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Abstract— This paper proposes a discrete-time neuro-sliding 

mode control for an uncertain nonlinear system (NL_NDSMC). 

The proposed technique guarantees the stability of the system 

and achieves zero tracking error comparing with the classical 

discrete sliding mode control. Although, it reduces chattering 

phenomenon.  The selection of the neuronal sliding surface is an 

important issue, which have been studied carefully. 

Furthermore, simulations are carried out on an inverted 

pendulum with and without uncertainties. The obtained results 

confirm the efficiency of the proposed approach. 
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I. INTRODUCTION 

Technological development increases the complexity of 

industrial processes, which can be presented in different 

aspects, such as strong non-linearity, non-stationarity and the 

wide range of operations. The need of new control 

characterized by its robustness with respect to the system’s 

modelling becomes a goal to attempts by most researches.  

Many control techniques have been widely studied on 

nonlinear system as those dealing with artificial intelligence 

such as fuzzy [1], [2] neuronal [3] and genetic algorithm [4], 

[5]. 

The variable structure control (VSC) [6], is also one of the 

most attractive control research areas dealing with linear/ 

nonlinear, continuous/discrete with or without uncertainties, 

time delay systems [7], [8]. A particular case of VSC is the 

sliding mode control (SMC). This technique is known as one 

of the robust, insensitive to parameter variations and fast 

dynamic response control technique [9], [10], [11], [12]. 

The principal inconvenient of the SMC is the chattering 

phenomenon which appears as a source to excite unmodeled 

high frequency dynamics of the process. This chattering, 

caused by the discontinuous part of the sliding control, 

consists of oscillations around the sliding surface leading to 

adverse effects on the system. The knowledge of the dynamics 

of the system is another inconvenient in the calculation of the 

equivalent part of the control [10]. 

In the literature, some suggestions have been presented to 

overcome these two main problems in both linear and 

nonlinear systems dealing with continuous and discrete time 

[13], [14].  

The most popular technique for eliminating chattering was 

the substitution of the sign function by the saturation in the 

discontinuous control [10], [11].  

In recent years, in order to improve the SMC performance 

and to offset its disadvantages, various sliding mode 

controllers are proposed to control continuous nonlinear 

system. We can cite fuzzy sliding mode control [15], neural 

network sliding mode control [16] and genetic sliding mode 

control [17]. With the improve of calculator researches, a 

discrete form of fuzzy sliding mode control [18] and genetic 

SMC are developed. However, the discrete neuro sliding 

mode control for nonlinear system remains an important 

research area. 

In this paper, a new discrete-time neuro-sliding mode 

control for uncertain nonlinear systems (NL_NDSMC) is 

proposed. Comparing to the result of the classical discrete 

sliding mode control (DSMC), this one shows a good tracking 

error and reducing the chattering phenomenon. 

The paper is organized as follows. An overview of the 

discrete SMC technique for nonlinear system is presented in 

the second section. A neuronal sliding mode controller design 

is proposed in third section. The final section is dedicated to 

the simulation results of the DSMC on the inverted pendulum 

in two cases (certain and uncertain) as well as the simulation 

results of the proposed NL-NDSMC for the purpose of 

performance comparison. A conclusion summarizes the 

present paper. 

II. DISCRETE SLIDING MODE CONTROL: DSMC  

We consider the nonlinear discrete time system described 

by: 

( 1) ( ( )) ( ( )) ( )x k f x k g x k u k                           (1) 

where: 
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nx k x k x k x k   is the state vector, 

f and g are two nonlinear functions and u(k) is the input 

signal. 

The first step to design a sliding mode control is to 

determine the sliding hyperplane with desired dynamics of the 

corresponding sliding motion. The next step is to design the 

control input so that the state trajectories are driven and 

attracted toward the sliding hyperplane and then remained 

sliding on it for all subsequent time [18]. 

Otherwise, the discrete sliding function S(k) is chosen as 

[9], [19]: 

  . ( )S k C x k                                      (2)  

with  1 nC  .      

The Reaching law method is choosing as [20]: 

      1S k S k M sign S k                        (3) 

where sign is the signum function defined as: 

  
 

 
 

1 0
, 0 1

1 0

if S k
sign S k

if S k


 
 



 

Using (1), (2) and (3), we obtain: 
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                 (4) 

We suppose that  ( )g x k is inversible, then the discrete sliding 

mode control for nonlinear system can be expressed as: 

      
1

( ) . ( ) . ( ) ( ) ( )u k C g x k C f x k S k M sign S k


           (5) 

III. THE NEURONAL DISCRETE SLIDING MODE CONTROLLER  

We consider that the nonlinear system is submitted 

to uncertainties. Then, the model of nonlinear uncertain 

system is defined as: 

( 1) ( ( )) ( ( )) ( )u ux k F x k G x k u k                         (6) 

where: 

        

        

u

u

F x k f x k f x k

G x k g x k g x k

  

  
                   (7) 

Δf (x(k)) and Δg(x(k)) are the uncertainties on f (x(k)) and 

g(x(k)) respectively. 

