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Abstract—This paper investigates the problem of fault
detection and isolation for discrete linear systems subjected to
unknown disturbances, actuator and sensor faults. A bank of
Robust Two Stage Kalman filters is adapted to estimate both
the state and the fault as well as to generate the residuals.
Besides, this paper presents the evaluation of the residuals
with Bayes test of binary hypothesis test for fault detection
to adaptive threshold compared with fixed threshold. This
test allow the detection of low magnitude faults as fast
as possible with a minimum risk of errors, the increase of
detection probability and the reduction of false alarm probability.
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I. I NTRODUCTION

The problem of fault detection and isolation (FDI) for
stochastic linear systems with unknown inputs has received
considerable attention in intelligent control systems[1], [2].
In [3], [4]the optimal filtering and robust fault diagnosis
problem has been studied for stochastic systems with unknown
disturbances. An optimal observer is proposed to estimate
the state which is designed to be decoupled from unknown
disturbances with minimum variance for time varying systems
with both noise and unknown disturbances. Recently,unknown
input filtering has been extensively studied using the Kalman
filtering approach [5] in which the residual is designed to
be decoupled to unknown disturbances, modeling errors and
noises, whilst it’s sensible to faults. In fact Chien Shu Hsieh
in [6], has developed a robust filter structure, that can solve
the problem of simultaneously estimating the state and the
fault in the presence of the unknown disturbances. The
procedure of fault detection and isolation can be divided into
the following two steps [7], [8]: the first step considers the
residuals’generation which is based on a physical model of
the system to be monitored. The generation phase consists
in calculating the residuals which are consistency indicators
between recorded measures and the model behavior. The
second step describes the residuals’evaluation(converting the
residuals’value symptoms). The detection problem is to
establish a rule of decision that can detect the earliest possible
passage of an available functioning hypothesisH0, to an
abnormal state, where there are failures, called hypothesisH1.

However, the problem reduces the system performances
of fault diagnosis due to modeling errors and unmeasurable
distribution. it is difficult to distinguish between the effects
of an actual fault and those caused by uncertainties and
disturbances, when perfect de-coupling cannot be achieved.
We must make a difference between ”low” residuals which
are characteristics of normal state and ”big” residuals that
indicates the presence of faults. The implementation of the
statistical tests of binary hypotheses in this work makes
it possible to analyze the statistical characteristics of the
residuals and their sensitivity to the changes of the system
[9]. In this contexts, our work consists in proposing a robust
decision making with a statistical approach of fault detection
of linear stochastic systems with unknown disturbances.

This paper is organized as follows: Section 2 states the
system and the fault modeling. Section 3 presents fault
diagnosis for stochastic systems using the Robust Two Stage
Kalman filter(RTSKF). The fault detection delay is presented
in the Section 4. Section 5 demonstrates the influence of using
an adaptive threshold in improving the performance of the
fault detection. In Section 6, the performances of the proposed
method are assessed through a numerical example. Finally,
concluding notices are given in section 7.

II. SYSTEM AND FAULT MODELING

Consider the linear time-varying discrete stochastic systems:

xk+1 = Axk +Buk + Edk + wx
k

yk = Cxk + vk
(1)

wherexk ∈ ℜn is the state vector,yk ∈ ℜm is the output
vector,uk ∈ ℜp is the known input vector, anddk ∈ ℜq is
the unknown disturbances.wx

k andvk are uncorrelated white
noises sequences of zero-mean and the covariances matrices
areQx

k = ε
[

wx
kw

T
k

]

≥ 0, andRx
k = ε

[

vkv
T
k

]

≥ 0, whereε [.]
denotes the expectation operator. The matricesA, B andC
are known and have appropriate dimensions. We assume that
(A,C) is observable,m ≥ r + q and rank(CE) = rank (E).
The initial state is correlated with the white noises processes
wx

k andvk. The initial statex0 is a gaussian random variable

with ε [x0] = x̂0 andε
[

(x0 − x̂0)(x0 − x̂0)
T
]

