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Abstract—  This paper presents a new algorithm for bone Single-

photon emission computed tomography (SPECT) image 

reconstruction based on ordered subset expectation 

maximization (OSEM) algorithms and can remove  the noise 

from  images with the best degree of accuracy. In our proposed 

method, a de-noising pre-processing wavelet transform is applied 

on the projections then the OSEM algorithm is used to 

reconstruct successively 128 axial slices from a 128 enhanced 

sinograms, and finally we extract the coronal and sagittal slices 

from the enhanced axial slices volume. Our method is compared 

with two iterative methods of reconstruction, (OSEM) used only 

and a Maximum Likelihood Expectation Maximization (MLEM), 

each method was tested on a bone SPECT database and 

evaluated qualitatively and quantitatively. The results show that 

the proposed method has the highest performance on noise 

reduction with preservation of the singularity in comparison 

to other methods 

 
  Keywords— Ordered subset expectation maximization, Single-

photon emission computed tomography (SPECT), images 

reconstruction, daubechies wavelet transform, Maximum 

Likelihood Expectation Maximization 

I. INTRODUCTION: 

SPECT is a noninvasive imaging technique that is based on 

the administration into the patients of a single gamma emitter 

labelled radiopharmaceutical. Where the gamma camera 

 rotates around the patient in order to realize several 

projections of distribution of the radiopharmaceutical within a 

region of interest. These projections should be reconstructed 

to reflect the functional information about the metabolic 

activity at a region of interest and allow the doctors 

performing an accurate diagnostic of the radiopharmaceutical 

distribution in any slice of the body. Therefore, a disadvantage 

of the reconstructed SPECT image has been its poor spatial 

resolution and bad contrast, due to the radioactivity 

disintegration and procedure of acquisition. Then, to obtain a 

good quality of the reconstructed images we need an excellent 

algorithm of SPECT image reconstruction. 

In the last few years, various reconstruction algorithms have 

been developed to improve the reconstruction quality which 

can be divided into two families: analytic reconstruction and 

iterative reconstruction. The analytic algorithm, such as 

Simple back-projection and filtered back-projection [1], these 

methods based on direct inversion of radon transform and 

needed a sufficient number of acquiring projection [2]. 

However, because the   limited number of projection data, 

they can generate significant artifact and induce more noise. 

The iterative algorithm such as the statical iterative 

Reconstruction (SIR) has been reported to be characterized by 

improved quality of the reconstructed image.   The principle 

of these methods consists in enchaining a multiple forward 

and back-projection operation cycles from an initial estimated 

image. The process is stopped when the reconstructed image 

gives projections similar to the measured projections. This 

similarity is assessed using a statically parameter called the 

likelihood. 

MLEM algorithm is one of the iterative reconstruction, which 

was introduced by Shepp and Vardi in 1982 [3], and then 

improved in speed by OSEM algorithms [4], [5], [6]. 

However, by increasing the number of iterations and subsets 

of the last technique, the convergence of this algorithm is 

speeded whereas the noise is also increased [7]. To improve 

the quality of the reconstructed image, several algorithms 

based on the last standard methods have been published.  

In [8], a comparison has been made between several 

reconstruction techniques based on filtered back-projection 

and OSEM using a Metz filter and a Butterworth filter applied 

on a bone SPECT image of the spine with and without scatter 

correction, the previous work showed that, the  contrast 

enhancing Metz filter or  the noise reducing Butterworth filter 

in combination with OSEM reconstruction improve the bone 

SPECT image quality, but the scatter correction does not 

improve image quality.     