In order to increase the performances and eliminate 

chattering of DSMC, combining sliding mode control with 

other robust technique such as neural networks (NN) control 

appeared to be an interesting concept. Many researchers have 

published various control scheme based on this idea [21], [22], 

[23] and [24]. 

Some works attempts to apply a neuronal network NN as 

an observer in the estimation of equivalent control [21]. Also, 

in [22], a sliding mode controller with a modified switching 

function that produces a low-chattering control is used in 

parallel with an artificial NN for online identification of the 

model errors, which imposes the controller performances [23].  

Here, we propose, a neuron online estimation of the errors 

in the sliding function in order to improve the DSMC 

performance. 

The neural network NN used in this estimation is a reduced 

form of the multi-layer perception (MLP, multilayer 

perception). This architecture of the network is most 

commonly used with the back-propagation algorithm as seen 

in Figure 1. 

 
Fig. 1  The feed-forward neural network of the NL-NDSMC 

To estimate the parameters of the network, we use the 

algorithm of back propagation. This algorithm is generally 

more efficient than others in terms of number of arithmetic 

operations to be performed to evaluate the gradient of a cost 

function. This function can be expressed as: 

2

1

( , , ) ( ) ( )
N

ref

k

J W B C x k x k


                                            (8) 

where 
refx is the reference state vector. 

we note      refe k x k x k   

The output of the neural network at a given time is in the form: 

 
1 1

( ) ( )
qn

n k kj j kj

j k

x k c f w x k b
 

                                        (9) 

where: 

kjw  and 
kb  (for 1k q  and 1j n   ; q is the number of 

neuron in the hidden layer and n is the number of inputs )are 

respectively the weights and biases of the layer of input 

neurons, 
kc  are the weights of output of the hidden layer.  

The network learning is based on minimizing the quadratic 

criterion ( , , )J W B C which relates the error ( )e k whose 

analytical expression is of the form:  

 
1 1

( ) ( ) ( )
n m

k kj j k ref

j k

e k c f w x b x k
 

                                    (10) 

The readjustment of the weight of the synoptic network is then 

accomplished by the gradient method [25], we have:  
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(13)  

where μ is the coefficient of learning, which must be chosen to 

ensure the escalation between learning and the speed of 

parametric convergence.  

The neural network tries to approximate a nonlinear 

relationship between the real process and the local model 

which is based on the errors taking into account that the neural 

networks are universal approximators. The learning algorithm 

is based on the optimization method of Levenberg-Marquardt. 

The main incentive choice of the Levenberg-Marquardt 

algorithm rests on the fast guarantee of the convergence 

toward a minimum. The step developed here makes it possible 

to integrate the whole of knowledge available on the error 

provided by the neural network [25], [26]. 

Then we obtain the following neuronal discrete sliding mode 

controller for nonlinear system as: 

      
1

( ) . ( ) . ( ) ( ) ( )n n n n nu k C g x k C f x k S k M sign S k


       (14) 

where:
nx is the output of the neural network and Sn the new 

sliding surface defined as: 

  . ( )n nS k C x k                                               (15)  

IV. SIMULATION RESULTS 

To evaluate the robustness of the proposed neuronal 

discrete sliding mode control, we consider a nonlinear system 

which consist on an inverted pendulum model. 

 

A. System description 

 

The inverted pendulum is often used as a benchmark for all 

kinds of controllers. It is a nonlinear, unstable system which 

makes it challenge to control. The system is composed of a 

rigid pole and a cart on which the pole is hinged to the cart 

through a pivot such that it has only one degree of freedom. 

The goal of the control is to make the pole upright. The 

dynamic model equations for the invented pendulum are [18]: 

M x N u                                          (16) 

                 2cos sinN mx ml ml                         (17) 
2( sin cos )P mg ml                            (18) 

                  sin cosI Pl Nl                                (19) 

where M is the mass of the cart, m is the mass of the 

pendulum, I = (1/3) ml2 is the moment of the inertia of the 

pendulum, θ is the angular position of the pendulum deviated 

from the equilibrium position, x is the position of the cart, l is 

the half length of the pendulum. The system friction is omitted 

for simplicity [18]. 

The dynamic equation of θ can be rewritten as: 
2 2 2( )( ) ( cos ) ( ) cos sin

( ) sin cos 0

M m ml I ml ml

M m ml ml u

    

 

      

  

              (20) 

If we define 
1x   and 

2x  , the state representation of 

the considered system can be written as: 

      
1 2

2 1 2 1 2

1

( ) ( )
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( ) ( )
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x t x t

x t f x t x t g x t x t u t

y t x t



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
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             (21) 

with 
cf and 

cg  are two nonlinear continuous functions. 