= P x
0 .
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The unknown disturbancesdk ∈ ℜq can be used to describe
additive disturbances and modeling errors such as nonlinear
terms in the system dynamics. In the system modeling,
faults are described in two different types: 1)additive faults,
characterizing actuator or sensor faults, 2)multiplicative faults,
designating plant faults.In the sequel, only actuator and sensor
faults are considered. For instance, an actuator fault should be
represented by

Bf = B(I + diag(ξak)) (2)

with ξa =
[

ξa1 .. ξai .. ξap
]T

, Bf is an unknown matrix,
the state-space representation of the faulty system requires the
definition of an unknown inputfa, which is equal to zero in
the fault-free case ;

xk+1 = Axk +Buk + Edk + F afa
k + wx

k (3)

where

F a =
[

F a1 F ai F ap
]

fa
k =

[

fa1

k fai

k f
ap

k

]

Likewise, sensor faults characterize a scaling change in the
state measurement and are represented by modifying the
matrix C as:

Cf = (I + diag(ξsk))C (4)

withξs =
[

ξs1 .. ξsi .. ξsp
]T

, and expression of the faulty
system is :

yk = Cxk + F sf s
k + vk (5)

where

F s =
[

F s1 F si F sm
]

f s
k =

[

fa1

k fai

k f
ap

k

]

The system with an actuator fault is thus modeled by replacing
the state equation in(1)as:

xk+1 = Axk +Buk + Edk + F aifa
k + wx

k

fa
k+1

= fa
k + wf

k

(6)

and the one with a sensor fault is modeled by substituting the
output equation in(1)as:

yk = Cxk + F sif s
k + vk

f s
k+1

= f s
k + wf

k

(7)

III. FAULT DIAGNOSIS

Fault diagnosis divided into the two tasks: 1)fault detection,
determining if the system is faulty or not regardless
disturbances. 2)fault isolation, deciding which element of
the system is faulty. In order to achieve this task, we
need to look for fault symptoms. Residual is the most
common defect symptom that is used for fault diagnosis.
It is composed of the state and the estimation error where
the state and the estimation error are generated using robust
filtering for the system subjected of unknown disturbances.
To solve the simultaneous state and fault estimation problem
of linear stochastic discrete-time with unknown disturbances,
the natural approach is to augment the fault as a part of

the state, and to apply the Kalman filter. The Robust Two-
Stage Kalman filter(RTSKF)is developed on two steps. Firstly,
a two-stageU − V transformations are made in order to
decouple the covariance matrix on the augmented state Kalman
Filter (ASKF)so, reduced order Kalman filter called two-stage
Kalman filter is obtained. Secondly, by making use of the
two-stage Kalman filtering technique and a new proposed
unknown inputs filtering technique, a robust two-stage Kalman
filter(RTSKF)which is unaffected by the unknown inputs[6].

A. Robust Two Stage Kalman filter

The algorithm of the Robust Two Stage Kalman filter is
summarized in the Table I.

B. Residual generation and fault detection

To detect a fault, the residual is synthesized from the
difference between the real and the estimated output of the
system described by its mathematical model.

yk/k = Cxk/k + F si
k fk/k

rk = yk − yk/k = Cexk + F si
k efk + vk

(8)

whereexk = xk−xk/k andefk = fk−fk/k are the state and the
fault estimation errors. Note that these errors have minimum
variances.

The residual is examined in terms of the probability of a
fault, therefore a logical decision-making process is applied
aiming to decide if the fault has occurred and avoided wrong
decisions, such as false alarm and non-detection. Different
techniques to evaluate residuals is as follows.

1) Thresholding: Evaluation consists in defining a threshold
to detect the presence of faults. The main difficulty of
detection lies in the calculation of the threshold residue.
A high threshold is likely to cause non detection. On
the contrary, a low threshold will possibly cause false
alarms[7].