The Wavelet-based denoising method has been employed in 

the literature.  Junhai Wen et al [9] developed a wavelet- 

based SPECT image reconstruction algorithm using the 

inversion formula for the nonuniformly attenuated radon 

transform and they have demonstrated that the wavelet–based 

SPECT denoising is accurate and effective in SPECT 

reconstruction.  S Skiadopoulos [10] have demonstrate that  

the a multi-scale Platelet applied either on projection data or 

reconstructed images, provide a more efficient noise 

reduction, while preserving image quality, compared to the 

Butterworth filter. In 2015, Shailendra Tiwari and al [11] 

suggested a new hybrid-cascaded algorithm composed on an 

algebraic iterative reconstruction algorithm (SART) in a 

cascaded way with OSEM algorithm and a regularization term 

Anisotropic Diffusion (AD)   which reduce the number of 

iterations, improve the quality of reconstructed images and 

reduce the computational time. 
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 In this work , and based on the prior results, we suggested a 

new de-noising approach based on an efficient OSEM 

reconstruction combined with a pre-processing daubechies 

wavelet applied on the acquired projection for improving the 

quality of bone SPECT images. The novel method is 

compared with two iterative reconstruction methods used 

alone for enhancing the bone SPECT image quality. 

The remainder of the paper is organized as follows. The 

proposed method is discusses in section II, the obtained results 

are presented and analysed in Section III, and Section IV 

illustrates the conclusion and future directions. 

II. MATERIALS AND METHODS 

 The proposed  method is based on using a two dimensional 

pre-processing Daubechies wavelet transform for removal of 

Poison  noise in the acquired projections, and  the Ordered 

subset expectation maximization (OSEM) algorithm for a 

tomographic bone SPECT image reconstruction. Fig.1 

represents an overview of this method.  

A. Pre-processing  Daubechies wavelet transform:  

1)Methods based on wavelet representation: 

Wavelet transform is a time-scale representation which gives 

an account of the evolution over the time of the frequency 

content of the signal, which provides an efficient multi-

resolution analysis tool of the non stationary signal.  The 

original Discrete Wavelet Transform (DWT) function named 

as "mother wavelet" generated several wavelet families like 

Haar, symlets, daubechies [12].  

A  DWT equation of a signal f[n] is given by: 

𝐹 𝑠, 𝜏 =  𝑓 𝑛 𝛺𝑠,𝜏(𝑛)
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−∞

 

The choice of wavelet families and their order depends on the 

shape of the analysed wavelet families Ωs,τ[n] generated from                       

a mother wavelet 
 n

 , defined by the  following 

mathematical formula: 
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Where ‗ ‘ is the translation and ‗s‘ is the dilatation or 

compression parameters of the mother wavelet. 

The DWT decomposes the SPECT originaux projections into 

a set of frequency band images by filter banks that describe 

the signal frequencies content at given time, using a low pass 

filters and high pass filters to extract respectively the 

significant wavelet coefficients called approximation AA and 

removed the non-significant wavelet coefficients called 

details.  

At the level 1, the image is smoothed and reduced to a 1/4 size 

of the original image. Each level of decomposition repeats the 

differencing and averaging process on the level 1 sub image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Proposed method 

The wavelet algorithm is achieved by the recomposition of the 

denoised signal using the inverse wavelet transform 'IDWT'. 

Fig.2 illustrates the steps of wavelet based algorithm of the 

SPECT image. In this paper we focuses on the Daubechies 

wavelet transform because by set learning we found that this 

algorithms provide the best performance of bone SPECT 

denoising by minimizing the noise and expanding the desired 

signal.  

2)Daubechies Wavelet Transform:  

This family of wavelet transform is given by the scaling 

and wavelet functions that are described respectively in terms 

of a and b coefficients. 

Read the 3D bone SPECT image, stack of 128 projection 

The sinograms of transverses slices are assembled from 

the projection 

            Load a list of database bone SPECT images 

      Begin 

A=40 three dimensional images 

Reconstruction of the axial slices from the sinograms 

using OSEM Algorithm 

Enhancement successively the quality of each sinograms 

using the de-noising daubechies wavelet transforms 

Storing the enhanced axials slices in a specifique folder 

Extract a stacks of 128 sagitals slices and a stack of 128 coronals 

slices from the 3D reconstructed volume of  axials slices 

Storing the sagitals and coronals slices in a specifiques 

folders 

        End 

 

128 sinograms 

A volume of 128 axials slices 

A volume of 128 sagitals slices 

and a volume of 128 coronals 

slices               

Display the desired slices according to the choice 

of the user using the graphic user interface 

Loop for until A 

A volume of 128 enhanced 

sinograms 



Scaling function H is expressed as follow: 

The coefficients of high pass and low pass filters are defined 

as: 
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Wavelet function G and coefficients b are defined as: 

𝑏1 = 𝑎4 , 𝑏2 = −𝑎3 , 𝑏3 = 𝑎2 , 𝑏4 =  −𝑎1 
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Where i is the order of wavelet transform. 