The discrete model of the inverted pendulum can be 

expressed as: 

   

   

21 1

1 21 22 2

( ) 0( 1) ( )
( 1) ( )

( ), ( )( ), ( )( 1) ( )

( ) ( ) ( )

cc

x kx k x k
x k T T u k

g x k x kf x k x kx k x k

f x k g x k u k
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          

      

 

    (22) 

with T is the sampling rate, and: 

                                                      

 
 
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    

                 (23) 

with       1 2 1 2( ), ( )cf x k x k F k F k   ,and: 

        
     

       
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
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     
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1
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F k
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as well as: 

  
 

   
1

1 22

( ) 0
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g x k
g x k

Tg x k x kg x k
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with: 

  
  

       
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. .cos
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. . . .cos
c

m l x k
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Then, we obtain: 

 

1 1 2

2 2 1 2

1

( 1) ( ) ( )

( 1) ( ) ( ( ) ( ) ( ) ( ))
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c

x k x k Tx k

x k x k T F k F k Tg k u k
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           (28) 

The parameters of the inverted pendulum are given as: 

l = 0.5m: the half-length of the pendulum, 

I = (1/3) ml2: the moment of the inertia of the pendulum, 

m = 0.3Kg: the mass of the pendulum, 

M = 2kg: the mass of the cart,  

g = 9.81 m/s2: the gravity. 



The sampling rate is chosen as T = 0.1s. 

B. The DSMC for the inverted pendulum: 

 

Firstly, we apply a discrete SMC for the inverted pendulum.  

The synthesis parameters are chosen as: 

0.5 0
,

1 0
refC x

   
    
   

 

The simulation results with the NL-DSMC for the inverted 

pendulum is shown in Figures 2, 3 and 4. Figure 2 shows the 

evolution of the state x1(k) and x2(k) Figure 3 shows the 

evolution of the controller and Figure 4 presents the evolution 

of the sliding function.  

 

Fig. 2  The  Evolution of nonlinear states x1(k) and x2(k) 

 

Fig. 3  Evolution of control input u(k)  

 

Fig. 4  Evolution of the sliding function S(k)  

It obvious that the classical state vector using the discrete 

sliding mode control (DSMC) converges to zero but cannot 

remove the chattering phenomenon. 

C. The DSMC for the uncertain inverted pendulum: 

 

In this study, the nonlinear uncertain system is defined as (6) 

and (7). Then the state model of the discrete system can be 

written as: 

1 1 2

2 2 1 2 2

1

( 1) ( ) ( )

( 1) ( ) (( ( ) ( )) ( ) ( ))

( ) ( )

u u u
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         (29) 

where: 
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(30) 

as well as: 

 
    
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(31) 

 

The simulation results of the discrete nonlinear sliding 

mode control are shown in figures 5, 6 and 7. Figure 5 present 

the evolution of the states x1(k) and x2(k).  Figure 6 illustrate 

the evolution of the controller u(k) and figure 7 shows the 

evolution of the sliding function S(k). 

 

Fig. 5  The  Evolution of states x1(k) and x2(k) (uncertain nonlinear system) 

 

Fig. 6  Evolution of control input u(k) (uncertain nonlinear system) 

 

Fig. 7  Evolution of the sliding function S(k) (uncertain nonlinear system) 



It can be seen that the inclusion of uncertainties increases 

the chattering phenomenon. 

D. The Neuronal Discrete Sliding Mode Control for inverted 

pendulum with uncertainties: NDSMC 

The simulation results of the neuro discrete nonlinear 

sliding mode control are shown in figures 8, 9 and 10. Figure 

8 presents the evolution of the state x1(k) and x2(k) within the 

NDSMC comparing with the state x1(k) and x2(k) within the 

classical discrete sliding mode control. Figure 10 shows both 

the evolution of the neuronal sliding function Sn(k) and the 

classical sliding function S(k). 

 

 

Fig. 8  The  Evolution of nonlinear system x1(k) and x2(k) with DSMC and 

NDSMC 

 

Fig. 9  Zoom in Figure 8  

 

Fig. 10  Evolution of the Neuro discrete sliding function and Discrete sliding 

function 

From these figures, it is clear that the oscillations 

encountered in the case of the classical sliding mode control 

when we introduce an important parametric uncertainty are 

eliminated. Therefore, the proposed neuro discrete nonlinear 

sliding mode control law is able to eliminate the chattering 

phenomenon in spite the presence of uncertainties. 

V. CONCLUSIONS 

In this work, a new neuro discrete-time sliding mode 

control for a non-linear system with uncertainties is developed. 

The application of this control law on an inverted pendulum 

has given satisfactory results for the stabilization, the 

trajectory tracking and overcoming the chattering 

phenomenon comparing with classical sliding mode control.  
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