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Abstract— A Lattice Boltzmann solver is implemented using 

various techniques and the performance is discussed. Both Open 

Multi-Processing (OpenMP) and Message Passing Interface 

(MPI) parallelization techniques using the same numerical 

algorithm and employing different collision terms were 

executed. We compare the numerical solution of different 

programming paradigms to the well known cavity, Taylor-

Green and Kida-vortex flows in order to achieve high 

performances in LBM simulation. The simulations include 

Lattice Boltzmann Method with single-relaxation-time (SRT) 

and Entropic model (ELBE). We explore the behavior and 

accuracy of the proposed models with different implementations. 

Our results clearly show that the entropic model remains 

effective in terms of accuracy and stability. 

 

Keywords— MPI, OpenMP, SRT, ELBE, Process time. 

 

I. INTRODUCTION 

The lattice Boltzmann method, commonly called LBM, is 

a new alternative for the numerical simulation which sustains 

a rapid evolution in terms of physical models, computer 

implementations and engineering applications. Compared 

with classic computational fluid dynamics methods, the 

advantages of LBM include easy handling of complex 

geometries and boundary conditions [1] and efficient 

implementation for parallel computation [2]. Thus, several 

studies have been carried out in recent years to validate the 

approach for many heat transfer and reactive flow cases. The 

history of the LB method is well documented in the literature 

[3]. Its theoretical fundamentals are based upon the kinetic 

theory of gases which tries to understand the macroscopic 

behavior of fluids from the properties of their molecules. The 

evolutionary process and the formulation of LBM can be 

highlighted as the following: The Lattice Gas Cellular 

Automat (LGCA), the continuous Boltzmann-BGK then the 

Grad’s Hermite-quadrature expansion. Beyond these 

formulations, the incompressible Navier-Stockes equations 

have been recovered. After the Chapman-Enskog analysis, 

the equilibrium distribution was written as finite expansions 

in the local velocity without formal link connecting the LBE 

to the Boltzmann equation. The first connection of the LBE to 

the Boltzmann equation has been established by He and Luo 

[4]. These formulations can construct models that recover 

incompressible Navier-Stokes equations. However, more 

studies are still needed to improve the stability of the mass, 

momentum and energy-conserving LB models. 

The Bhatnagar-Gross-Krook (BGK) approximation [5] is 

the most popular lattice Boltzmann model. This approach 

derived from the Enskog equation. In this model the collision 

operator requires the same relaxation time to each physical 

quantity. Although it’s simple implementation, the BGK-

LBM suffers from numerical instability at high Reynolds (or 

Rayleigh number) number. To avoid this restriction, the direct 

way is to use a large number of grid points, however this will 

cost large computer resources and lower the computational 

efficiency. With the current trend in parallel computing, many 

studies used the single time BGK model with different 

programming paradigms [6]. However, the majority of 

published reults using parallel codes aimed to study physical 

phenomena [7], so little attention have been given to the 

performance  and the efficiency of the implementation.  

To remove numerical instability defects of LBM, some 

authors [8]  used the multiple relaxation times model (MRT). 

The advantage of this model is that it has a maximum number 

of adjustable parameters. These parameters can be determined 

by optimizing the hydrodynamic properties of the model and 

linear stability analysis of the LBE evolution operator. To 

remedy the stability problem in LBM, some authors who refer 

to each other used entropic lattice Boltzmann schemes. The 

derivation of ELBE can be performed in many ways and the 

most popular one derived from the analog of the discrete 

Boltzmann H function of standard extensive statistical 

mechanics [9]. 

To stabilize numerical simulations of Lattice Boltzmann 

Method, some authors used Large Eddy Simulation models 

like other CFD methods [10]. In LES-LBM, different from 

the DNS-LBM, relaxation times are adjusted locally, 

according to the resolved strain tensor. 

In order to compare between several LBM models, Luo et 

al. [11]  used the lid-driven square cavity flow in two 

dimensions to  perform a comparative study between several 
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lattice Boltzmann (LB) models including the MRT-LB, TRT-

LB, and LBGK D2Q9 models, and the entropic lattice 

Boltzmann equation (ELBE). They concluded that MRT-LB 

and TRT-LB schemes are superior over the ELBE and LBGK 

schemes in terms of accuracy, stability, and computational 

efficiency. Also they concluded that the ELBE model is the 

most inferior among the LB tested models. It must be 

mentioned that there is some controversy of results reported 

by the researchers in this topic. Thus, results reported by Luo 

et al. [11] are commented by I. V. Karlin and al. [12]  and 

they demonstrated a considerable increase of stability with 

respect to conventional lattice Boltzmann schemes. The 

interested reader can refer to the mentioned papers to find out 

more details. 

