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Abstract— In this paper, stabilization of uncertain 

systems using invariant polyhedral sets was proposed. 

The obtained full state feedback control laws are 

computed by an off-line approach reducing 

computational burdens. By minimizing a quadratic 

objective subject to linear constraints, the computed 

laws enhanced system performances. A comparison 

between implementing simple control laws and using 

an additional interpolation step will be carried out. To 

illustrate the effect of the computed laws, an example 

showed the enhancement of control performance. 
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1-  INTRODUCTION 

 

   Robust model predictive control (MPC) is an optimal 

technique for controlling systems subject to constraints 

on the states and on the inputs. This fact has proved very 

successful in the process industry and in academia. The 

synthesis approaches for on-line robust MPC have been 

studied by many researchers.  

 

    For linear systems, an on-line optimization is used to 

predict the process dynamics along a finite-time horizon 

[3].  Robust constrained MPC using linear matrix 

inequalities (LMI) was proposed by [7].  Brooms [1] 

presented a robust MPC for uncertain linear systems with 

ellipsoidal target sets, and Pornchai et al. [4], took the 

premise of a linear time varying process where 

uncertainty lay inside a polytope and arise a LMI 

computation at each sampling time to get the control law 

which is assumed to be linear in the predictions [5].  Wan 

and kothare [9] proposed an off-line robust constrained 

MPC algorithm. By choosing a sequence of states, 

converging to the origin, he constructed nested 

asymptotically stable invariant ellipsoids. Ellipsoidal 

approximations of the exact controllable sets are 

computed off-line and a numerically low demanding 

optimization problem is solved on-line. 

Recently, polyhedral sets [2], [8] became wide-spread 

due to their flexibility of representation and reliable 

numerical algorithms. But computation of robust control 

invariant set is still a difficult problem for general 

nonlinear systems with bounded disturbances. 

 Polyhedral invariant sets can be imposed on a terminal 

state by means of linear constraints instead of quadratic 

constraints [6]. 

 

      In this paper we show how to compute a sequence of 

state feedback control laws corresponding to a sequence 

of polyhedral invariant sets by solved in off-line step. On-

line we select the smallest polyhedral invariant set which 

contains the current state at every time instant and get the 

local state feedback controller inside the polyhedral set. 

For better performance, we use an external input signal 

with the local controller and its resolution procedure 

followed by three types of interpolation is given. The 

efficiency of the considered external input signal and 

interpolations are then illustrated by an example. 

This paper is organised as follows, a model with polytopic 

uncertainty is first presented. Then, the optimal control 

problem for constrained uncertain systems is formulated. 

Its resolution procedure using polyhedral invariant sets 

with an external input signal is added for the input control, 

is proposed. The efficiency of the proposed solution is 

then illustrated by an example. Finally, the paper is 

concluded. 

2- MODEL WITH POLYTOPIC UNCERTAINTY 

Considering the following linear time-varying (LTV) 

system with polytopic uncertainty: 

{
𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘)
                         (1) 
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           [𝐴(𝑘), 𝐵(𝑘)] ∈ 𝛺                                               (2) 

|𝑢ℎ(𝑘 + 1/𝑘)| ≤ 𝑢ℎ,𝑚𝑎𝑥, ℎ = 1,2, … , 𝑛𝑢                    (3)                 

 |𝑦𝑟(𝑘 + 1/𝑘)| ≤ 𝑦𝑟,𝑚𝑎𝑥, 𝑟 =

1,2,… , 𝑛𝑦                       (4)   

where 𝑥(𝑥) is the state of the plant,  𝑢(𝑘)  is the control 

input, y(k)  is the plant output and Ω is the polytope  

Ω = 𝑐𝑜𝑛𝑣{[𝐴1, 𝐵1], [𝐴2, 𝐵2], … , [𝐴𝐿, 𝐵𝐿]}                    (5) 

where 𝑐𝑜𝑛𝑣 is the convex hull and 𝛺 is a polytope, [𝐴𝑗,𝐵𝑗] 

are vertices of the polytope such that: 

[𝐴𝑗,𝐵𝑗] = ∑ 𝜆𝑗
𝐿
𝑗=1 [𝐴𝑗,𝐵𝑗], ∑ 𝜆𝑗

𝐿
𝑗=1 = 1, 0 ≤ 𝜆𝑗 ≤1,    (6)                                                      

The aim is this research is to find a state-feedback control 

law: 

𝑢(𝑘 + 𝑖\𝑘) = 𝐾𝑥(𝑘 + 𝑖\𝑘) + 𝑐(𝑘 + 𝑖\𝑘)                  (7) 

For 𝑖 = 1,… , 𝑁 − 1 

that stabilizes (1) with the following performance cost: 