2) Statistical decision: For this assessment, the well-known
examples of these statistical test techniques are as
follows :

• Generalized Likelihood Ratio (GLR) test introduced
by Willsky and Jones [10] performs statistical tests
on the innovations sequence of a Kalman filter state
estimator.

• Bayes test: the function of decision which is
the likelihood ratio test of conditional probability
densities noted byλ(r) will be compared
with a thresholdη, which is determined by the
minimization of an optimality criterion [9]. We can
detect the fault using the following detection rule

S(rk) =

{

0 if rk < η}
1 otherwise

(9)

C. Fault isolation

Fault isolation requires the generation of a residual that must
be sensitive to faults able to distinguish between different types
of faults. Thus, a bank of two-stage kalman filters is set up
according to the system model with actuator fault and with



TABLE I
THE ALGORITHM OF THE ROBUST TWO STAGE KALMAN FILTER

Correction of state estimation

xk+1/k+1 = x̄k+1/k+1 + βk+1/k+1fk+1/k+1

Px
k+1/k+1

= P̄x
k+1/k+1

+ βk+1/k+1P
f
k+1/k+1

βT
k+1/k+1

with

x̄0/0 = x0 − β0/0f0, β0/0 = P
xf
0

(P f
0
)−1

P̄x
0/0

= Px
0
− β0/0P

f
0
βT
0/0

,

State Subfilter

x̄k+1/k+1 = x̄k+1/k + L̄x
k+1

γ̄k+1

P̄x
k+1/k+1

= (I − K̄x
k+1

C)P̄x
k+1/k

+ηxk+1
Πx

k+1
Gx

k+1
ΠxT

k+1
ηx

T

k+1

with
L̄x
k+1

= K̄x
k+1

+ ηxk+1
Πx

k+1

ηxk+1
= E − K̄x

k+1
CE

Πx
k+1

=
[

(CE)TGx−1

k+1
CE

]

−1

(CE)TGx−1

k+1

where
γ̄k+1 = yk+1 − Cx̄k+1/k

x̄k+1/k = Ax̄k/k + Buk + αkfk/k − βk+1/kfk/k

K̄x
k+1

= P̄x
k+1/k

CTGx−1

k+1

P̄x
k+1/k

= AP̄x
k/k

ATwx

+αkP
f
k/k

αT
k − βk+1/kP

f
k+1/k

βT
k+1/k

Gx
k+1

= CP̄x
k+1/k

CT + v

Fault Subfilter

fk+1/k+1 = fk/k + L
f
k+1

γ
f
k+1

P
f
k+1/k+1

= (I −K
f
k+1

Hk+1/k)P
f
k+1/k

+η
f
k+1

Πf
k+1

G
f
k+1

ΠfT

k+1
η
fT

k+1

with
L
f
k+1

= K
f
k+1

+ η
f
k+1

Πf
k+1

η
f
k+1

= K
f
k+1

CE

Πf
k+1

=
[

(CE)TG
f−1

k+1
CE

]

−1

(CE)TG
f−1

k+1

where
γ
f
k+1

= γ̄k+1 −Hk+1/kfk/k

K
f
k+1

= P
f
k+1/k

HT
k+1/k

G
f−1

k+1

G
f
k+1

= Hk+1/kP̄
x
k+1/k

HT
k+1/k

+Gx
k+1

Coupling Equations

Hk+1/k = F si + Cβk+1/k, F
si = 0 for model (6)

βk+1/k+1 = βk+1/k − L̄x
k+1

Hk+1/k

αk = Aβk/k + F ai , F ai = 0 for model (7)

βk+1/k = αkP
f
k/k

P
f−1

k+1/k

sensor fault. The residual generated from the bank of two-stage
kalman filters in case of an actuator or sensor fault summarize
as follows.