Another ways to improve the stability and the accuracy of 

the lattice Boltzmann method (LBM) is the choice of the 

boundary conditions.  Ginzburg and D’Humières [13]  used a 

unified approach of several boundary conditions in lattice 

Boltzmann models. They gave theoretical study of existing 

boundary conditions and their accuracy for general flows. 

They also obtained a third order accurate boundary condition 

for Couette and Poiseuille flows. 

Based on the studies we found, there are several methods 

used to enhance LBM stability and accuracy. Using different 

collision models and high resolution with parallel 

implementation are of the most known strategies in this issue. 

We believe that some important points have to be discussed 

and analyzed, such as: The efficiency of parallel computing 

of LBM especially in a single machine and the effect of 

collision term in the accuracy of the results and the 

computing time. The main purpose of this study is then to 

compare between two implementation of LBM algorithm 

using OpenMP and MPI strategies and to evaluate some LB 

schemes with the most known collision models. 

 

II. LATTICE BOLTZMANN METHOD (LBM) 

The discrete evolution of the particle distribution function 

describing mass and momentum conservations for D3Q19 

discrete velocity model is: ���� + ���� , 
 + ��� − ����, 
� = Ω���� + ���, 
�  (1) 

In the BGK collision model the operator  Ω�f�  is 

replaced by the well-known classical single time relaxation 

approach: Ω���� = − �� ����, 
� − �����, 
��           (2) ���  is the local equilibrium distribution function that has an 

appropriately prescribed functional dependence on the local 

hydrodynamic properties. � is the position vector, ���, t�  is 

the 19-dimensional vectors for the distribution functions, Ω��� is the collision term and � is the external force term. If �  is the fluid velocity, the equilibrium distribution function 

can be expressed as:  ���� = ��� �1 +  �!.�#$% + �& '(�!.�#$% )& − �.�#$% *+,          (3) 

 -. is the speed of sound. In the ELBE the collision term can 

be written as: 

Ω��� = /0������, 
� − ���, 
��                (4) f ��  is the local equilibrium that minimizes the entropy 

function H = ∑ ��ln���/���6 . 0  matches the viscosity 

coefficient in the long-time large-scale dynamics of the 

kinetic scheme. α is the maximal over-relaxation of the scheme, we note here 

that the crucial point of ELBE is the entropy condition. 8�� + α�� − ����� = 8���                   (5) 

The parameter α is then obtained by solving the non-linear 

equation Eq.(5). In ELBE, the relaxation parameters are self-

adjusted in order to preserve the positiveness of the density 

distribution function. 

The formal solution of the minimization problem is of the 

Boltzmann type, i.e.: 

         ���� = 9�:;<=>!=�                              (6) 

where A and ?@  are the Lagrange multipliers. For D3Q19 

model, the equilibrium function can be written as the product 

of three times the one-dimensional solution as follow:  

���� = ��� ∏ '2 − C1 + 3EF&*GFH� I&JK;C�;GJK%�LJK M#!K
    (7) 

 

where j denotes the dimensional index in 3D and -�FNO−1,0,1Q.  The Newton-Raphson method is used to solve 

the non linear equation for / . In order to speed up the 

computational time, we use the following approximation of /  

if the deviation DS = T����� − ���/����T is less than is between 

10
-6

 and 10
-2

. / = 2 − 4 V�V& + 16 'V&V�*& − 8VGV� + 80V&VGV�&  

−80 (Y%YZ)G − 16 Y[YZ.                               (8) 

Where: 

V\ = �L��]^Z
\�\;�� ∑ �_!̀ aL_!�]bZ

_!]
\c�H� ,   d ≥ 1            (9) 

The starting point for the Newton-Raphson method is 2 for 

t=0 and /�L� for t>0, where  /�L� is the computed value of α 

at time t-1. Finally, the ELBE with collision term given by 

Eq.(4) reduce a model equivalent to the SRT-LBE if we set 

α=2 during the simulation.  

The computational procedure of the entropic Lattice 

Boltzmann algorithm is: 

� Initialisation ρ  and g   and the particle distribution 

functions {fi}. 

� Compute the equilibrium function {fi
eq

}  using Eq.(7) 

.  

� Compute the maximal deviation Dh. 

� According to Dh →Use either the approximation 

given by Eq.(8) or  Newton-Raphson method to 

compute the relaxation parameter α  or simply set 

α=2 . 
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� Compute the post-collision distributions using α and 

Eq.(5). 

� Advection of {fi}. 

� Applying boundary conditions. 

� Compute conserved quantities ρ and � . 

 

III. PARALLELISATION STRATEGIES: OPENMP AND MPI 

The key steps describing the LBM algorithm are 

the streaming and collision processes. The collision step can 

be locally computed as follow: ����, 
;� = ����, 
� + i���            (10) 

This step involves only the particles located in the same 

lattice. The majority of calculations is performed at this step. 