 

min
𝑢(𝑘+𝑖/𝑘)

max
[𝐴(𝑘+𝑖),𝐵(𝑘+𝑖)]∈Ω,𝑖≥0

𝐽∞(𝑘) 

𝐽∞(𝑘) = ∑ [
𝑥(𝑘 + 𝑖/𝑘)
𝑢(𝑘 + 𝑖/𝑘)

]
𝑇

[
Θ 0
0 𝑅

]∞
𝑖=0 [

𝑥(𝑘 + 𝑖/𝑘)
𝑢(𝑘 + 𝑖/𝑘)

]     (8) 

subject to (3) and (4). 

where Θ > 0 and 𝑅 > 0 are symmetric weighting 

matrices. 

In the work by Pornchai et al. [4] have used polyhedral 

invariant sets with an off-line robust algorithm to 

stabilize uncertain systems. We intend to use this 

algorithm with suitable interpolations and we add for the 

input control an external input signal to obtain better 

control performances. 

 

3- Robust MPC Algorithm  

This algorithm is based on two main steps. The first, 

solved off-line, allows obtaining a sequence of state 

feedback control laws corresponding to a sequence of 

polyhedral invariant sets. The second consists on an on-

line implementation of state feedback control laws based 

on the position of the current state and an external input 

signal. Then, we consider two types of interpolation 

between two control laws corresponding to two adjacent 

polyhedral invariant sets. 

 

3.1- OFFLINE STEP FOR CONSTRUCTION OF 

POLYHEDRL INVARIANT SET  

Step 1: Choose a state sequence 𝑥𝑖 , 𝑖 ∈ {1, 2… ,𝑁} and 

solve the following problem to obtain corresponding state 

feedback gains:  

 

𝐾𝑖 = 𝑌𝑖𝑄𝑖
−1                                        (9) 

 

The states 𝑥𝑖 must be chosen such that the distance 

between  𝑥𝑖+1  and the origin is less than the distance 

between 𝑥𝑖 and the origin. 

 

Matrices 𝑌𝑖  and  𝑄𝑖 , for all 𝑖 = 1,2,… , 𝑁 are solutions of 

the following problem: 

 

            min
𝛾𝑖,𝑄𝑖,𝑌𝑖

𝛾𝑖                                                    (10) 

                                                  

subject to [
1 𝑥𝑖

𝑇

𝑥𝑖 𝑄𝑖
] ≥ 0                               (11) 

                                                                  

[
 
 
 
 𝑄𝑖 𝑄𝑖𝐴𝑗

𝑇 + 𝑌𝑖
𝑇𝐵𝑗

𝑇 𝑄𝑖Θ
1

2⁄ 𝑌𝑖
𝑇𝑅

1
2⁄

𝐴𝑗𝑄𝑖 + 𝐵𝑗𝑌𝑖 𝑄𝑖 0 0

Θ
1

2⁄ 𝑄𝑖

𝑅
1

2⁄ 𝑌𝑖

0
0

𝛾𝑖𝐼
0

0
𝛾𝑖𝐼 ]

 
 
 
 

≥ 0, ∀𝑗 =

1,2,… , 𝐿                                                                        (12) 

[
𝑋 𝑌𝑖

𝑌𝑖
𝑇 𝑄𝑖

] ≥ 0,   𝑋ℎℎ ≤ 𝑢ℎ,𝑚𝑎𝑥
2 ,   ℎ = 1,2, . . , 𝑛𝑢                                                                                                          

                                                                                      (13)                                                                  

[
𝑆 𝐶(𝐴𝑗𝑄𝑖 + 𝐵𝑗𝑌𝑖)

(𝐴𝑗𝑄𝑖 + 𝐵𝑗𝑌𝑖)
𝑇𝐶𝑇 𝑄𝑖

] ≥ 0,     

𝑆𝑟𝑟 ≤ 𝑦𝑟,𝑚𝑎𝑥
2 , 𝑟 = 1,2, … , 𝑛𝑦 , ∀𝑗 = 1,2,… , 𝐿.       (14)                   

 Step 2: Given the state feedback gains: 

 

𝐾𝑖 = 𝑌𝑖𝑄𝑖
−1, 𝑖 ∈ {1, 2,… , 𝑁}                     (15) 

 

from step 1. For each 𝐾𝑖, the corresponding polyhedral 

invariant sets defined by: 

 

Si = {x/Mix ≤ di}                                 (16) 

 

are constructed by the following : 

 

 Step 2.1: Set 𝑀𝑖 = [𝐶𝑇 , −𝐶𝑇 , 𝐾𝑖
𝑇 , −𝐾𝑖

𝑇],  

𝑑𝑖 = [𝑦𝑚𝑎𝑥
𝑇 , 𝑦𝑚𝑖𝑛

𝑇 , 𝑢𝑚𝑎𝑥
𝑇 , 𝑢𝑚𝑖𝑛

𝑇 ]
𝑇
  and  𝑚 = 1. 

