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Abstract— This paper applies a new paradigm to define a novel 
internal index for clustering evaluation. This new paradigm is 
based on the hypothesis that in real datasets, these data may 
form a single, continuous cloud of points. Under this approach, 
density appears as the key feature to recognize clusters. 
According to this data model, the proposed new internal index is 
defined based on the degree of variability that the density 
presents within the clusters. In this respect, the new index is able 
to find the ideal partition as the one in which the variability of 
these internal densities of each cluster is the lowest. At the same 
time, in order to avoid the division of the genuine clusters, the 
improvement of this index through different partitions when the 
number of clusters increases is analyzed. Then, the partition with 
the largest relative improvement is selected. The proposed 
clustering measure has been evaluated and compared with 7 
well-known indices over 17 real data sets, with very satisfactory 
results. 

Keywords— Clustering Evaluation, Internal Indexes, Density, 
Real Data Sets. 

I. INTRODUCTION 

The process of clustering consists of classifying in an 
unsupervised manner a set of patterns (samples or data) in sets 
[1]. The goal of a clustering algorithm is to perform a partition 
where objects within a cluster are similar and objects grouped 
in other clusters are dissimilar [2]. Depending on whether the 
object can only be classified as belonging to a single cluster, 
or to several of them with different membership degrees, 
clustering is classified as crisp or fuzzy, respectively. 

One of the most important issues in the cluster analysis is 
the evaluation of the results to find the partition that best fits 
the underlying structure of the data. This is the main objective 
of clustering validation [3]. 

Internal validation requires no extra information about the 
data neither the repetition of the clustering process. It depends 
on some properties of the resulting clusters, such as their 
levels of compactness, the degree of separation and the level 
of roundness [4]. 

A typical example of compactness measure is the variance. 
A low value of the variance is an indicator of a strong 

proximity between the elements of a cluster. Separation, on 
the other hand, shows how different two clusters are, 
computing the distance between them. The distance between 
representative objects or between their means is a good 
indicator [5]. 

Although they differ in the way they measure the inter-
clusters separation and clusters compactness level, all the 
internal indexes for crisp clustering, based on these two 
concepts, assume that clusters form compact data clouds with 
a high degree of separation. The innovations that have been 
made in this area have focused mainly on working with 
clusters that present geometries other than spherical [6], with 
remarkable exceptions such as in [7], where implicit 
hierarchical structure and/or natural clustering dependencies 
have been revealed by visualizing and analyzing input/output 
relations. But in general the basic paradigm has not been 
modified. 

In the literature of clustering algorithms there are a few 
authors who have proposed other types of clusters 
configurations to be analyzed. Specifically, in [8], where some 
different clustering problems are presented, one of them is 
called "density gradient problem". It consists of two clusters 
that form two almost adjacent regions, whose main difference 
is not the distance between them but their respective densities 
(Fig. 1). This concept is also addressed in [9], where authors 
propose a new algorithm of clustering based on graphs that 
automatically detects this configuration. However, regarding 
the point of view of clustering validation, this type of 
problems has not been addressed. 

A common way to compare the performance of these 
internal indices is by measuring how good their predictions 
are regarding the right number of clusters on datasets where 
this number is known in advance. These datasets are typically 
of two types: synthetically generated or real datasets. 

Based on the authors’ experience with real data sets [10], 
this paper proposes a new paradigm to define a new internal 
validation index. This new approach has been called the 
"Continuous Region Paradigm", which extends the definition 
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of [8] to include "n" adjacent clusters forming a single data 
cloud (Fig. 2). 

 

 
Fig. 1  “Density gradient problem” [8]. 

 

 
Fig. 2  Example of the continuous region paradigm on three adjacent clusters. 

By comparing the performance of the proposed index with 
other traditional validation measures on different real data sets, 
this work proves that this new paradigm gives better results 
than the traditional one that assumes well separated compact 
clouds. 

The organization of this paper is as follows. Section 2 
briefly describes the main criteria of the internal clustering 
measures. Section 3 presents the definition of the proposed 
new index. The methodology is described in Section 4, where 
the experimental results are also discussed. Finally, Section 5 
summarizes the main conclusions and future works. 

II. INTERNAL VALIDATION INDICES 

The internal clustering validation measures are designed to 
reflect both compactness and separation at the same time. 
Naturally, considering only one of the two criteria is not 
enough to evaluate complex clustering. Therefore, most 
internal indexes are usually defined by the combination of the 
following two criteria: 

A. Compactness 

Measures how closely objects are grouped in a cluster. 
Compactness is normally based on distances between in-
cluster points. The variance is a common way of calculating 
this property. A small variance indicates a high degree of 
compactness of the cluster. 

