYES TESTS  p: threshold which depends on a priori probabiliti®s and
WITH ADAPTIVE THRESHOLD C;;. In many practical cases, it is often select€dy = Co; =

One of the techniques used to design an adaptive thresh®l@nd Cio = C11, the expression ofy depends only on laws
is the method of the Gaussian Kernel(GK) which allows th@ priori P;, the expression of the threshold of the decision is
processing of data directly and provides an estimation ofvgitten as:

o o ; P,
priori probabilities. More precisely, the measuremenadae n=
used directly to calculate weights assigned to the proiabil 1=F
densities functions relating to the hypothedis and H;. the progression of adaptive threshold which is given by the
Each kernel has three parameters that can be adjusted dualygrithm in paragraph (V.A) by the following equation:
training, the meam, the standard deviatiom and a parameter

(24)

of weight correctionw; which has a function equivalent to 0, = A= Wiks) (25)
that of a probability. Weights are corrected in a recursiagy w Wi k41
according to the available observations. where W; ;41 corresponds to the estimat&; to have

A. Gaussian kernels algorithm for a priori probabilitym/poth‘:"SiSH1 at time(k + 1).

estimation
Let consider the datag,oc and u;,0 of the hypotheses

C. Bayes Test performance

I d I fvelv. W ¥ N ter To optimize the decision-making by the Bayes test, it is
o and i, respectively. We consider a stop Critenan .o oqqany 1o minimize at the same time the rate of false alarm
which is the corresponding error to the difference betwe%lp]d the rate of non-detection. Then, it is very delicate to

the estimated value and the true value. The algorithm 'Sng'VFegulate the two probabilities independently. The proktgbi

by the foII(_)vyl_ng stage_s_. ) of false alarm,P;, and missed detectioft,,; can be defined
1) Set initial conditions, by randomly selecting a valug

for p(Hy) within the range0 < p(H;) < 1 which +00
corresponds to the weight, , probability of having the Ppo = / p(r/Ho) dr (26)
hypothesed?; Set the initial valuex, for £k =0... v
2) Calculate the weighted output for each of the two kernels gl
Poa= / p(r/Hp) dr (27)
Pi(yr) = wirpi(y/pis06) i =1,2 —o0



VI. ILLUSTRATIVE EXAMPLE

The effectiveness of the present FDI strategy is illustrate
through computer simulations for the linearised disctite
model of a simplified longitudinal flight control system [16]

Tpy1 = (A + AA)xk + (Bk + AB)uk + Faf]? + wg
yr = Cap + F° f)] + vy
(28)

where the state variables are: pitch angjle pitch ratew, and
normal velocityn,,, the control input, is the elevator control
signal. ' and F'* are the matrices distributions of the actuator
fault f7 and sensor faulf;. The termsE”d,, represents the
parameter perturbations in matricdsand B:

Bayes test with fixed threshold
T T T T T T

T
Al -
—festal]
= Ta H
b e 5 Bl
I LT I I i I | |
0 ) 0 ) E) w oo W 0 ) )
Decision
5 T T T T T
i+
s Hy N H,y 1
o | | | I | | | | |
0 20 o 0 o ” L 140 160 180 0
Wnmefs)

Fig. 3. Bayes test with fixed threshold of the residuall

Figure (3) shows that the Bayes test with fixed threshold

E%dy = AAxy, + ABuy, (29) does not detected the change of operation at the desired
moment (t;, = 50s,tys = 90s). The decision function
where Ay A} < I _ indicates that the detection delay is given By = 70s,
The system parameter matrices are : hence, in terms of power the test is very weak. On the other
0.9944 —0.1203 —0.4302 hand, figure (4) which presents the Bayes test with adaptive
A= 00017 09902 —0.0747 threshold shows that the fault is detected suitably and the
0 0.8187 0 threshold adapts with the evolution of the residual sighbke
way it increases the power of the test for the decision-ngakin
0.4252 between the two hypothesé, and H;. The detection delay
B =| -0.0082 for a Bayes test with adaptive thresholdZis = 28s
0.1813
Bayes test with adaptive threshold
C = Ines ey S —
v [ My W 02 } ,n S BIﬂDeci;nion S
The covariance matrices for process and measurement noise |
sequences ar@V® = diag {0.01%,0.01%,0.1*} and V = o H
0.12I3x3. N
As an actuator fault, we consider a loss in the actuator o Time(s) © © ¢ %"

effectiveness, abruptly (step wis¢} = —pul, 0 < p < 1,
with the influence patterh)® = B. Likewise, a sensor fault
is modeled by abrupt changeg; = Az, for the output
measurement withsi = C*. The unknown inputs is given
by:

Eidy, =

Joid Aan Aa12 Aa13 + Abl
k Aa21 ACLQQ Aa23 Tk AbQ Uk
0)
whereAa;; and Ab;; (i =1,2.5 = 1,2,3) are perturbations

in aerodynamic and control coefficients.
In this example, the aerodynamic coefficients are perturbed

by +50% , i.e Aaij = —O.Sa,-j and Ab,‘j = —0.5bij.
In addition, we setu, = l,z0 = [0 0 0 ]T,PO =
0.1%eye(3)

For a better analysis of the sensitivity of residuals coragar
to the faults and disturbances, we take a low magnitude of
faults. Then, we must apply the Bayes test with adaptive
threshold, to show its power and its robustness in the praeed
of detection of faults.

Fig. 4. Bayes test with adaptive threshold of the residuall

Bayes test with fixed threshold

Decision

“rime(s) ™

Fig. 5. Bayes test with fixed threshold of the residual2

Bayes test with adgptive‘thre‘shold

A B

Decision

Hy H,

S Timets) ¢

Fig. 6. Bayes test with adaptive threshold of the residual 2



In figure (5) the Bayes test with fixed threshold, for theletection in a residual can illustrate the faults appearanc
second residual, does not detect the fault of low magnitudehis work shown that the improvement of performances can
It is clear that the detection threshold is above the signéle presented, we decrease the detection time and false alarm
Then, no decision was made between the two hypothegesbability and we increase the detection probability.sThi
Hy and H;. In figure (6) we notice that the Bayes test withechnique is based on the estimate of the a priori probigsilit
adaptive threshold starts to detect the change of operhjionby a non parametric method using Gaussian kernels.
the adaptation of the threshold but with a delay= 70s this
results in a number of commutations raised in the graph of REFERENCES
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