1)The residual of theith filter in case of thejth actuator
fault (i = a1, ....., ap, s1......sm, j = a1, ....., ap)

rai

k = Cexk + vk (10)

where

exk+1
= (I − Lk+1C)F ajfk − (I − Lk+1C)F aifk/k
+(I − Lk+1C)Aexk + (I − Lk+1C)wx

k

−Lk+1vk+1

efk+1
= efk − Lf

k+1
CF ajfk + Lf

k+1
CF aifk/k

−Lf
k+1

CAexk + wf
k − Lf

k+1
(Cwx

k + vk+1)
(11)

with
Lk+1 = L̄x

k+1 + βk+1/k+1L
f
k+1

(12)

rsik = Cexk − F sifk/k + vk (13)

where

exk+1
= (I − Lk+1C)F ajfk + Lk+1F

sifk/k
+(I − Lk+1C)Aexk + (I − Lk+1C)wx

k

−Lk+1vk+1

efk+1
= efk − Lf

k+1
CF ajfk + Lk+1F

sifk/k
−Lf

k+1
CAexk + wf

k − Lf
k+1

(Cwx
k + vk+1)

(14)

2) The residual ofith filter in case of thejth sensor fault

(i = a1, ....., ap, s1......sm, j = s1, ....., sp)

rai

k = Cexk + F sjfk + vk (15)

where

exk+1
= −Lk+1F

sjfk − (I − Lk+1C)F aifk/k
+(I − Lk+1C)Aexk + (I − Lk+1C)wx

k

−Lk+1(F
sjwf

k + vk+1)

efk+1
= efk − Lf

k+1
F sjfk + Lf

k+1
CF aifk/k

−Lf
k+1

CAexk + (I − Lf
k+1

F sj )wf
k

−Lf
k+1

(Cwx
k + vk+1)

(16)

rsik = Cexk + F sjfk − F sifk/k + vk (17)

where

exk+1
= −Lk+1F

sjf + Lk+1F
sifk/k

+(I − Lk+1C)Aexk + (I − Lk+1C)wx
k

−Lk+1(F
sjwf

k + vk+1)

efk+1
= efk − Lf

k+1
F sjfk + Lf

k+1
F sifk/k

−Lf
k+1

CAexk + (I − Lf
k+1

F sj )wf
k

−Lf
k+1

(Cwx
k + vk+1)

(18)

The resultant vectors,Sa(rk) for residuals from the filters with
F ai and Ss(rk) for residuals from the filters withF si ,are
produced as

Sa(rk) =
[

Sa1(rk)... Sai(rk)... Sap(rk)
]T

Ss(rk) =
[

Ss1(rk)... Ssi(rk)... Ssp(rk)
]T (19)

Then for fault isolation,Sa(rk) and Ss(rk) are compared
to the fault signaturesSa(ref, fi) andSs(ref, fi) which are
the column vectors if the fault signature matrices defined in
the Table II. Note that the′0′ element of the fault signature
matrices are designed based on the underlying principle that
only the filter associated with the fault occurred can estimate
the state and the fault correctly. Now, ifSa(rk) coincides with
a column of the actuator fault signature matrix in the Table



II, the corresponding fault indicatorI(fai
) orI(fs) is set to

”one”. If I(fai
) = 1, the ith actuator is declared to faulty.

If I(fs) = 1, we guess a sensor fault. Further, by checking
if Ss(rk) is same as which column of sensor fault signature
matrix in theTable II, the corresponding fault indicatorI(fsi)
set to 1, and theith sensor is declared to be faulty [6].

TABLE II
FAULT SIGNATURE MATRICES

Sa(r) Sa(ref, nofault) Sa(ref, f1) Sa(ref, fi) Sa(ref, fp)

Sa1 (r) 0 0 1 1
Sai (r) 0 1 0 1
S
ap (r) 0 1 1 0

Ss(r) Ss(ref, nofault) Ss(ref, f1) Ss(ref, fi) Ss(ref, fm)

Ss1 (r) 0 0 1 1
Ssi (r) 0 1 0 1
S
sp (r) 0 1 1 0

IV. FAULT DETECTION DELAY

The main goal of fault detection is to detect the fault when
it occurs, by generating an alarm. However, we must attach
a great importance to the time taken before generating an
alarm which depends on the decision method. This step aims
to analyze the residuals in order to detect the fault.