B. Separation 

Measures how different the found clusters are from each 
other, usually computing the distance between them. That is, 

how well separated they are. Separation is an inter-cluster 
criterion. The distance between objects is widely used because 
of its computational efficiency and effectiveness with clusters 
with hyper spherical shapes. 

As a general rule, a good partition will have small intra-
cluster distances and large inter-cluster distances [3]. 

Besides, the cluster validation indices can be classified 
according to the way these two criteria are combined, by the 
ratio between the intra-cluster and inter-cluster distances, or 
vice versa (Dunn, Davies Bouldin, XB, I index), or by 
calculating the weighted sum of these two criteria, such as the 
SD and S_Dbw index [11]. 

III. NEW INDEX DEFINITION 

Using the Continuous Region paradigm, a new validation 
index is defined in order to identify the partition that presents 
the biggest difference between the clusters regarding their 
respective densities, while maintaining the level of density 
variation within each cluster as low as possible. 

In general terms, the strategy consists of obtaining a global 
estimated value of the degree of density variation in the 
different clusters of each partition. Then, these values are 
sorted in increasing order in relation to the number of clusters 
of their respective partitions. Finally, the partition that shows 
the greatest relative improvement is selected. 

To define the new index, the following measures have been 
also defined: 

A. Local Density  

It estimates the local density of the neighborhood of an 
object xi in the space of characteristics. It is defined as the 
distance to the nearest neighbor that belongs to the same 
cluster. It is formally expressed as (1): 
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where d() corresponds to the Euclidean distance and Ck 
means the k-th cluster. 

B. Density of a Cluster 

It is calculated as the average value of all the local densities 
calculated for the data of a cluster Ck, that is, (2): 
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where nk is the total number of data in cluster Ck. 

C.  Uniformity 

It measures the degree of variation of local densities in a 
cluster (3): 
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where the lower the value the greater the uniformity. 



D. CDR Index (Contiguous Density Region) 

For a partition Pk={C1,..,Ck} of a data set, with k clusters, 
the value of the CDR index is defined as (4): 
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where ni is the total number of data in the cluster Ci, and 

ntotal corresponds to the total number of data in the data set. As 
the goal of the index is to identify the clusters with the highest 
levels of uniformity regarding their densities, this index must 
be minimized. 

E. Searching for the Optimum 

Let be R={P1,..,Pm} the set of the different partitions 
generated by a clustering algorithm on the S dataset, sorted in 
relation to the number of clusters (from 1 to m clusters). Then, 
the CDR index is calculated for each of these partitions and 
these new values are sorted in the same way as R: 
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An example is shown in Fig. 3. The values of the CDR 

index for 10 different partitions of a particular data set are 
represented. The horizontal axis represents the number of 
clusters of each partition, and the vertical axis represents the 
values of the index. 

 

 
Fig. 3  Bar graph representing the searching for a local minimum in the CDR 
index values extracted from ten partitions of a particular data set. 

In this Figure 3, the searching for a local minimum in the 
CDR index values is represented by the red arrow. The 
vertical red line represents the limit of the partitions selected 
for later analysis (partitions with 1 to 4 clusters). 

The process of finding the minimum starts in CDR (P2) 
(smallest solution), and continues as long as values are kept 
decreasing (CDR (Pi) <CDR (Pi+1)). When this condition is no 
longer met (CDR (Pi)> = CDR (Pi+1)), the process is stopped 
and all i first partitions are selected for later analysis. 

The next step is to measure the degree of relative 
improvement between two consecutive partitions through the 
following factor (6): 
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Finally, the optimal number of clusters is obtained from the 
partition that shows the greatest improvement (Factor with the 
lowest value) (7): 
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For this example, the Factor values for the previously 

selected partitions are shown in Table I. The lowest value 
obtained for the partition with 3 clusters indicates that this is 
the optimal number of clusters. 

TABLE I 
FACTOR VALUES FOR THE SELECTED PARTITIONS 

K 2 3 4 
Factor 0.920 0.721 0.879 

IV. METHODOLOGY AND EXPERIMENTS 

A. Methodology 

To obtain the partitions we used the k-means clustering 
algorithm. For each data set up to 14 partitions were generated, 
starting with a minimum of 2 clusters up to a maximum of 15 
clusters. Previously, each feature of the data was normalized 
to the range 0-100. For the specific case of the target partition, 
we do not generate a new artificial partition with the k-means 
algorithm. Instead, the target partition is directly aggregated to 
the set of partitions to be evaluated by the indexes. 