On the other hand, the symmetry of discrete speeds, 

explained and location make this stage a good candidate for 

parallel implementation. 

The streaming step is not local in which each particle 

moves to the nearest node in the direction of its velocity 

following the equation: ���� + -� , 
 + 1� = ����, 
;�, j = 0, . .18         (11) 

The parallel implementation of the collision step using 

OpenMP technique can be easily performed by using the 

instruction "#pragma omp for". However, the number of 

threads must be mentioned before running the code. 

The MPI  implementation of the LBM with BGK collision 

model is shown in Fig. 1. 

The densities are stored as double-precision floating point 

numbers. This requires extreme amounts of memory and CPU 

resources for a typical simulation. We use 3D decomposition  

for MPI parallel implementation in order to allow ideal data 

communications between subdomains.   

 

Fig. 1  MPI implementation with Master-Worker approach. 

Since the CPU time will be considered, it is necessary to 

mention that  the following calculations are performed using  

a single machine Intel Core i3-4160, 4th Generation (3M 

cache, 3.6GHz). 

IV. RESULTS AND DISCUSSIONS 

A. Parallel computing 

As a practical comparison of the described Lattice 

Boltzmann implementations, we consider the  fully 3D flow 

in a cubic lid-driven cavity. This problem has been 

extensively employed as a standard benchmark for numerical 

methods and analyzed by a number of authors using a variety 

of solution procedures.  The flow configuration and boundary 

conditions are as follows. The top wall moves with a uniform 

velocity U0  while the other  walls are fixed. As a compromise 

between accuracy and computational efficiency, the value of 

U0 is fixed to 0.1. Hence the Reynolds number k9 = 8lm/n 

changed by different dimensionless kinematic viscosity. The 

incompressible Navier-Stokes equations are in the following 

form. ∇. � = 0,                                                          (12) p�� + ��. ∇�� = −∇q + �r� ∇&�.                        (13) 

 

In the BGK, we use the standard "bounce-back" condition 

while in the entropic model we use  the diffusive Maxwell 

boundary condition in order to reduce the noise in the 

distribution functions and therefore the macroscopic moments 

as follow  [14]: ���s, 
 + 1� = t�����Eu�                (14) 

At the top wall boundary γ is given by: 

t = _vw�x,��;_Zyw �x,��;_ZZw �x,��;_Z%w �x,��;_Zzw �x,��_v̀ a�J{�;_Zỳa�J{�;_ZZ̀a�J{�;_Z%̀a�J{�;_Zz̀a�J{�     (15) 

Where ��#  is the density distribution function after the 

collision process.  

Using the BGK algorithm and different implementations 

namely openMP and MPI, simulations of lid driven cavity 

flow at low Reynolds number (Re=10) were carried. In the 

previous section we have described the approach followed to 

implement the D3Q19 LBM solver with OpenMP and MPI. 

 

Fig. 3 describe the Processor time evolution and the 

number of Mega Lattice Site Updates per Second (MLUPS) 

for different threads numbers using openMP and  MPI and 

grid sizes. The minimum calculation time tends to the number 

of threads (2 or 4) while remaining higher. The most basic 

observation here is that , we see that if the number of threads 

equal to the number of physical or logical threads (Intel Core 

i3), the calculation time is minimal and the number of Mega 

Lattice Site Updates per Second is maximal so the calculation 

is efficient. It is important to note  that the original code must 

be widely modified by using MPI implementation in order to 

reach better performance. 
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Fig. 2  Processor time evolution for different numbers of threads using 

openMP and  MPI. 

 

 

 
Fig. 1  Number of Mega Lattice Site Updates per Second (MLUPS) using 

different numbers of threads and grid sizes. 

 

 

B. Collision term effect 

 

In the following step, we perform numerical simulations in 

order to compare between the BGK and entropic models. 

Unsteady Taylor-Green vortex flow is considered which is 

described by the following initial conditions in periodic 

cubical domain: 

|}
~ E� = lm�jd (��) -�� (��) -�� (��)

E� = −lm-�� (��) �jd (��) �jd (��)E� = 0
�               (16) 

Reynolds number is kept to 1600 while the velocity Um =0.0288  in lattice unit. Computations were performed with 

D3Q27 model at two spatial resolutions: 64
3
 and 128

3
. 

The aim of this study is not the discussion of the decayed 

turbulent flow since many studies based on valuable physical 

information are found in the literature and treated this issue in 

details. The reader can refer to [15] and references therein for 

more information. This standard benchmark is used to test the 

accuracy, stability and computational efficiency of the two 

described Lattice Boltzmann models. 