A. Fault detection threshold and detection time

The residualrk is compared with a thresholdrth as follow:
{

rk < rth, fault free system
rk ≥ rth, faulty system

(20)

The choice of thresholds vector affects directly the detection
time of the anomaly. This time is the difference between the
time of occurrencetf and the detection instanttd, the time
taken for detection is denotedTd = td − tf [11].
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Fig. 1. Effect of the threshold on the detection time

In an ideal case, a fault must be detected immediately after
its occurrence. However, because of the position of threshold
alarm there is always a detection delay. In order to show the
effect of the threshold value variation on the detection time,
we consider the probability tools to estimate the variableTd

for different threshold values [12]. We assume that the residual
signalrk is an independent and identically distributed random
variable (IID). The probability of exceeding the threshold
detectionrth by the residue at the occurrence time of the fault
is given byP2 , which is in fact the probability of immediate
detection.

The probability of not exceeding the threshold residual
signal at the time of the fault occurrence withh delay time is

P1, which is the probability of the time detection delay ofih.
The probability of detection delay is expressed by:

P (Td = 0h) = P (r(tf ) > rth) = P2

P (Td = 1h) = P (r(tf ) < rth, r(tf + h) > rth)

= P2P1

...

P (Td = ih) =

P (r(tf + ih− h) < rth, r(tf + ih) > rth)

= P i
2P1 (21)

Asrk is IID, then P2 = 1 − P1, the average value of
the expected detection timeTd is expressed by equation
(22)whereE denotes the expected value:

T̄d = E(Td) = h
∞
∑

i=0

iP (Td = ih)

= h
∞
∑

i=0

iP1P
i
2

= hP1P2(
∞
∑

i=0

P i
2)

′

= hP2P1(
1

1−P2
)′

= P2

P1
h

(22)

The probabilitiesP1 and P2 = 1 − P1 can be determined
from the probability density function of the decision signal
after occurrence of the fault and the threshold value is fixed
as shown in figure 2
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Fig. 2. The Probability density of the residue.

Here fault-free data has a Gaussian distribution with mean
0, variance 1 and faulty data is also Gaussian distributed with
mean 2 and variance 2.

Determining the estimation of detection timeE(Td) is
directly related to probabilitiesP1 and P2, which are
determined by the choice of the threshold detection.Table (III)
presentsE(Td) calculated for different threshold values and
for h = 1sec.

TABLE III
EFFECT OF THRESHOLD CHANGE ON EXPECTED DETECTION DELAY

Thresholdrth Expected detection delayTd(s)
0 0.19

1.5 0.67
2.25 3

4 5.3
5 13.97

According to the table (III), for threshold valuesrth ≤ 4
the estimation of the detection time is in the order of 5.3, but
it increases considerably for values ofrth ≥ 5.



Based on analysis of probability, we note that:there is
always a detection delay which can be considered more or
less important depending on the type of fault, type of system
dynamics, whether fast or slow. Since the time represents one
of the basic indices of the safety process. Detection delay
must be limited. However, this limitation should not cause
false alarms. In addition, optimizing the detection time due to
the choice of a detection threshold ensuring the compromise
between the rate of false alarms and the rate of non detection
[12], [13].

B. Optimization of the detection delay

Detection at optimal time is a detection having optimal
performances, a minimum rate of false alarms with an
acceptable sensitivity to the faults. The choice of a constant
threshold value is limited by the presence of unknown
input. The threshold resulted from modeling uncertainties
and disturbances can be misinterpreted as a response to
sensor and actuator faults thus, set off a false alarm. In
fact, perfect decoupling cannot be achieved, a performance
index which measures the sensitivity to faults and the
insensitivity to uncertainties must be defined and optimised.
The implementation of the statistical tests of binary hypothesis
makes it possible to analyse the statistical characteristics
of these residuals and their sensitivity to change of system
behaviour. In fact, the introduction of the technique of
decision-making, shows that it is possible to minimise the
detection delay and false alarms.