 Step 2.2 : Select row 𝑚 from (𝑀𝑖 , 𝑑𝑖)  and 

check whether 𝑀𝑖,𝑚(𝐴𝑗 + 𝐵𝑗𝐾𝑖)𝑥 ≤ 𝑑𝑖 is redundant with 

respect to the constraints defined by (𝑀𝑖 , 𝑑𝑖) by solving 

the problem: 

 

max
𝑥

  𝑊𝑖,𝑚,𝑗  

subject to 𝑊𝑖,𝑚,𝑗 = 𝑀𝑖,𝑚(𝐴𝑗+𝐵𝑗𝐾𝑖)𝑥 − 𝑑𝑖,𝑚,                  

                                                                      (17) 

𝑀𝑖𝑥 ≤ 𝑑𝑖  

 



 Step 2.3:  Let 𝑚 = 𝑚 + 1 and return to Step 

2.2.  If 𝑚 is strictly larger than the number of 

rows in (𝑀𝑖 , 𝑑𝑖) then terminate. 

 

3.2- ON-LINE STEP  

 Calculate c(k) 

 

Solve the following QP problem at time k, we can get the 

value of 

𝑐(𝑘) = {𝑐(𝑘\𝑘),… , 𝑐(𝑘 + 𝑁 − 1\𝑘)}.                       (18) 

 

min     
𝑐(𝑘)

𝑥̅(𝑘+1),….,𝑥̅(𝑘+𝑁)

𝑥(𝑘+1),….,𝑥(𝑘+𝑁)

∑ 𝑐(𝑘 + 𝑙\𝑘)′𝑐(𝑘 + 𝑙\𝑘)𝑁
𝑙=1                             

                                                                                      (19) 

With the following constraints: 

 

𝛾𝑗
+𝑥(𝑘 + 𝑙) − 𝛾𝑗

−𝑥(𝑘 + 𝑙) + 𝐵𝑐(𝑘 + 𝑙\𝑘)

≥ 𝑥(𝑘 + 𝑙 + 1) 

𝑗 = 1,… , 𝐿,    𝑙 = 0,… , 𝑁 − 1                                      (20) 

 

𝛾𝑗
+𝑥(𝑘 + 𝑙) − 𝛾𝑗

−𝑥(𝑘 + 𝑙) + 𝐵𝑐(𝑘 + 𝑙\𝑘)

≤ 𝑥(𝑘 + 𝑙 + 1) 

𝑗 = 1,… , 𝐿, 𝑙 = 0,… , 𝑁 − 1                                         (21) 

 

𝜑𝑖
+𝑥(𝑘 + 𝑙) − 𝜑𝑖

−𝑥(𝑘 + 𝑙) + 𝑐(𝑘 + 𝑙\𝑘) ≤ 𝑢          

                                                                                     (22) 

 

𝜑𝑖
+𝑥(𝑘 + 𝑙) − 𝜑𝑖

−𝑥(𝑘 + 𝑙) + 𝑐(𝑘 + 𝑙\𝑘) ≥ 𝑢            

                                                                                     (23)   

With  

𝑥(𝑘) = 𝑥(𝑘) = 𝑥(𝑘),  𝜑𝑖
+ = max (𝐾𝑖 , 0)  

 𝜑𝑖
− = max(−𝐾𝑖 , 0),   

𝛾𝑗
+ = max((𝐴𝑗 + 𝐵𝐾𝑖) , 0) 

𝛾𝑗
− = max(−(𝐴𝑗 + 𝐵𝐾𝑖) , 0) 

 On-line Step without interpolation  

 

At each sampling time, determine the smallest polyhedral 

invariant set 𝑆𝑖 = {𝑥/𝑀𝑖𝑥 ≤ 𝑑𝑖},  𝑖 = 1,2,… , 𝑁 − 1  

containing the measured states and implement the 

corresponding state feedback control law 𝑢(𝑘/𝑘) =

𝐾𝑖𝑥(𝑘/𝑘) + 𝑐(𝑘)  to the process. 

  On-line Step with 2-points interpolation  

At each sampling time, if the measured state lies between 

𝑆𝑖 and 𝑆𝑖+1, 𝑖 = 1,2,… , 𝑁 − 1  implement the 

interpolated gain obtained by : 

 

𝐾 = 𝛼𝐾𝑖 + (1 − 𝛼)𝐾𝑖+1                              (24) 

 

 where 0 < 𝛼 < 1, 𝐾𝑖 is the corresponding gain of the 

polyhedral invariant set 𝑆𝑖, 𝑖 = 1,2,… , 𝑁 − 1. 