 

Signal f(t) is calculated, in terms of A(low frequency signal 

components) an D (high  frequency signal components), 

using[2] : 
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Fig2:  Stages of Daubechies wavelet transform                 

B. Ordered Subset Expectation Maximization(OSEM) 

algorithm: 

The iterative algorithm improves the image quality and 

reduces efficiently the generated streaking artefacts in low 

radiation dose datasets [13]. 

The maximum likelihood expectation-maximization (ML-EM) 

technique remains the basis  of the most iterative method 

which consists of two alternating steps: An E-step, which 

computes the expectation of the log-likelihood that  assessed 

the similarity between simulated and measured sinograms, and 

an M-step, which finds the next estimate through maximizing 

the expected log-likelihood, while taking into account that the 

initial estimate image is positive and the measured projections 

are attained by a noisy Poisson, This point confers on this 

algorithm so that it is adapted to the reconstruction of the 

region emitting low photon. 

Mathematically, the MLEM algorithm can be computed using 

the following equation: 

 

 

 
                                                                               (8) 

 

 

 

Where: 

fi
kand  fi

k+1 are the value of pixel i respectively in the iteration 

k and k+1 with 1<i<M, M is the total  number of pixels  along 

ray j. 

𝐶𝑗  is the measured projection data at the detector j with 

1<j<N, N is the total number of detectors in all projection 

angles. 

𝑝𝑖𝑗 : is the transfer matrix from image pixel i to projection bin j  

 

 

 

 

1

1

1

N
ij jk k

Mi i
kj

ij i
i

p C
f f

p f







 


 

A two dimensional sinogram data 

Daubechies wavelet transform 

a1, a2, a3, a4, a5, a6, 

a7, a8, a9, a10 

D1, d2, d3, d4, d5, d6,  

d7, d8, d9, d10 

      A1 Appropriate Thresholds 

+ 

Denoised Sinogram 



  

 

 

                         is the back projection of this ratio for pixel i.                                        

I                                

The ordered subset was ported to this algorithm forming the 

OS-EM-based algorithms [3] which allow a significantly 

faster convergence compared to the original convex algorithm 

and allows for easy parallelization. The principle of this 

algorithm is based on the division of the acquired projections 

into ordered subsets. Subsequently, the MLEM algorithm is 

applied to each subset in turn. The update of the estimated 

images with the OSEM method is done with the 

corresponding subset. More clearly, at the first iteration, the 

first subset is used to compute the image. This previous image 

will be used to correct the second projection sub-set at the 

second iteration to estimate the next image. The operation 

repeated until the last subset. The OSEM resulted image is 

computed using equation 9: 

 

 

                                                                                          (9) 

 

 

 

 

Where 𝑆𝑡  presents the 𝑡𝑡ℎ  subset  

 

 𝑃𝑖 =  𝑎𝑖𝑏  𝑓𝑏
k

𝑁

𝑏=1
   This term corresponds to the 

projection of the current estimate f following a line projection                                                                                                                                                                                                                                                  

 pi :measured  projection  

 𝑅𝑗 =  𝑎𝑖𝑗
𝑝𝑖

𝑃𝑖
𝑖∈𝑆𝑡    is the back projection of the rapport 

𝑝𝑖  

𝑃𝑖  
 in  

the image space 

 𝑎𝑖𝑗 ∶  is the term sensitivity obtained by back projected the 

value 1 in the image space. 

Two back-projections are reported to determine a correction 

Multiplicative factor, in order to update the estimate  𝑓𝑏
k
 in 

the iteration k.  
 

