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Abstract— The problem addressed in this article, constituted the 

intersection of the domains of the mobile robotics and the 

artificial neural networks (ANNs). The navigation of a mobile 

robot is one of the key problems in the robotics community. A 

control architecture based on ANN is developed in the context of 

the control of a mobile robot (car type). In this work, we are 

interested in two approaches to ensure a tracking reference 

trajectory, issued by a planner. The first is an inverse model 

approach, concerning the second approach is a neural PD 

controller with adaptive coefficients, learning is done online. 

Numerical simulation show that the proposed controllers ensure 

good path tracking. 
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I. INTRODUCTION 

The techniques based on the use of artificial neural 

networks arouse today is growing interest in the areas of 

control and robotics. Processing speed, learning and adaptive 

capacities, but also the robustness of these approaches largely 

motivate many studies in the area command mobile robots [1], 

[2], [3]. The networks of artificial neurons are mainly 

procedures allowing to approach any linear function or not [4], 

[5]. It is this property which motivates their use for the 

realization of nonlinear systems of command by learning. The 

conception of the organ of command is preceded by a phase of 

modeling of the process [1], [6], [7]. The central problem in 

this paper is control of nonholonomic wheeled mobile robot. 

In this context may be mentioned the works of Barraquand 

and Latombe, Divelbiss and Wen, Li and Gurvits, Jacob and 

al., Laumond, Laumond and al. Mirtich and Canny and Sahai. 

In (Tanner and Kyriakopoulos, 2003) a combined 

kinematic/torque controller law is developed using 

backstepping algorithm. (Tanner and Kyriakopoulos, 2003) 

solve the problem of mobile robot stability using nonlinear 

backstepping algorithm, (Oriollo and al., 2002) with the 

known functions and (Fierro and Lewis, 1997) with constant 

parameters [8], [9]. 

This paper is organized as follows: Section 2 provides the 

kinematic model of the mobile robot of unicycle-type. The 

first approach, inverse model, is investigated in Section 3. In 

Section 4, the neural PD controller with adaptive coefficients 

is presented. Finally, Section 5 concludes the paper. 

II. ROBOT MODEL 

We restrict ourselves with the unicycle type wheeled 

mobile robot. We appoint by the latter, a robot actuated by 

two motorized independent wheels, its structure is illustrated 

in Fig. 1. [9], [10], [11]. Immediate Center of Rotation (ICR): 

wheels having the same axis of rotation, the ICR is a point on 

this axis, as showing in Fig. 2. Where v  is the velocity of the 

center of surface of robot, 
lv and rv  are the velocities of the 

left and right wheels respectively, r  is the radius of each 

wheel, L  is the distance between both wheels, x  and y  are 

the position of the mobile robot and   is its orientation [12]. 

The kinematic model is given by [6]. 
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Fig. 1  Mobile robot structure 

Technical tracking: The path to follow is stored in the 

memory as a vector of three elements ( ddd yx ,, ). The Fig. 

2 illustrates the principle of displacement of the robot from the 
current point to the target point. 
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Fig. 2  Approach movement between elementary 

III. APPROACH MODEL INVERSE 

We use this approach as first technique in our work, it 
requires two separate phases, one for the learning then the 
other one for the use of the network. During the phase of 
learning the network and the process are placed in parallel, a 

command u  ( vu  : velocity variation) is supplied in the 

process, so the output   of the process will be considered as 

input by the network which is driven so as to find the output 
commands u . The network so learns an inverse model of the 

process, that is a function giving the applied command )(tu  

from the current output )(t  and possibly of its past output 

)1( t  [1], [4], [6]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  (a) Learning phase (b) Use phase 
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Fig. 4  Structure of neural controller 

After the training phase, the system is theoretically 
capable of providing the control of supplying the command 

)(tu  necessary to obtain an output )(td  supplied as input. 

The neural controller is thus placed directly in series with the 
commanded system, as shown in Fig. 3. During the learning 
phase, it is necessary to go through the process all of its 
possible states, or at least all the states that will be used during 
the control phase [1], [4], [6]. 

The general structure is illustrated in the previous figure. 