 

The time evolution of kinetic energy provide a good 

indication of the manner in which the turbulent structures 

disappear. In Fig. 4, the energy evolution  �S = �&� � �&���  

for both ELB and BGK simulations for Green-Taylor 

problem with the two successive grids  are compared with the 

DNS [15]. ELB compares well with DNS results even with 

coarse grid size. It is important to mention that spectral 

method in the refernce [15] uses a grid size of 256
3
. The 

results of the mesh 128
3
 compares well those of the reference. 

However, the coarse mesh 64
3
 is dissipative and gives values 

of the energy less than the reference especially in the range 

4≤t≤12. 

 

Fig. 4  Temporal evolution of the kinetic energy k(t) for Green-Taylor using 

ELB model. 

 

Fig. 5 shows the iso-surfaces of  vorticity magnitude  at  

t*=0.141, t*=7.085 and t*=14.878,  respectively  using ELBE 

model. It is clear that the entropic model solve all the scales 

available in the computational domain. At first, the flow has a 

viscous behavior and the vortices begin to evolve and roll-up. 

Near t*=7 the smooth eddy structures begin to undergo 

changes in their structure and around t*=9 there is an 

appearance of the coherent structures. Beyond this time, the 

flow becomes completely turbulent and the structures degrade 

slowly. The structures become smaller in turbulent regime. 

 

In table I we summarize the statistical data of the 10 

nondimensional time steps t* obtained by BGK and ELB with 

the same grid size 128
3
.  

 

 

Admin
Typewritten Text
Copyright IPCO-2017
ISSN 2356-5608




TABLE I 

STATISTICAL DATA COMPUTED BY USING BGK AND ELB MODELS. 

 

Time t∗ Energy   Eh Enstrophy  ξ 

ELB BGK ELB BGK 

0.141 0.372798 0.372067 1.51659 4.3026 

0.283 0.371066 0.370921 3.31556 3.74682 

0.425 0.369516 0.369321 4.48078 5.11552 

0.566 0.368003 0.367932 5.54661 5.51816 

0.708 0.366298 0.366201 6.77422 6.66922 

0.850 0.364119 0.363799 8.29798 8.1507 

0.991 0.361475 0.360776 10.2754 9.79006 

1.133 0.358232 0.35698 12.7717 11.6696 

1.275 0.354341 0.35238 15.6113 13.6395 

 

It is clear that the energy  values obtained by two models 

are close at all computed times. However, only at the last 

stage (t*≥0.566) the values of enstrophy � = �&� � �&���  

obtained by the two  models are  very close. 

 

 
t* =0.141 

 
t*=7.085 

 
t*= 14.878 

 

Fig. 5  Iso-surfaces of  vorticity magnitude  at  t* =0.141, t*=7.085 and 

t*=14.878,  respectively (ELB  model). 

 

Fig. 6 shows the temporal evolution of the kinetic energy 

k(t) for decaying isotropic turbulence (Kida-vortex) with 
initial Reynolds number Re=1000  using BGK and ELB 

models and different grid sizes. It can be observed that results 

of kinetic energy by using ELB method is   truncated in the 

middle between those obtained by using BGK model with 

two different grid size 128
3
 and 200

3
. The entropic model not 

only stabilize the LBM simulation and enhance its stability, 

but also gives accurate results and remains stable with coarse 

grid more than the standard BGK model.  This enhancement 

is performed by the numerical solution of entropy balance.  
 

Fig. 7 shows the Q-criterion iso-surfaces and vorticity 

magnitude at t*=0.141, t*=1.417 and t*=4.959, respectively 

with ELB model. One can observe  that ELB solve 

appropriately the finest structure of the flow and reproduces 

all the known features of the flow. 
 

       
Fig. 6  Temporal evolution of the kinetic energy k(t) for Kida vortex using 

BGK and ELB models. 

 

 

 
t*=0.141 
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t*= 1.417 

 
t*= 2.834 

 

 
t*= 4.959 

 

Fig. 7  Q-criterion iso-surfaces and  vorticity magnitude  at  t* =0.141, 

t*=1.417 and  t*=4.959,  respectively (ELB model). 

 

 

V. CONCLUSION 

 

In this study, we have presented the general methodology 

for constructing and implementing LBM scheme on 

parallel architecture and with different collision term. To 

evaluate the capability and reliability computation of the 

entropic model, we use 3D decayed turbulence as a 

benchmark test. The ELBE remains unchallenged even 

with low resolutions. However, the calculation of the 

relaxation time in BGK model is less than computation 

effort in calculation of α parameter in ELBE. Moreover, 

thanks to the self adjustment of the relaxation parameter, 

our results highlight the subgrid feature of ELBE and that 

it has the correct limit of DNS when simulation is 

sufficiently resolved. 
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