V. ROBUST FAULT DETECTION BASED ONBAYES TESTS

WITH ADAPTIVE THRESHOLD

One of the techniques used to design an adaptive threshold
is the method of the Gaussian Kernel(GK) which allows the
processing of data directly and provides an estimation of a
priori probabilities. More precisely, the measurement data are
used directly to calculate weights assigned to the probability
densities functions relating to the hypothesisH0 and H1.
Each kernel has three parameters that can be adjusted during
training, the meanµ, the standard deviationσ and a parameter
of weight correctionw1 which has a function equivalent to
that of a probability. Weights are corrected in a recursive way
according to the available observations.

A. Gaussian kernels algorithm for a priori probability
estimation

Let consider the dataµ0, σ and µ1, σ of the hypotheses
H0 and H1, respectively. We consider a stop criterionς
which is the corresponding error to the difference between
the estimated value and the true value. The algorithm is given
by the following stages.

1) Set initial conditions, by randomly selecting a value
for p(H1) within the range0 < p(H1) < 1 which
corresponds to the weightw1,0 probability of having the
hypothesesH1 Set the initial valueα0 for k = 0 . . .

2) Calculate the weighted output for each of the two kernels

Pi(yk) = wi,kpi(yk/µi, σi) i = 1, 2

3) Calculate the output over the sum of the weighted kernel
outputs:

P (yk) =
2

∑

i=1

wi,kpi(yk/µi, σi)

4) Update the weights

wi,k+1 = wi,k + αk

[

wi,kPi(yk)

P (yk)
− wi,k

]

5) Adjust adaptive gainα:

αk+1 =
1

k + 1

6) k = k + 1 go to step (2) while

|(wi,k+1 − wi,k)/wi,k| > ε

B. Faults Detection with Bayes Test

Surveys on design algorithms for failure detection are given
in the works [14], [15]. The rule of decision-making of Bayes
is written in the following form:

Λ(r) =
P (r/H1)

P (r/H0)

H1

>
<
H0

P0(C10 − C00)

P1(C01 − C11)
= η (23)

Λ(y): ratio of conditional probabilities densities;
η: threshold which depends on a priori probabilitiesPi and
Cij . In many practical cases, it is often selected:C00 = C01 =
0 andC10 = C11, the expression ofη depends only on laws
a priori Pi, the expression of the threshold of the decision is
written as:

η =
P0

1− P0

(24)

the progression of adaptive threshold which is given by the
algorithm in paragraph (V.A) by the following equation:

ηk =
(1 −W1,k+1)

W1,k+1

(25)

where W1,k+1 corresponds to the estimateP1 to have
hypothesisH1 at time(k + 1).

C. Bayes Test performance

To optimize the decision-making by the Bayes test, it is
necessary to minimize at the same time the rate of false alarm
and the rate of non-detection. Then, it is very delicate to
regulate the two probabilities independently. The probability
of false alarm,Pfa and missed detectionPnd can be defined
by

Pfa =

∫ +∞

γ

p(r/H0) dr (26)

Pnd =

∫ γ

−∞

p(r/H0) dr (27)



VI. ILLUSTRATIVE EXAMPLE

The effectiveness of the present FDI strategy is illustrated
through computer simulations for the linearised discrete-time
model of a simplified longitudinal flight control system [16]:

xk+1 = (A+∆A)xk + (Bk +∆B)uk + F afa
k + wk

yk = Cxk + F sf s
k + vk

(28)
where the state variables are: pitch angleδz , pitch ratewz and
normal velocityηy, the control inputuk is the elevator control
signal.F a andF s are the matrices distributions of the actuator
fault fa

k and sensor faultf s
k . The termsExdk represents the

parameter perturbations in matricesA andB:

Exdk = ∆Axk +∆Buk (29)

where∆k∆
T
k ≤ I

The system parameter matrices are :

A =





0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747

0 0.8187 0





B =





0.4252
−0.0082
0.1813





C = I3×3

x =
[

ηy wz δz
]

The covariance matrices for process and measurement noise
sequences areW x = diag

{

0.012, 0.012, 0.12
}

and V =
0.12I3×3.