 

 On-line Step with 3-points interpolation 

At each sampling time, if the measured state lies 

between 𝑆𝑖, 𝑆𝑖−1 and 𝑆𝑖−2, implement the interpolated 

gain obtained by : 

𝐾 = 𝛼1𝐾𝑖−2 + 𝛼2𝐾𝑖−1 + 𝛼3𝐾𝑖                                   (25)      

where 0 < 𝛼𝑖 < 1, for all 𝑖 = 1,2,3  and  ∑ 𝛼𝑖
3
𝑖=1 = 1. 

4 – APPLICATION 

We will consider the application of the proposed 

approach to an angular positioning system [7]. The 

system consists of an electric motor driving a rotating 

antenna so that it always points in the direction of a 

moving object. The motion of the antenna can be 

described by the following discrete time equation 

[
𝜃(𝑘 + 1)

𝜃̇(𝑘 + 1)
] = [

1                      0.1
0      1 − 0.1𝛼(𝑘)] [

𝜃(𝑘)

𝜃̇(𝑘)
]

+ [
0

0.0787
] 𝑢(𝑘) 

𝑦(𝑘) = [0     1] [
𝜃(𝑘)

𝜃̇(𝑘)
]                                              (26) 

where 𝜃(𝑘) is the angular position of the antenna, 𝜃̇(𝑘) is 

the angular velocity of the antenna and 𝑢(𝑘) id the input 

voltage to the motor.  

The uncertain parameter 𝛼(𝑘) is proportional to the 

coefficient of viscous friction in the rotating parts of the 

antenna. It is assumed to be arbitrarily time varying in the 

range of  

0.1 ≤ 𝛼(𝑘) ≤ 10.                                                   (27) 

Let 𝜃 = 𝜃 − 𝜃𝑒𝑞 , 𝜃̇ = 𝜃̇ − 𝜃𝑒𝑞
̇  and 𝑢 = 𝑢 − 𝑢𝑒𝑞  where 

the subscript 𝑒𝑞 is used to denote the corresponding 

variable at equilibrium condition. 

The discrete time model (26) can be written as follows 

[
𝜃(𝑘 + 1)

, 𝜃̇(𝑘 + 1)
] = [

1                      0.1
0      1 − 0.1𝛼(𝑘)] [

𝜃(𝑘)

, 𝜃̇(𝑘)
]

+ [
0

0.0787
] 𝑢(𝑘) 

𝑦(𝑘) = [0     1] [
𝜃(𝑘)

𝜃̇(𝑘)
]                                                (28) 

Because the uncertain parameter 𝛼(𝑘) is varied between 

0.1 and 10, we conclude that 𝐴(𝑘) ∈ Ω where Ω is given 

as follows 

Ω = 𝐶𝑜 {[
1         0.1
0       0.99

] , [
1       0.1
0          0

]}                              (29) 

The objective is to regulate 𝜃 from 0.2 to the origin by 

manipulating 𝑢. The input constraint is |𝑢(𝑘)| ≤ 2 volts. 

Here 𝐽∞(𝑘) is given by (8) with Θ = [
1     0
0      0

] and 𝑅 =

0.00002. 

Next, let’s choose a sequence of states: 

𝑥𝑖 = {

(0.35,0.35), (0.3,0.3),
(0.25,0.25), (0.02,0.2),

(0.15,0.15), (0.1,0.1)(0.05,0.05)
}                  (30) 



is chosen to calculate the corresponding state feedback 

gains 𝐾𝑖. 

This sequence is used to calculate seven state feedback 

gains 𝐾𝑖 corresponding to seven polyhedral invariant sets 

(Figure 1). 

 

 

Figure 1: The obtained sequence of 7 polyhedral 

invariant sets constructed off-line 

 

 

Figure 2: The regulated output 

 

 

Figure 3: The control input 

The closed-loop responses of the system when α(𝑘) is 

randomly time-varying between  0.1≤ α(𝑘) ≤ 10, are 

showed respectively by Figure 2 and Figure 3.  It is seen 

that the considered interpolations, by 2- points and 3-

points give less conservative results as compared to the 

approach without interpolation. 

And we can observe that by using interpolation with 

external input signal 𝑐(𝑘) does provide better control 

performance. 

 

5 - CONCLUSION 

A constrained MPC algorithm based on polyhedral sets 

interpolation for polytopic uncertain systems is presented 

in this paper. An interpolation step applied to the 

obtained control laws based on polyhedral invariant sets 

gives good performance with the use of external 

perturbation input signal. Numerical example confirms 

that this method is effective and gives good performance. 
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