To obtain the best enhanced slice image, we compared the 

different resulted axial slices image quality by varying the 

number of subset and the number of iterations of the OSEM 

algorithm, and the value of the order of the daubechies 

wavelet transform. 

By applied learning on the bone SPECT axial slices, the best 

result is obtained using OSEM algorithm with 8subsets and 4 

iterations combined with a threshold value of the daubechies 

wavelet transform equal to 3 and an order equal to 4.  

 
Fig.3. Original bone SPECT 3D image contain 128 projection displayed from 

right (projection1), to left (projection63). 

 

 Figure 4, 5 and 6 shows the slices of transverse, coronal and 

sagittal views of lumbar vertebrae lesion reconstructed using 

the proposed technique. 

 

Fig.4. Transaxial slice reconstruction with 1-pixel thick slices, Displayed 
from cranial (slice50) to caudal (slice55). 

 

 
Fig.5. Coronal slices reconstructed from transaxial slices data with 1-pixel 

thick slices. Displayed from posterior (slice72) to anterior (slice77). 
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Fig.6. Sagittal slices reconstructed from transaxial slices data that were 

1 pixel thick. Displayed from right (slice62), to left (slice67). 

III. EXPERIMENTS AND DISCUSSIONS: 

On Intel Core with 2.00 GHz CPU utilizing MATLAB 

software, the execution time of the suggested method to 

Elapsed time is 203.943174 seconds. We tested the proposed 

method on a bone SPECT images database, which contains 40 

bone SPECT examinations. Each volume projection is a 

DICOM image with a 128 projections (720°) as shown in fig4 

and a 128 × 128 matrix with a pixel spacing equal to 4.795 mm. 

this dataset is taken from the radiology department of National 

Oncology Institute‖Salah AZAIZE‖ of TUNIS generated by a 

double-head gamma camera equipped with a low dose CT 

scan was used characterized by a low energy and ultra-high-

resolution characteristics. 

In order to evaluate the  result, we compared qualitatively and 

quantitatively the capability of our denoising method to 

OSEM and MLEM techniques. First, a comparison is made 

between different parameters from the same technique to 

choose the best one, by applied learning on the bone SPECT 

axial slices, the best results are obtained using 4 iterations and 

8 subset for OSEM and 6 iteration for MLEM.   

As original slices we used the direct inversion of the radon 

transform of projection data which generated a total of 128 

undenoised slices for each images.  An axial slice contains the 

lesion is chosen for a qualitative comparison of the 

reconstruction results shown in figure 7. 

. 

 
 

 
Fig7: Axial slice reconstructed by (a) simple back-projection. (b) ML-EM 

(6 iteration). (c)OS-EM (8iteration, 4 subsets) and (d) the proposed method 

 

For a quantitative comparison, we computed for each patient the  

means CNR, means PSNR, means SSIM metrics and the means 

execution time of slices that contain the lesion.  

 Mean square error(MSE) 

𝑀𝑆𝐸 =
1

𝐾𝑀
  (𝑋 − 𝑌)2

𝑀

𝑗=1

𝐾

𝑖=1

   (10) 

Where X is the original slice and Y is the reconstructed slice, K and 

M are the dimensions of these images 

 Peak Signal to Noise Ratio(PSNR) is defined as: 

 

PSNR = 10 log  
2552

𝑀𝑆𝐸
       (11) 

  

  universal image quality index (UQI) : measured the degree 

of similarity between the reconstructed and original slices, 

defined as 

UQI =
2 ∗ 𝜎𝑋,𝑌  
𝜎𝑌 +𝜎𝑋

×
 2 ∗ 𝑚𝑌 ∗ 𝑚𝑋 

 𝑚𝑋
2 + 𝑚𝑌

2 
    (12) 

Where X and Y presents respectively the original and the denoised 

slice; 𝑚𝑋 , 𝑚𝑌 , 𝜎𝑋  and 𝜎𝑌  denote the mean and the variance of the 

image and their estimation;  𝜎𝑋,𝑌   is the covariance of image X and 

Y 

 