As an actuator fault, we consider a loss in the actuator
effectiveness, abruptly (step wise)fa

k = −ρun
k , 0 < ρ < 1,

with the influence pattern,F a = B. Likewise, a sensor fault
is modeled by abrupt changes,f s

k = ∆xk, for the output
measurement withF si = Ci. The unknown inputs is given
by:

Ex
kdk =

Ex
k

{[

∆a11
∆a21

∆a12
∆a22

∆a13
∆a23

]

xk +

[

∆b1
∆b2

]

uk

}

(30)
where∆aij and∆bij (i = 1, 2.j = 1, 2, 3) are perturbations
in aerodynamic and control coefficients.

In this example, the aerodynamic coefficients are perturbed
by ±50% , i.e ∆aij = −0.5aij and ∆bij = −0.5bij.
In addition, we setuk = 1, x0 =

[

0 0 0
]T

, P0 =
0.12eye(3)

For a better analysis of the sensitivity of residuals compared
to the faults and disturbances, we take a low magnitude of
faults. Then, we must apply the Bayes test with adaptive
threshold, to show its power and its robustness in the procedure
of detection of faults.
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Fig. 3. Bayes test with fixed threshold of the residual1

Figure (3) shows that the Bayes test with fixed threshold
does not detected the change of operation at the desired
moment (tfa = 50s, tfs = 90s). The decision function
indicates that the detection delay is given byTd = 70s,
hence, in terms of power the test is very weak. On the other
hand, figure (4) which presents the Bayes test with adaptive
threshold shows that the fault is detected suitably and the
threshold adapts with the evolution of the residual signal.The
way it increases the power of the test for the decision-making
between the two hypothesesH0 andH1. The detection delay
for a Bayes test with adaptive threshold isTd = 28s
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Fig. 4. Bayes test with adaptive threshold of the residual1
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In figure (5) the Bayes test with fixed threshold, for the
second residual, does not detect the fault of low magnitude.
It is clear that the detection threshold is above the signal.
Then, no decision was made between the two hypotheses
H0 andH1. In figure (6) we notice that the Bayes test with
adaptive threshold starts to detect the change of operationby
the adaptation of the threshold but with a delayTd = 70s this
results in a number of commutations raised in the graph of
decision making.
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Fig. 7. False alarme and non-detection probabilities progression in Bayes test
with adaptive threshold of the residual 1

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

 

 
pfv2

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

 

 

pndv2
pdv2

False alarme probabilityPfa

Probabilities detection and non-detection(Pd ,Pnd)

Time(s)
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Results of simulation in the figures (7,8), show the
performance of Bayes test with adaptive threshold. The use of
adaptive threshold increases the probability of detectionduring
the period of presence of faults. On the other hand, we notice
that the probability of non-detection is nullPnd = 0

VII. C ONCLUSION

In this paper, we developed the robust fault detection and
isolation of linear stochastic systems subjected to unknown
disturbances, actuator and sensor. A bank of Robust To Stage
Kalman filter is adapted to estimate the state and the fault
as well as to generate the residual sensitive to faults and
insensitive to uncertainties. Besides, we implemented the
robust decision theory by the adaptive threshold for change

detection in a residual can illustrate the faults appearance.
This work shown that the improvement of performances can
be presented, we decrease the detection time and false alarm
probability and we increase the detection probability. This
technique is based on the estimate of the a priori probabilities
by a non parametric method using Gaussian kernels.
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