Then, for each data set, the number of clusters selected by 
each internal index was recorded, considering the 14 partitions 
previously generated. 

To compare the performance of the indices, two criteria 
were used: 

1) Number of hits: number of times an index finds the 
correct number of clusters of the datasets. 

2) Average error: represents the average difference, in 
absolute terms, between the number of clusters found by the 
index and the target number for a dataset. Formally it is 
defined as (8): 
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where target corresponds to the target number of clusters, 

prediction to the value given by the index, and n is the total 
number of data sets analyzed. 

B. Real Data Sets 

We work with the 17 real datasets extracted from the "UCI 
Machine Learning Repository" [12]. These 17 real data sets 
are: Iris (3 classes, 4 features and 150 objects), Breast Cancer 
Wisconsin (Diagnostic) (2 classes, 30 features and 569 
objects), Wine (3 classes, 13 features and 178 objects), 
Vertebral Column (3 classes, 6 features and 310 objects), 
Ecoli (8 classes, 7 features and 336 objects), Haberman’s 
Survival (2 classes, 3 features and 306 objects), Breast Tissue 
(6 classes, 9 features and 106 objects), Glass (6 classes, 9 



features and 214 objects), Seeds (3 classes, 7 features and 210 
objects), Spectf Heart (2 classes, 44 features and 80 objects), 
Banknote Authentication (2 classes, 4 features, 1372 objects), 
Connections Bench Sonar ( classes, 60 features, 208 objects), 
Fertility (2 classes, 9 features, 100 objects), Parkinson (2 
classes, 22 features, 195 objects), Statlog Vehicle (4 classes, 
18 features, 846 objects), Yeast (10 classes, 8 features and 
1484 objects), and finally, Steel Plates (7 classes, 27 features 
and 1941 objects). 

C. Discussion of the Results 

The internal indices used in this study are: Dunn, CH, 
Davies-Bouldin, I, XB, Silohuette and SD. 

The experiments results on the 17 real data sets are shown 
in Table II. Each column represents the results of a specific 
index, highlighted with a blue background color when the 
result matches the target number of clusters, and in light blue 
when the difference is only one unit. The last two rows 
represent the number of hits and the average error. As it can 
be seen, the new proposed CDR index shows a much higher 
performance than the other indices in both measures. 

Analyzing the overall performance of the indices through 
the data sets, whenever traditional indices performed well, the 
same happens regarding the new internal CDR index. 
However, the inverse is not always true, which demonstrates 
the greater capacity for generalization of the new paradigm. In 
this sense, it is able to capture the structure of the data even 
when they form clouds of data with a certain degree of 
overlapping, showing that, in real data sets, density is a key 
element to differentiate classes. 

V. CONCLUSIONS AND FUTURE WORKS 

A new clustering validation measures is defined based on a 
novel paradigm that uses the density of the dataset as the key 
for generating the partitions. 

The very good results obtained in the experiments with real 
data sets prove the effectiveness of this new proposed 

paradigm to evaluate partitions. In all the cases, better results 
than with the traditional approach have been obtained. 

This inspires to continue researching on this topic, defining 
new internal evaluation indexes that take into account more 
features of the real data. 
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TABLE III 
EXPERIMENTAL RESULTS 

Data Set Target CDR SD XB Silo. I Dunn CH DB 
Banknote 2 2 5 4 15 3 2 5 15 
Breast C. 2 2 3 2 2 2 3 2 2 
Breast T. 6 2 3 2 2 2 2 2 2 
Columna 3 2 5 2 2 10 15 2 13 

C.B. Sonar 2 3 4 3 3 3 9 3 15 
Ecoli 8 3 4 3 3 3 3 6 3 

Fertility 2 2 12 12 15 4 4 4 12 
Glass 6 2 7 2 2 2 8 2 15 

H. Survival 2 2 6 11 11 3 3 4 11 
Iris 3 2 2 2 2 2 2 2 2 

Parkinson 2 3 9 3 3 4 14 3 3 
Seeds 3 4 2 2 2 2 11 2 2 

S.Heart 2 2 15 15 13 4 12 4 13 
S. Vehicle 4 2 2 2 2 2 10 2 2 
Steel Plates 7 5 10 2 2 2 2 2 10 

Wine 3 3 3 2 2 2 12 2 3 
Yeast 10 2 3 3 2 6 11 2 11 

AVG ERR 1.77 3.77 3.94 4.71 2.53 5.06 2.35 5.47 
HITS 6 1 1 1 1 1 1 1 

 