A. Network selection 

The multilayer network has a single input, two hidden 

layers of neurons with sigmoid activation functions and one 

output with linear activation function. Its learning is carried 

out using the algorithm of backpropagation of the gradient 

based on the error e=desired output-real output, the results are: 

• Quadratic Average Learning Error, 

004-9.9550e = QALE . 

• Quadratic Average Learning Error Test, 

004-9.2389e = QALT . 

 

 

 

 

 

 
 

 

 
 

 

 
Fig. 5  Sequence learning 

B. Simulation results 

To show the effectiveness of the proposed controller, 
simulations were performed in Matlab Simulink. The 
examples are for the tracking of an echelon path, a square path 
and sinusoidal path, the results are illustrated in Figs. 6–9. 

 

Fig.6  Echelon trajectory 
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Fig. 7  Square trajectory 

Fig. 8  Sinusoidal trajectory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9  Velocities of right and left  motors 

The first approach, inverse model, gave good 
performances. It is noted that it ensures the flexibility of 
movements, with the observation of a small tracking error 
value. 

IV. NEURAL PD WITH ADAPTIVE COEFFICIENTS 

The PD controller Proportional Diverter is the combination 

of two modules, the proportional P module that provides the 

function of basic setting and module diverter D which 

improves stability and accelerates the setting. This regulator 

supplies a control signal proportional to the deviation and its 

derivative [1], [4], [7]. 

By exploiting the learning ability of neural networks, we 

develop a system to estimate these two parameters. 

A. Auto adjusting the parameters of a PD 

In this approach, the neural network will be used to adjust 

pk and 
dk , parameters of the conventional controller in PD 

the same way as when they are adjusted by a human operator 

[1], [4], [7]. 
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Fig. 10  Structure of neural PD control  
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The basic structure for estimating these parameters is 

detailed in the followings figure. 

Gains pk and 
dk , proportional and derivative gains are 

determined in real time by the neural network. The network 

input vector has two components. The error and its derivative. 

Weights, )(1 tw and )(2 tw  weighted the error input and the 

input of the error derivative are associated to the factors P and 

D, respectively. 

The error of learning is   de  and the algorithm of 

update of the weights is that of modified Widrow-Hoff. A 

learning is stopped when the system arrives to follow the 

trajectory planned and the according to the criteria originally 

set. The network behaves as an adaptive PD. If significant 

changes occur in the system to control, learning can take back. 

B. Simulation results 

To test this controller on the tracking performance, we 

applied this approach to different trajectories and for different 

values of rl  and m , learning coefficient and coefficient of 

term time, respectively, representing parameters in the neural 

network. 

For 00001rl  and 8.0m  

 

 

 

 

 

 

 

 

 

Fig. 11  Echelon trajectory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12  Velocities of right and left motors 

For 000009.0rl  and 9.0m  

Fig. 13  Echelon trajectory 

 

 

 

 

 

 

 

 

 

 

Fig. 14  Velocities of right and left motors 

For 00002.0rl  and 9.0m  

 

 

Fig. 15  Sinusoidal trajectory 
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Fig.16  Velocities of right and left motors 

We Note that with this neural controller "PD to adaptive 

learning coefficient is done online, we first applied for a 

echelon, sudden change of trajectory to determine the stability 

and accuracy then for tracking of a sinusoidal trajectory, we 

observe that the change rl  and m , learning coefficient and 

coefficient of the term time respectively, has a large influence 

on the results. It is noted that the use of the latter approach 

gives satisfactory results. 

The purpose of this approach is to design an adaptive PI 

controller and exploit the simplicity of setting Adaline 

networks. 

V. CONCLUSIONS 

In this paper a control approach using multilayer artificial 

neural networks is realized. A second approach uses the 

principle of a PD controller and use a network to adapt the 

proportional and derivator parameters, Learning is done online. 

Several tests validations of these approaches are tested, the 

results are acceptable in particular the response of the system 

following the application of a echelon. 

Neural networks are a credible means for the control of 

mobile robots and determination of PD parameters. 
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The motor and robot parameters are as follows 

Resistance 1R   

Inductance 1.5L H  

friction 0.1f   

Inertia 20.01J Kgm  

Counter electromotive force constant 0.01K   

torque constant 0.01K   

Radius of wheel 0.1r m  

Width of the robot 1L m  
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