 Structural Similarity (MSSIM) defined as: 

MSSIM =
1

𝑀
×  

 2𝑚𝑋𝑚𝑌 + 𝑐1 (2𝜎𝑋,𝑌 + 𝑐2)

 𝑚𝑋
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Where X and Y presents respectively the original and the denoised 

slice; 𝑚𝑋 , 𝑚𝑌 , 𝜎𝑋
2

 and 𝜎𝑌
2

 denote the mean and the variance of 

the image and their estimation;  𝜎𝑋,𝑌   is the covariance of image X 

and Y; 𝑐1and 𝑐2  are small constants to have usually a denominator 

different to zero and  M is the total number of the local windows of 
the image 



TABLE 1: DIFFERENT PERFORMANCE MEASURED FOR THE RECONSTRUCTED 

IMAGED IN FIGURE 1 

Performanc

e measures 

MLEM OSEM Daubechies 

+OSEM(propose

d method) 

MSE  

means 
0,0056 0,00577 1,27E-03 

PSNR  

means 
70,798 70,696 77,46533 

MSSIM 

means 
2,1. 510  2,1. 510  4,03E-05 

UQI means 0,2785 0,2787 0,292529092 
Execution  

time(sec) 
244,0199 68,96 299.83426 

 

Qualitatively, this study confirmed that the iterative 

reconstruction using ML-EM or OS-EM algorithms ensures 

good poison noise suppression and reducing the streaking 

artifacts that appeared with the analytic reconstruction witch 

mask other regions and reducing the lesion 

detection[15],[16],[17]. 

The qualitative assessment of the various directional feature 

region of the bone SPECT image illustrated in fig4, fig5 and 

fig6 shows that the proposed methods provide more accurate 

detection of lesion and better  preservation of the singularity 

and the limit of region with effective ability of denoising, 

whereas the iterative method used alone attenuate the detail by 

giving a blur effect on the edges of the region and making 

delicate the extraction and the location of the contours 

therefore the image shape seemed slightly smoothen and 

appears much noisy   

Quantitatively, the optimum method has the highest value of 

PSNR, MSSIM and UQI and the lowest value of MSE. From 

Table1 and Figs.8,9,10,11, the value of these metrics favoured 

the proposed method based on the applied the pre-processing 

daubechies wavelet transform denoising method as compared 

to the MLEM and OSEM methods, in fact,  it is clear that the 

proposed method  provide the highest value of PSNR , 

MSSIM  and UQI metrics and the lowest value of MSE 

metrics  compared to the other methods for all the patient 

group which demonstrates the efficiency of our proposed 

algorithm in reduction of noisy artefacts while preserving 

resolution and image quality.  

From Table 1, we note that the processing time of our 

proposed approach requires a longer than MLEM and  OSEM 

technique. 

To conclude, we can confirm that the proposed reconstruction 

method using the pre-processing daubechies wavelet 

transform denoising method outperform the other MLE-EM 

and OSEM iterative reconstruction method using alone  in the 

improvement of the bone SPECT image reconstruction 

quality. 

 
Fig8. Comparison of the PSNR measurement for all patients obtained using 

different reconstruction method 

 
Fig9. Comparaison of the MSSIM measurement  for all patients obtained by 

using different  reconstruction method 

 
Fig10. Comparison of the UQI measurement for all patients obtained using 

different reconstruction method 

 

 
Fig11. Comparison of the MSSIM measurement for all patients obtained 

using different reconstruction method 

IV. CONCLUSIONS 

The objective of this paper is to enhance the bone SPECT 

image reconstruction. Firstly, we applied the pre-processing 

daubechies wavelet transform denoising successively on 128 

sinograms assembled  from 128 projection data. Then, we 

reconstructed 128 axials slices from the resulted sinograms 

based on the OSEM iterative reconstruction.  Summing up the 

results, it can be concluded that the proposed algorithm can be 

provided an efficient noise reduction, whereas  preserving 

image quality in bone SPECT imaging.  
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